Search results for: data security architecture
26330 Sustainable User Comfort Using Building Envelope Design; From Traditional Methods to Innovative Solutions
Authors: Soufi Saylam
Abstract:
Environmental concerns, rising consumption of energy, and the high cost of mechanical systems have all contributed to increased interest in building energy efficiency and passive thermal design in recent years. This study attempts to make an evaluation of building envelope components and associated retrofits in terms of their impact on energy efficiency and occupant comfort in a sustainable context. The design of the building envelope, as a critical component of the building, has a significant impact on the organization of interior space and user comfort. In this regard, in order to achieve maximum comfort and energy savings, the design of the building envelope should include a thermal comfort system that adapts to climatic variables. This system should be developed in harmony with the environmental features, building shape, and materials used. The aim of this study is to investigate the role of the building envelope in sustainable architecture by integrating traditional envelope design principles and strategies with technological techniques, as well as to examine its role in providing physical and psychological comfort to users in the interior space.Keywords: envelope design, functional needs, physiological comfort, sustainable architecture, traditional techniques
Procedia PDF Downloads 626329 A Machine Learning Decision Support Framework for Industrial Engineering Purposes
Authors: Anli Du Preez, James Bekker
Abstract:
Data is currently one of the most critical and influential emerging technologies. However, the true potential of data is yet to be exploited since, currently, about 1% of generated data are ever actually analyzed for value creation. There is a data gap where data is not explored due to the lack of data analytics infrastructure and the required data analytics skills. This study developed a decision support framework for data analytics by following Jabareen’s framework development methodology. The study focused on machine learning algorithms, which is a subset of data analytics. The developed framework is designed to assist data analysts with little experience, in choosing the appropriate machine learning algorithm given the purpose of their application.Keywords: Data analytics, Industrial engineering, Machine learning, Value creation
Procedia PDF Downloads 16826328 An Analytical Approach to Assess and Compare the Vulnerability Risk of Operating Systems
Authors: Pubudu K. Hitigala Kaluarachchilage, Champike Attanayake, Sasith Rajasooriya, Chris P. Tsokos
Abstract:
Operating system (OS) security is a key component of computer security. Assessing and improving OSs strength to resist against vulnerabilities and attacks is a mandatory requirement given the rate of new vulnerabilities discovered and attacks occurring. Frequency and the number of different kinds of vulnerabilities found in an OS can be considered an index of its information security level. In the present study five mostly used OSs, Microsoft Windows (windows 7, windows 8 and windows 10), Apple’s Mac and Linux are assessed for their discovered vulnerabilities and the risk associated with each. Each discovered and reported vulnerability has an exploitability score assigned in CVSS score of the national vulnerability database. In this study the risk from vulnerabilities in each of the five Operating Systems is compared. Risk Indexes used are developed based on the Markov model to evaluate the risk of each vulnerability. Statistical methodology and underlying mathematical approach is described. Initially, parametric procedures are conducted and measured. There were, however, violations of some statistical assumptions observed. Therefore the need for non-parametric approaches was recognized. 6838 vulnerabilities recorded were considered in the analysis. According to the risk associated with all the vulnerabilities considered, it was found that there is a statistically significant difference among average risk levels for some operating systems, indicating that according to our method some operating systems have been more risk vulnerable than others given the assumptions and limitations. Relevant test results revealing a statistically significant difference in the Risk levels of different OSs are presented.Keywords: cybersecurity, Markov chain, non-parametric analysis, vulnerability, operating system
Procedia PDF Downloads 18326327 Deciphering Chinese Calligraphy as the Architectural Essence of Tao Fong Shan Christian Center in Hong Kong
Authors: Chak Kwong Lau
Abstract:
Many buildings in Hong Kong are graced with enchanting works of Chinese calligraphy. An excellent example is Tao Fong Shan Christian Center founded by a Norwegian missionary, Karl Ludvig Reichelt (1877-1952) in 1930. Adorned with many inspiring works of Chinese calligraphy, the center functions as a place for the study of Christianity where people of different religions can meet to have religious discussions and intellectual exchanges. This paper examines the pivotal role played by Chinese calligraphy in creating a significant context for the center to fulfill her visions and missions. The methodology of this research involves stylistic and textual analyses of works of calligraphy, in particular through an examination and interpretation of their extended meanings in terms of architectural symbology and social and cultural contexts. Findings showed that Chinese calligraphy was effectively used as a powerful vehicle for a purposeful development of contextual Christian spirituality in Hong Kong.Keywords: Chinese calligraphy, Hong Kong architecture, Hong Kong calligraphy, Johannes Prip-Møller, Karl Ludvig Reichelt, Norwegian missionary, Tao Fong Shan Christian Center, traditional Chinese architecture
Procedia PDF Downloads 28026326 An Optimal Steganalysis Based Approach for Embedding Information in Image Cover Media with Security
Authors: Ahlem Fatnassi, Hamza Gharsellaoui, Sadok Bouamama
Abstract:
This paper deals with the study of interest in the fields of Steganography and Steganalysis. Steganography involves hiding information in a cover media to obtain the stego media in such a way that the cover media is perceived not to have any embedded message for its unintended recipients. Steganalysis is the mechanism of detecting the presence of hidden information in the stego media and it can lead to the prevention of disastrous security incidents. In this paper, we provide a critical review of the steganalysis algorithms available to analyze the characteristics of an image stego media against the corresponding cover media and understand the process of embedding the information and its detection. We anticipate that this paper can also give a clear picture of the current trends in steganography so that we can develop and improvise appropriate steganalysis algorithms.Keywords: optimization, heuristics and metaheuristics algorithms, embedded systems, low-power consumption, steganalysis heuristic approach
Procedia PDF Downloads 29226325 Cyber Attacks Management in IoT Networks Using Deep Learning and Edge Computing
Authors: Asmaa El Harat, Toumi Hicham, Youssef Baddi
Abstract:
This survey delves into the complex realm of Internet of Things (IoT) security, highlighting the urgent need for effective cybersecurity measures as IoT devices become increasingly common. It explores a wide array of cyber threats targeting IoT devices and focuses on mitigating these attacks through the combined use of deep learning and machine learning algorithms, as well as edge and cloud computing paradigms. The survey starts with an overview of the IoT landscape and the various types of attacks that IoT devices face. It then reviews key machine learning and deep learning algorithms employed in IoT cybersecurity, providing a detailed comparison to assist in selecting the most suitable algorithms. Finally, the survey provides valuable insights for cybersecurity professionals and researchers aiming to enhance security in the intricate world of IoT.Keywords: internet of things (IoT), cybersecurity, machine learning, deep learning
Procedia PDF Downloads 3126324 Virtual Reality and Other Real-Time Visualization Technologies for Architecture Energy Certifications
Authors: Román Rodríguez Echegoyen, Fernando Carlos López Hernández, José Manuel López Ujaque
Abstract:
Interactive management of energy certification ratings has remained on the sidelines of the evolution of virtual reality (VR) despite related advances in architecture in other areas such as BIM and real-time working programs. This research studies to what extent VR software can help the stakeholders to better understand energy efficiency parameters in order to obtain reliable ratings assigned to the parts of the building. To evaluate this hypothesis, the methodology has included the construction of a software prototype. Current energy certification systems do not follow an intuitive data entry system; neither do they provide a simple or visual verification of the technical values included in the certification by manufacturers or other users. This software, by means of real-time visualization and a graphical user interface, proposes different improvements to the current energy certification systems that ease the understanding of how the certification parameters work in a building. Furthermore, the difficulty of using current interfaces, which are not friendly or intuitive for the user, means that untrained users usually get a poor idea of the grounds for certification and how the program works. In addition, the proposed software allows users to add further information, such as financial and CO₂ savings, energy efficiency, and an explanatory analysis of results for the least efficient areas of the building through a new visual mode. The software also helps the user to evaluate whether or not an investment to improve the materials of an installation is worth the cost of the different energy certification parameters. The evaluated prototype (named VEE-IS) shows promising results when it comes to representing in a more intuitive and simple manner the energy rating of the different elements of the building. Users can also personalize all the inputs necessary to create a correct certification, such as floor materials, walls, installations, or other important parameters. Working in real-time through VR allows for efficiently comparing, analyzing, and improving the rated elements, as well as the parameters that we must enter to calculate the final certification. The prototype also allows for visualizing the building in efficiency mode, which lets us move over the building to analyze thermal bridges or other energy efficiency data. This research also finds that the visual representation of energy efficiency certifications makes it easy for the stakeholders to examine improvements progressively, which adds value to the different phases of design and sale.Keywords: energetic certification, virtual reality, augmented reality, sustainability
Procedia PDF Downloads 18626323 Modification Encryption Time and Permutation in Advanced Encryption Standard Algorithm
Authors: Dalal N. Hammod, Ekhlas K. Gbashi
Abstract:
Today, cryptography is used in many applications to achieve high security in data transmission and in real-time communications. AES has long gained global acceptance and is used for securing sensitive data in various industries but has suffered from slow processing and take a large time to transfer data. This paper suggests a method to enhance Advance Encryption Standard (AES) Algorithm based on time and permutation. The suggested method (MAES) is based on modifying the SubByte and ShiftRrows in the encryption part and modification the InvSubByte and InvShiftRows in the decryption part. After the implementation of the proposal and testing the results, the Modified AES achieved good results in accomplishing the communication with high performance criteria in terms of randomness, encryption time, storage space, and avalanche effects. The proposed method has good randomness to ciphertext because this method passed NIST statistical tests against attacks; also, (MAES) reduced the encryption time by (10 %) than the time of the original AES; therefore, the modified AES is faster than the original AES. Also, the proposed method showed good results in memory utilization where the value is (54.36) for the MAES, but the value for the original AES is (66.23). Also, the avalanche effects used for calculating diffusion property are (52.08%) for the modified AES and (51.82%) percentage for the original AES.Keywords: modified AES, randomness test, encryption time, avalanche effects
Procedia PDF Downloads 24826322 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network
Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan
Abstract:
The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG
Procedia PDF Downloads 18226321 Politics in Academia: How the Diffusion of Innovation Relates to Professional Capital
Authors: Autumn Rooms Cypres, Barbara Driver
Abstract:
The purpose of this study is to extend discussions about innovations and career politics. Research questions that grounded this effort were: How does an academic learn the unspoken rules of the academy? What happens politically to an academic’s career when their research speaks against the grain of society? Do professors perceive signals that it is time to move on to another institution or even to another career? Epistemology and Methods: This qualitative investigation was focused on examining perceptions of academics. Therefore an open-ended field study, based on Grounded Theory, was used. This naturalistic paradigm (Lincoln & Guba,1985) was selected because it tends to understand information in terms of whole, of patterns, and in relations to the context of the environment. The technique for gathering data was the process of semi-structured, in-depth interviewing. Twenty five academics across the United States were interviewed relative to their career trajectories and the politics and opportunities they have encountered in relation to their research efforts. Findings: The analysis of interviews revealed four themes: Academics are beholden to 2 specific networks of power that influence their sense of job security; the local network based on their employing university and the national network of scholars who share the same field of research. The fights over what counts as research can and does drift from the intellectual to the political, and personal. Academic were able to identify specific instances of shunning and or punishment from their colleagues related directly to the dissemination of research that spoke against the grain of the local or national networks. Academics identified specific signals from both of these networks indicating that their career was flourishing or withering. Implications: This research examined insights from those who persevered when the fights over what and who counts drifted from the intellectual to the political, and the personal. Considerations of why such drifts happen were offered in the form of a socio-political construct called Fit, which included thoughts on hegemony, discourse, and identity. This effort reveals the importance of understanding what professional capital is relative to job security. It also reveals that fear is an enmeshed and often unspoken part of the culture of Academia. Further research to triangulate these findings would be helpful within international contexts.Keywords: politics, academia, job security, context
Procedia PDF Downloads 32126320 SiamMask++: More Accurate Object Tracking through Layer Wise Aggregation in Visual Object Tracking
Authors: Hyunbin Choi, Jihyeon Noh, Changwon Lim
Abstract:
In this paper, we propose SiamMask++, an architecture that performs layer-wise aggregation and depth-wise cross-correlation and introduce multi-RPN module and multi-MASK module to improve EAO (Expected Average Overlap), a representative performance evaluation metric for Visual Object Tracking (VOT) challenge. The proposed architecture, SiamMask++, has two versions, namely, bi_SiamMask++, which satisfies the real time (56fps) on systems equipped with GPUs (Titan XP), and rf_SiamMask++, which combines mask refinement modules for EAO improvements. Tests are performed on VOT2016, VOT2018 and VOT2019, the representative datasets of Visual Object Tracking tasks labeled as rotated bounding boxes. SiamMask++ perform better than SiamMask on all the three datasets tested. SiamMask++ is achieved performance of 62.6% accuracy, 26.2% robustness and 39.8% EAO, especially on the VOT2018 dataset. Compared to SiamMask, this is an improvement of 4.18%, 37.17%, 23.99%, respectively. In addition, we do an experimental in-depth analysis of how much the introduction of features and multi modules extracted from the backbone affects the performance of our model in the VOT task.Keywords: visual object tracking, video, deep learning, layer wise aggregation, Siamese network
Procedia PDF Downloads 15926319 Assessing Creative Agents: Engagement in Addressing Sustainability Challenges and Alignment with New European Bauhaus Principles
Authors: Chema Segovia, Pau Díaz-Solano, Tony Ramos Murphy
Abstract:
The PALIMPSEST project, funded by Horizon 2020 and associated with the New European Bauhaus, aims to revitalize sustainability practices in heritage landscapes through co-creation processes led by creative agents. Specifically, PALIMPSEST focuses on the pivotal roles of architecture, design, and art in addressing sustainability challenges. The project aims to demonstrate that these creative disciplines can generate a distinctive kind of value while addressing environmental needs, enhancing societal engagement, supporting foresighting activities, and increasing awareness. In the summer of 2023, Palimpsest launched an open call to select the teams that will lead the development of three creativity-based sustainability processes in three different pilot cities: Jerez de la Frontera (Spain), Lodz (Poland), and Milan (Italy). The call received 141 applications. Through a survey conducted among the candidates and an in-depth analysis of their proposals, we assessed the level of engagement that European creative agents have in tackling sustainability challenges, as well as their alignment with the principles advocated by the New European Bauhaus.Keywords: arts, architecture, co-creation, design, new European Bauhaus, sustainability
Procedia PDF Downloads 8226318 Enhancing Robustness in Federated Learning through Decentralized Oracle Consensus and Adaptive Evaluation
Authors: Peiming Li
Abstract:
This paper presents an innovative blockchain-based approach to enhance the reliability and efficiency of federated learning systems. By integrating a decentralized oracle consensus mechanism into the federated learning framework, we address key challenges of data and model integrity. Our approach utilizes a network of redundant oracles, functioning as independent validators within an epoch-based training system in the federated learning model. In federated learning, data is decentralized, residing on various participants' devices. This scenario often leads to concerns about data integrity and model quality. Our solution employs blockchain technology to establish a transparent and tamper-proof environment, ensuring secure data sharing and aggregation. The decentralized oracles, a concept borrowed from blockchain systems, act as unbiased validators. They assess the contributions of each participant using a Hidden Markov Model (HMM), which is crucial for evaluating the consistency of participant inputs and safeguarding against model poisoning and malicious activities. Our methodology's distinct feature is its epoch-based training. An epoch here refers to a specific training phase where data is updated and assessed for quality and relevance. The redundant oracles work in concert to validate data updates during these epochs, enhancing the system's resilience to security threats and data corruption. The effectiveness of this system was tested using the Mnist dataset, a standard in machine learning for benchmarking. Results demonstrate that our blockchain-oriented federated learning approach significantly boosts system resilience, addressing the common challenges of federated environments. This paper aims to make these advanced concepts accessible, even to those with a limited background in blockchain or federated learning. We provide a foundational understanding of how blockchain technology can revolutionize data integrity in decentralized systems and explain the role of oracles in maintaining model accuracy and reliability.Keywords: federated learning system, block chain, decentralized oracles, hidden markov model
Procedia PDF Downloads 6326317 Indoor Air Quality Analysis for Renovating Building: A Case Study of Student Studio, Department of Landscape, Chiangmai, Thailand
Authors: Warangkana Juangjandee
Abstract:
The rapidly increasing number of population in the limited area creates an effect on the idea of the improvement of the area to suit the environment and the needs of people. Faculty of architecture Chiang Mai University is also expanding in both variety fields of study and quality of education. In 2020, the new department will be introduced in the faculty which is Department of Landscape Architecture. With the limitation of the area in the existing building, the faculty plan to renovate some parts of its school for anticipates the number of students who will join the program in the next two years. As a result, the old wooden workshop area is selected to be renovated as student studio space. With such condition, it is necessary to study the restriction and the distinctive environment of the site prior to the improvement in order to find ways to manage the existing space due to the fact that the primary functions that have been practiced in the site, an old wooden workshop space and the new function, studio space, are too different. 72.9% of the annual times in the room are considered to be out of the thermal comfort condition with high relative humidity. This causes non-comfort condition for occupants which could promote mould growth. This study aims to analyze thermal comfort condition in the Landscape Learning Studio Area for finding the solution to improve indoor air quality and respond to local conditions. The research methodology will be in two parts: 1) field gathering data on the case study 2) analysis and finding the solution of improving indoor air quality. The result of the survey indicated that the room needs to solve non-comfort condition problem. This can be divided into two ways which are raising ventilation and indoor temperature, e.g. improving building design and stack driven ventilation, using fan for enhancing more internal ventilation.Keywords: relative humidity, renovation, temperature, thermal comfort
Procedia PDF Downloads 21626316 Impact of Extended Enterprise Resource Planning in the Context of Cloud Computing on Industries and Organizations
Authors: Gholamreza Momenzadeh, Forough Nematolahi
Abstract:
The Extended Enterprise Resource Planning (ERPII) system usually requires massive amounts of storage space, powerful servers, and large upfront and ongoing investments to purchase and manage the software and the related hardware which are not affordable for organizations. In recent decades, organizations prefer to adapt their business structures with new technologies for remaining competitive in the world economy. Therefore, cloud computing (which is one of the tools of information technology (IT)) is a modern system that reveals the next-generation application architecture. Also, cloud computing has had some advantages that reduce costs in many ways such as: lower upfront costs for all computing infrastructure and lower cost of maintaining and supporting. On the other hand, traditional ERPII is not responding for huge amounts of data and relations between the organizations. In this study, based on a literature study, ERPII is investigated in the context of cloud computing where the organizations operate more efficiently. Also, ERPII conditions have a response to needs of organizations in large amounts of data and relations between the organizations.Keywords: extended enterprise resource planning, cloud computing, business process, enterprise information integration
Procedia PDF Downloads 22226315 A Machine Learning Based Method to Detect System Failure in Resource Constrained Environment
Authors: Payel Datta, Abhishek Das, Abhishek Roychoudhury, Dhiman Chattopadhyay, Tanushyam Chattopadhyay
Abstract:
Machine learning (ML) and deep learning (DL) is most predominantly used in image/video processing, natural language processing (NLP), audio and speech recognition but not that much used in system performance evaluation. In this paper, authors are going to describe the architecture of an abstraction layer constructed using ML/DL to detect the system failure. This proposed system is used to detect the system failure by evaluating the performance metrics of an IoT service deployment under constrained infrastructure environment. This system has been tested on the manually annotated data set containing different metrics of the system, like number of threads, throughput, average response time, CPU usage, memory usage, network input/output captured in different hardware environments like edge (atom based gateway) and cloud (AWS EC2). The main challenge of developing such system is that the accuracy of classification should be 100% as the error in the system has an impact on the degradation of the service performance and thus consequently affect the reliability and high availability which is mandatory for an IoT system. Proposed ML/DL classifiers work with 100% accuracy for the data set of nearly 4,000 samples captured within the organization.Keywords: machine learning, system performance, performance metrics, IoT, edge
Procedia PDF Downloads 19526314 A Literature Review of Precision Agriculture: Applications of Diagnostic Diseases in Corn, Potato, and Rice Based on Artificial Intelligence
Authors: Carolina Zambrana, Grover Zurita
Abstract:
The food loss production that occurs in deficient agricultural production is one of the major problems worldwide. This puts the population's food security and the efficiency of farming investments at risk. It is to be expected that this food security will be achieved with the own and efficient production of each country. It will have an impact on the well-being of its population and, thus, also on food sovereignty. The production losses in quantity and quality occur due to the lack of efficient detection of diseases at an early stage. It is very difficult to solve the agriculture efficiency using traditional methods since it takes a long time to be carried out due to detection imprecision of the main diseases, especially when the production areas are extensive. Therefore, the main objective of this research study is to perform a systematic literature review, of the latest five years, of Precision Agriculture (PA) to be able to understand the state of the art of the set of new technologies, procedures, and optimization processes with Artificial Intelligence (AI). This study will focus on Corns, Potatoes, and Rice diagnostic diseases. The extensive literature review will be performed on Elsevier, Scopus, and IEEE databases. In addition, this research will focus on advanced digital imaging processing and the development of software and hardware for PA. The convolution neural network will be handling special attention due to its outstanding diagnostic results. Moreover, the studied data will be incorporated with artificial intelligence algorithms for the automatic diagnosis of crop quality. Finally, precision agriculture with technology applied to the agricultural sector allows the land to be exploited efficiently. This system requires sensors, drones, data acquisition cards, and global positioning systems. This research seeks to merge different areas of science, control engineering, electronics, digital image processing, and artificial intelligence for the development, in the near future, of a low-cost image measurement system that allows the optimization of crops with AI.Keywords: precision agriculture, convolutional neural network, deep learning, artificial intelligence
Procedia PDF Downloads 7926313 Resilient Environments vs. Resilient Architects: Creativity, Practice and Education
Authors: Y. Perera, M. Pathiraja
Abstract:
Within the paradigm of 'Resilient Built-environments,' in order for architecture to be resilient, 'Resilience' should be identified as an essential component of the architect’s notion of creativity. In much simpler terms, 'Resilient Built-Environment' should necessarily be a by-product of the 'Resilient Architect.' The inherent influence of individualistic notions of creativity upon the practice had intensified the dichotomy between theory and practice unless the notion of 'Resilience' is identified as an integral component of the architect’s notion of creativity. Analysing the architectural position is an ideal way of understanding the architect’s notion of creativity, therefore, in exploring the notion of 'Resilience' and the 'Resilient Architect' within the Sri Lankan platform, the architectural positions of two renowned architects; Geoffrey Bawa and Valentine Gunasekara were explored and analysed. The architectural positions of both the architects asserted specific rules and methodologies adopted within the process of problem solving that had subsequently led to a traceable language / pattern within their architecture. The dominance of such rules within the practice could be detrimental to adaptation of theories / notions, such as 'Resilience' and the formation of the 'Resilient Architect', unless methodologies itself are flexible, robust, despite rigidity, or else the notion of 'Resilience' exist in the form of a methodological rule.Keywords: architectural position, creativity, education, practice, resilience, theory
Procedia PDF Downloads 31726312 SISSLE in Consensus-Based Ripple: Some Improvements in Speed, Security, Last Mile Connectivity and Ease of Use
Authors: Mayank Mundhra, Chester Rebeiro
Abstract:
Cryptocurrencies are rapidly finding wide application in areas such as Real Time Gross Settlements and Payments Systems. Ripple is a cryptocurrency that has gained prominence with banks and payment providers. It solves the Byzantine General’s Problem with its Ripple Protocol Consensus Algorithm (RPCA), where each server maintains a list of servers, called Unique Node List (UNL) that represents the network for the server, and will not collectively defraud it. The server believes that the network has come to a consensus when members of the UNL come to a consensus on a transaction. In this paper we improve Ripple to achieve better speed, security, last mile connectivity and ease of use. We implement guidelines and automated systems for building and maintaining UNLs for resilience, robustness, improved security, and efficient information propagation. We enhance the system so as to ensure that each server receives information from across the whole network rather than just from the UNL members. We also introduce the paradigm of UNL overlap as a function of information propagation and the trust a server assigns to its own UNL. Our design not only reduces vulnerabilities such as eclipse attacks, but also makes it easier to identify malicious behaviour and entities attempting to fraudulently Double Spend or stall the system. We provide experimental evidence of the benefits of our approach over the current Ripple scheme. We observe ≥ 4.97x and 98.22x in speedup and success rate for information propagation respectively, and ≥ 3.16x and 51.70x in speedup and success rate in consensus.Keywords: Ripple, Kelips, unique node list, consensus, information propagation
Procedia PDF Downloads 14526311 A Unified Deep Framework for Joint 3d Pose Estimation and Action Recognition from a Single Color Camera
Authors: Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio Velastin
Abstract:
We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from color video sequences. Our approach proceeds along two stages. In the first, we run a real-time 2D pose detector to determine the precise pixel location of important key points of the body. A two-stream neural network is then designed and trained to map detected 2D keypoints into 3D poses. In the second, we deploy the Efficient Neural Architecture Search (ENAS) algorithm to find an optimal network architecture that is used for modeling the Spatio-temporal evolution of the estimated 3D poses via an image-based intermediate representation and performing action recognition. Experiments on Human3.6M, Microsoft Research Redmond (MSR) Action3D, and Stony Brook University (SBU) Kinect Interaction datasets verify the effectiveness of the proposed method on the targeted tasks. Moreover, we show that our method requires a low computational budget for training and inference.Keywords: human action recognition, pose estimation, D-CNN, deep learning
Procedia PDF Downloads 14626310 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: crime prediction, machine learning, public safety, smart city
Procedia PDF Downloads 11226309 Geographic Information System Application for Predicting Tourism Development in Gunungkidul Regency, Indonesia
Authors: Nindyo Cahyo Kresnanto, Muhamad Willdan, Wika Harisa Putri
Abstract:
Gunungkidul is one of the emerging tourism industry areas in Yogyakarta Province, Indonesia. This article describes how GIS can predict the development of tourism potential in Gunungkidul. The tourism sector in Gunungkidul Regency contributes 3.34% of the total gross regional domestic product and is the economic sector with the highest growth with a percentage of 18.37% in the post-Covid-19 period. This contribution makes researchers consider that several tourist sites need to be explored more to increase regional economic development gradually. This research starts by collecting spatial data from tourist locations tourists want to visit in Gunungkidul Regency based on survey data from 571 respondents. Then the data is visualized with ArcGIS software. This research shows an overview of tourist destinations interested in travellers depicted from the lowest to the highest from the data visualization. Based on the data visualization results, specific tourist locations potentially developed to influence the surrounding economy positively. The visualization of the data displayed is also in the form of a desire line map that shows tourist travel patterns from the origin of the tourist to the destination of the tourist location of interest. From the desire line, the prediction of the path of tourist sites with a high frequency of transportation activity can figure out. Predictions regarding specific tourist location routes that high transportation activities can burden can consider which routes will be chosen. The route also needs to be improved in terms of capacity and quality. The goal is to provide a sense of security and comfort for tourists who drive and positively impact the tourist sites traversed by the route.Keywords: tourism development, GIS and survey, transportation, potential desire line
Procedia PDF Downloads 6626308 Contribution of Home Gardens to Rural Household Income in Raymond Mhlaba Local Municipality, Eastern Cape Province, South Africa
Abstract:
Home garden has proved to be significant to rural inhabitants by providing a wide range of useful products such as fruits, vegetables and medicine. There is need for quantitative information on its benefits and contributions to rural household. The main objective of this study is to investigate contributions of home garden to income of rural households in Raymond Mhlaba Local Municipality, formerly Nkonkobe Local Municipality of Eastern Cape Province South Africa. The stratified random sampling method was applied in order to choose a sample of 160 households.The study was conducted among 80 households engaging in home gardens and 80 non- participating households in the study area. Data analysis employed descriptive statistics with the use of frequency table and one way sample T test to show actual contributions. The overall model shows that social grant has the highest contribution to total household income for both categories while income generated from home garden has the second largest share to total household income, this shows that the majority of rural households in the study area rely on social grant as their source of income. However, since most households are net food buyers, it is essential to have policies that are formulated with an understanding that household food security is not only a function of the food that farming households produce for their own consumption but more so a function of total household income. The results produced sufficient evidence that home gardens contribute significantly to income of rural household.Keywords: food security, home gardening, household, income
Procedia PDF Downloads 22526307 The Balancing Act: India and Maldives in the Quest for Regional Prosperity
Authors: Arya S. S.
Abstract:
India is one of the powerful country in the world .India and Maldives having common interests in regional security and economic growth, this relationship has seen substantial change in recent years. This paper examines the complex dynamics of this bilateral relationship, emphasizing the careful balancing act that both countries perform in order to advance regional prosperity. It looks at historical connections, geopolitical factors, and current issues like economic cooperation, climate change, and marine security. The study highlights how India's involvement in the Maldives contributes to both bilateral ties and regional stability by examining important initiatives including trade agreements and infrastructure projects. It also discusses the effects of outside factors and the necessity for both nations to strategically manage their interests. In order to contribute to a more affluent and stable Indian Ocean area, this study ultimately seeks to shed light on how India and the Maldives may cooperate to promote sustainable development while tackling security issues. The India Maldives relation is very crucial in the regional stability of Indian ocean region. The initiatives like building infrastructure, giving financial support, and establishing the India-Maldives Friendship Bridge demonstrate India's dedication to Maldivian prosperity. In addition to boosting the Maldives' economy, these investments strengthen India's clout in the area, which is essential for preserving its maritime security interests in the face of growing Chinese dominance. Both India and China involved in a strategic tug of war in order to enhance their dominance in Maldives. There are difficulties with this collaboration including, political unrest in the Maldives has occasionally resulted in changes to foreign policy, particularly under regimes that support stronger ties with China. India has expressed concern about losing strategic footholds in the Indian Ocean as a result of China's extension of influence through debt diplomacy and infrastructure projects. India must therefore strike a balance between advancing its objectives and upholding Maldivian sovereignty as well as the goals of its people and government. In summary, the partnership between India and the Maldives is a complex balancing act that is marked by cultural links, security cooperation, and economic dependency. Both countries must negotiate the complexity of international relations as they work for regional prosperity, especially in light of both internal and external factors. India and the Maldives can strengthen their positions as key actors in the changing dynamics of the Indian Ocean by promoting cooperation and communication. This would not only protect their particular interests but also help create a stable and prosperous South Asian region.Keywords: regional security, balancing act, debt trap diplomacy, strategic tug of war
Procedia PDF Downloads 1626306 The Impact of Leadership Culture on Motivation, Efficiency, and Performance of Customs Employees: A Case Study of Iran Customs
Authors: Kazem Samadi
Abstract:
In today’s world, public agencies like customs have become vital institutions in international trade processes and in maintaining national economic security due to increasing economic and commercial complexities. In this regard, human resource management (HRM) is crucial to achieving organizational goals. This research employed a descriptive survey method, in which the statistical population consisted of all customs employees. Using Cochran's formula, 300 employees were selected from the central customs office. A researcher-made questionnaire was used as the data collection tool, with content validity and reliability confirmed using Cronbach's alpha coefficient. The collected data were analyzed through structural modeling using SPSS and AMOS 24. The results indicated that leadership culture significantly affected employee motivation, efficiency, and performance in customs. Customs managers and leaders in Iran can improve organizational productivity by fostering this culture, thereby facilitating individual and organizational development for their staff.Keywords: leadership culture, organizational culture, employee performance, customs
Procedia PDF Downloads 1926305 A Hebbian Neural Network Model of the Stroop Effect
Authors: Vadim Kulikov
Abstract:
The classical Stroop effect is the phenomenon that it takes more time to name the ink color of a printed word if the word denotes a conflicting color than if it denotes the same color. Over the last 80 years, there have been many variations of the experiment revealing various mechanisms behind semantic, attentional, behavioral and perceptual processing. The Stroop task is known to exhibit asymmetry. Reading the words out loud is hardly dependent on the ink color, but naming the ink color is significantly influenced by the incongruent words. This asymmetry is reversed, if instead of naming the color, one has to point at a corresponding color patch. Another debated aspects are the notions of automaticity and how much of the effect is due to semantic and how much due to response stage interference. Is automaticity a continuous or an all-or-none phenomenon? There are many models and theories in the literature tackling these questions which will be discussed in the presentation. None of them, however, seems to capture all the findings at once. A computational model is proposed which is based on the philosophical idea developed by the author that the mind operates as a collection of different information processing modalities such as different sensory and descriptive modalities, which produce emergent phenomena through mutual interaction and coherence. This is the framework theory where ‘framework’ attempts to generalize the concepts of modality, perspective and ‘point of view’. The architecture of this computational model consists of blocks of neurons, each block corresponding to one framework. In the simplest case there are four: visual color processing, text reading, speech production and attention selection modalities. In experiments where button pressing or pointing is required, a corresponding block is added. In the beginning, the weights of the neural connections are mostly set to zero. The network is trained using Hebbian learning to establish connections (corresponding to ‘coherence’ in framework theory) between these different modalities. The amount of data fed into the network is supposed to mimic the amount of practice a human encounters, in particular it is assumed that converting written text into spoken words is a more practiced skill than converting visually perceived colors to spoken color-names. After the training, the network performs the Stroop task. The RT’s are measured in a canonical way, as these are continuous time recurrent neural networks (CTRNN). The above-described aspects of the Stroop phenomenon along with many others are replicated. The model is similar to some existing connectionist models but as will be discussed in the presentation, has many advantages: it predicts more data, the architecture is simpler and biologically more plausible.Keywords: connectionism, Hebbian learning, artificial neural networks, philosophy of mind, Stroop
Procedia PDF Downloads 26626304 Business Intelligence for Profiling of Telecommunication Customer
Authors: Rokhmatul Insani, Hira Laksmiwati Soemitro
Abstract:
Business Intelligence is a methodology that exploits the data to produce information and knowledge systematically, business intelligence can support the decision-making process. Some methods in business intelligence are data warehouse and data mining. A data warehouse can store historical data from transactional data. For data modelling in data warehouse, we apply dimensional modelling by Kimball. While data mining is used to extracting patterns from the data and get insight from the data. Data mining has many techniques, one of which is segmentation. For profiling of telecommunication customer, we use customer segmentation according to customer’s usage of services, customer invoice and customer payment. Customers can be grouped according to their characteristics and can be identified the profitable customers. We apply K-Means Clustering Algorithm for segmentation. The input variable for that algorithm we use RFM (Recency, Frequency and Monetary) model. All process in data mining, we use tools IBM SPSS modeller.Keywords: business intelligence, customer segmentation, data warehouse, data mining
Procedia PDF Downloads 48426303 Securitizing Terrorism: A Critical Appraisal of Pakistan’s Counter-Terrorism Approach
Authors: Bilal Zubair
Abstract:
In a constantly challenging internal security environment, Pakistan is making ways to improvise and respond to the new variations in the pervasive phenomenon of terrorism. The state’s endeavors towards securitizing terrorism as an existential threat are both extensive and intensive which have systematically incorporated both military and non-military means. Since 2007, the military has been conducting intermittent operations and by 2014 has successfully neutralized the terrorist ability to target vital security installations and security personal. The terrorists have responded by targeting communities which are soft targets and extremely vulnerable to organized assaults. Within this context, the study aims to explain the emerging trends of terrorism in Pakistan, which multi-layered and complex developments are having far-reaching implications for state and society. With a view to explore the underlining reasons, present trends and ensuing ramifications of the emerging trends in terrorism, this study would examine the following: First, the historical processes and development of Terrorism in Pakistan; secondly the processes of securitization which include political consensus, legal frameworks and military operations against the terrorist groups; thirdly , the socio-cultural dimensions and geopolitical influences on the transforming nature of sectarian terrorism. The study will also highlight the grey areas and weak links in the ongoing securitization process. Finally, the study will thoroughly explore the societal insecurity which is manifested in internal displacements, identity crisis and weakening the socio-political fabric of the state.Keywords: counter-terrorism, terrorism, sectarianism, securitizing
Procedia PDF Downloads 29826302 Securing Mobile Ad-Hoc Network Utilizing OPNET Simulator
Authors: Tariq A. El Shheibia, Halima Mohamed Belhamad
Abstract:
This paper is considered securing data based on multi-path protocol (SDMP) in mobile ad hoc network utilizing OPNET simulator modular 14.5, including the AODV routing protocol at the network as based multi-path algorithm for message security in MANETs. The main idea of this work is to present a way that is able to detect the attacker inside the MANETs. The detection for this attacker will be performed by adding some effective parameters to the network.Keywords: MANET, AODV, malicious node, OPNET
Procedia PDF Downloads 29526301 Estimation of Maize Yield by Using a Process-Based Model and Remote Sensing Data in the Northeast China Plain
Authors: Jia Zhang, Fengmei Yao, Yanjing Tan
Abstract:
The accurate estimation of crop yield is of great importance for the food security. In this study, a process-based mechanism model was modified to estimate yield of C4 crop by modifying the carbon metabolic pathway in the photosynthesis sub-module of the RS-P-YEC (Remote-Sensing-Photosynthesis-Yield estimation for Crops) model. The yield was calculated by multiplying net primary productivity (NPP) and the harvest index (HI) derived from the ratio of grain to stalk yield. The modified RS-P-YEC model was used to simulate maize yield in the Northeast China Plain during the period 2002-2011. The statistical data of maize yield from study area was used to validate the simulated results at county-level. The results showed that the Pearson correlation coefficient (R) was 0.827 (P < 0.01) between the simulated yield and the statistical data, and the root mean square error (RMSE) was 712 kg/ha with a relative error (RE) of 9.3%. From 2002-2011, the yield of maize planting zone in the Northeast China Plain was increasing with smaller coefficient of variation (CV). The spatial pattern of simulated maize yield was consistent with the actual distribution in the Northeast China Plain, with an increasing trend from the northeast to the southwest. Hence the results demonstrated that the modified process-based model coupled with remote sensing data was suitable for yield prediction of maize in the Northeast China Plain at the spatial scale.Keywords: process-based model, C4 crop, maize yield, remote sensing, Northeast China Plain
Procedia PDF Downloads 375