Search results for: architecture and urbanism
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1835

Search results for: architecture and urbanism

185 Quantifying Automation in the Architectural Design Process via a Framework Based on Task Breakdown Systems and Recursive Analysis: An Exploratory Study

Authors: D. M. Samartsev, A. G. Copping

Abstract:

As with all industries, architects are using increasing amounts of automation within practice, with approaches such as generative design and use of AI becoming more commonplace. However, the discourse on the rate at which the architectural design process is being automated is often personal and lacking in objective figures and measurements. This results in confusion between people and barriers to effective discourse on the subject, in turn limiting the ability of architects, policy makers, and members of the public in making informed decisions in the area of design automation. This paper proposes the use of a framework to quantify the progress of automation within the design process. The use of a reductionist analysis of the design process allows it to be quantified in a manner that enables direct comparison across different times, as well as locations and projects. The methodology is informed by the design of this framework – taking on the aspects of a systematic review but compressed in time to allow for an initial set of data to verify the validity of the framework. The use of such a framework of quantification enables various practical uses such as predicting the future of the architectural industry with regards to which tasks will be automated, as well as making more informed decisions on the subject of automation on multiple levels ranging from individual decisions to policy making from governing bodies such as the RIBA. This is achieved by analyzing the design process as a generic task that needs to be performed, then using principles of work breakdown systems to split the task of designing an entire building into smaller tasks, which can then be recursively split further as required. Each task is then assigned a series of milestones that allow for the objective analysis of its automation progress. By combining these two approaches it is possible to create a data structure that describes how much various parts of the architectural design process are automated. The data gathered in the paper serves the dual purposes of providing the framework with validation, as well as giving insights into the current situation of automation within the architectural design process. The framework can be interrogated in many ways and preliminary analysis shows that almost 40% of the architectural design process has been automated in some practical fashion at the time of writing, with the rate at which progress is made slowly increasing over the years, with the majority of tasks in the design process reaching a new milestone in automation in less than 6 years. Additionally, a further 15% of the design process is currently being automated in some way, with various products in development but not yet released to the industry. Lastly, various limitations of the framework are examined in this paper as well as further areas of study.

Keywords: analysis, architecture, automation, design process, technology

Procedia PDF Downloads 104
184 Segmented Pupil Phasing with Deep Learning

Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan

Abstract:

Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.

Keywords: wavefront sensing, deep learning, deployable telescope, space telescope

Procedia PDF Downloads 105
183 Architectural Identity in Manifestation of Tall-buildings' Design

Authors: Huda Arshadlamphon

Abstract:

Advancing frontiers of technology and industry is moving rapidly fast influenced by the economic and political phenomena. One vital phenomenon,which has had consolidated the world to a one single village, is Globalization. In response, architecture and the built-environment have faced numerous changes, adjustments, and developments. Tall-buildings, as a product of globalization, represent prestigious icons, symbols, and landmarks for highly economics and advanced countries. Despite the fact, this trend has been encountering several design challenges incorporating architectural identity, traditions, and characteristics that enhance the built-environments' sociocultural values and traditions. The necessity of these values and traditionsform self-solitarily, leading to visual and spatial creativity, independency, and individuality. In other words, they maintain the inherited identity and avoid replications in all means and aspects. This paper, firstly, defines globalization phenomenon, architectural identity, and the concerns of sociocultural values in relation to the traditional characteristics of the built-environment. Secondly, through three case-studies of tall-buildings located in Jeddah city, Saudi Arabia, the Queen's Building, the National Commercial Bank Building (NCB), and the Islamic Development Bank Building; design strategies and methodologies in acclimating architectural identity and characteristics in tall-buildings are discussed. The case-studies highlight buildings' sites and surroundings, concepts and inspirations, design elements, architectural forms and compositions, characteristics, issues, barriers, and trammels facing the designs' decisions, representation of facades, and selection of materials and colors. Furthermore, the research will elucidate briefs of the dominant factors that shape the architectural identity of Jeddah city. In conclusion, the study manifests four tall-buildings' design standards guideline in preserving and developing architectural identity in Jeddah city; the scale of urban and natural environment, the scale of architectural design elements, the integration of visual images, and the creation of spatial scenes and scenarios. The prosed guideline will encourage the development of architectural identity aligned with zeitgeist demands and requirements, supports the contemporary architectural movement toward tall-buildings, and shoresself-solitarily in representing sociocultural values and traditions of the built-environment.

Keywords: architectural identity, built-environment, globalization, sociocultural values and traditions, tall-buildings

Procedia PDF Downloads 163
182 Self-Esteem on University Students by Gender and Branch of Study

Authors: Antonio Casero Martínez, María de Lluch Rayo Llinas

Abstract:

This work is part of an investigation into the relationship between romantic love and self-esteem in college students, performed by the students of matter "methods and techniques of social research", of the Master Gender at the University of Balearic Islands, during 2014-2015. In particular, we have investigated the relationships that may exist between self-esteem, gender and field of study. They are known as gender differences in self-esteem, and the relationship between gender and branch of study observed annually by the distribution of enrolment in universities. Therefore, in this part of the study, we focused the spotlight on the differences in self-esteem between the sexes through the various branches of study. The study sample consists of 726 individuals (304 men and 422 women) from 30 undergraduate degrees that the University of the Balearic Islands offers on its campus in 2014-2015, academic year. The average age of men was 21.9 years and 21.7 years for women. The sampling procedure used was random sampling stratified by degree, simple affixation, giving a sampling error of 3.6% for the whole sample, with a confidence level of 95% under the most unfavorable situation (p = q). The Spanish translation of the Rosenberg Self-Esteen Scale (RSE), by Atienza, Moreno and Balaguer was applied. The psychometric properties of translation reach a test-retest reliability of 0.80 and an internal consistency between 0.76 and 0.87. In this paper we have obtained an internal consistency of 0.82. The results confirm the expected differences in self-esteem by gender, although not in all branches of study. Mean levels of self-esteem in women are lower in all branches of study, reaching statistical significance in the field of Science, Social Sciences and Law, and Engineering and Architecture. However, analysed the variability of self-esteem by the branch of study within each gender, the results show independence in the case of men, whereas in the case of women find statistically significant differences, arising from lower self-esteem of Arts and Humanities students vs. the Social and legal Sciences students. These findings confirm the results of numerous investigations in which the levels of female self-esteem appears always below the male, suggesting that perhaps we should consider separately the two populations rather than continually emphasize the difference. The branch of study, for its part has not appeared as an explanatory factor of relevance, beyond detected the largest absolute difference between gender in the technical branch, one in which women are historically a minority, ergo, are no disciplinary or academic characteristics which would explain the differences, but the differentiated social context that occurs within it.

Keywords: study branch, gender, self-esteem, applied psychology

Procedia PDF Downloads 465
181 CRISPR-Mediated Genome Editing for Yield Enhancement in Tomato

Authors: Aswini M. S.

Abstract:

Tomato (Solanum lycopersicum L.) is one of the most significant vegetable crops in terms of its economic benefits. Both fresh and processed tomatoes are consumed. Tomatoes have a limited genetic base, which makes breeding extremely challenging. Plant breeding has become much simpler and more effective with genome editing tools of CRISPR and CRISPR-associated 9 protein (CRISPR/Cas9), which address the problems with traditional breeding, chemical/physical mutagenesis, and transgenics. With the use of CRISPR/Cas9, a number of tomato traits have been functionally distinguished and edited. These traits include plant architecture as well as flower characters (leaf, flower, male sterility, and parthenocarpy), fruit ripening, quality and nutrition (lycopene, carotenoid, GABA, TSS, and shelf-life), disease resistance (late blight, TYLCV, and powdery mildew), tolerance to abiotic stress (heat, drought, and salinity) and resistance to herbicides. This study explores the potential of CRISPR/Cas9 genome editing for enhancing yield in tomato plants. The study utilized the CRISPR/Cas9 genome editing technology to functionally edit various traits in tomatoes. The de novo domestication of elite features from wild cousins to cultivated tomatoes and vice versa has been demonstrated by the introgression of CRISPR/Cas9. The CycB (Lycopene beta someri) gene-mediated Cas9 editing increased the lycopene content in tomato. Also, Cas9-mediated editing of the AGL6 (Agamous-like 6) gene resulted in parthenocarpic fruit development under heat-stress conditions. The advent of CRISPR/Cas has rendered it possible to use digital resources for single guide RNA design and multiplexing, cloning (such as Golden Gate cloning, GoldenBraid, etc.), creating robust CRISPR/Cas constructs, and implementing effective transformation protocols like the Agrobacterium and DNA free protoplast method for Cas9-gRNAs ribonucleoproteins (RNPs) complex. Additionally, homologous recombination (HR)-based gene knock-in (HKI) via geminivirus replicon and base/prime editing (Target-AID technology) remains possible. Hence, CRISPR/Cas facilitates fast and efficient breeding in the improvement of tomatoes.

Keywords: CRISPR-Cas, biotic and abiotic stress, flower and fruit traits, genome editing, polygenic trait, tomato and trait introgression

Procedia PDF Downloads 70
180 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.

Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence

Procedia PDF Downloads 144
179 Georgian Churches in the Eastern Provinces of Turkey

Authors: Mustafa Tahir Ocak, Gülsün Tanyeli

Abstract:

Georgia became Christian in the 4th century. During the 7th and 8th centuries, Georgia, with its capital at Tiflis, was devastated by Arab invasions from the south and east. Tiflis was abandoned and a new Georgia, with its capital at present-day Ardanuç; in Turkey, was established, based on the provinces of Tao, Klarjeti and Shavsheti. Georgian power revived during the 9th century and the new kings embarked on a notable period of church building, each prince intent on raising memorials to his reign. Georgia was weakened again in the 11th century. First, by Byzantium which now feared the Georgians’ growing power and, second, by the advance of the Seljuk Turks. But defeat did not last long and under David II, ‘the Builder’, Georgian armies recaptured Tiflis in 1122, heralding a second political and cultural renascence. There has been a remarkable increase in the number of monuments in 9th-11th centuries. Kingdom of Georgia’s boundaries have changed lots of times over the centuries, and consequently a considerable number of churches are to be found in other countries, especially in north-eastern provinces of Turkey. Georgian monuments spread to valleys of the Çoruh, Oltu and Tortum rivers in north-east Turkey. These churches have significant role in architectural history. The medieval Georgians and the Armenians had known contacts with Byzantium. Their churches influenced mid-Byzantine architecture and were a factor in the evolution of the Romanesque style in Europe. In the centuries following the inclusion of Tao and Klarjeti within the expanding Ottoman Empire, the monasteries and churches were gradually abandoned with migration of Christian population. Although some of those monuments are in good condition through the conversion of churches to use as mosques, the rest of those monuments are under threat from neglect and lack of maintenance. Many fell into ruin or were plundered for their stone; others were damaged by earthquakes, by treasure hunters. The only hope for the Georgian churches is for them to be recognised as a touristic value in a beautiful region of deep valleys and magnificent mountain scenery. As coeval churches in modern Georgian boundaries, these churches in north-eastern provinces of Turkey have to evaluated by UNESCO. This study aims to create awereness about the conservation of Georgian churches in north-eastern provinces of Turkey as world heritage taking advantages of tourism. Georgian churches as a heritage should be evaluated not only a monument but also cultural landscape. The cultural route is created visiting both churches and the other medieval structures in these regions.

Keywords: Georgian churches, medieval monuments, Tao-Klarjeti, Turkey

Procedia PDF Downloads 286
178 Agricultural Knowledge Management System Design, Use, and Consequence for Knowledge Sharing and Integration

Authors: Dejen Alemu, Murray E. Jennex, Temtim Assefa

Abstract:

This paper is investigated to understand the design, the use, and the consequence of Knowledge Management System (KMS) for knowledge systems sharing and integration. A KMS for knowledge systems sharing and integration is designed to meet the challenges raised by knowledge management researchers and practitioners: the technical, the human, and social factors. Agricultural KMS involves various members coming from different Communities of Practice (CoPs) who possess their own knowledge of multiple practices which need to be combined in the system development. However, the current development of the technology ignored the indigenous knowledge of the local communities, which is the key success factor for agriculture. This research employed the multi-methodological approach to KMS research in action research perspective which consists of four strategies: theory building, experimentation, observation, and system development. Using the KMS development practice of Ethiopian agricultural transformation agency as a case study, this research employed an interpretive analysis using primary qualitative data acquired through in-depth semi-structured interviews and participant observations. The Orlikowski's structuration model of technology has been used to understand the design, the use, and the consequence of the KMS. As a result, the research identified three basic components for the architecture of the shared KMS, namely, the people, the resources, and the implementation subsystems. The KMS were developed using web 2.0 tools to promote knowledge sharing and integration among diverse groups of users in a distributed environment. The use of a shared KMS allows users to access diverse knowledge from a number of users in different groups of participants, enhances the exchange of different forms of knowledge and experience, and creates high interaction and collaboration among participants. The consequences of a shared KMS on the social system includes, the elimination of hierarchical structure, enhance participation, collaboration, and negotiation among users from different CoPs having common interest, knowledge and skill development, integration of diverse knowledge resources, and the requirement of policy and guideline. The research contributes methodologically for the application of system development action research for understanding a conceptual framework for KMS development and use. The research have also theoretical contribution in extending structuration model of technology for the incorporation of variety of knowledge and practical implications to provide management understanding in developing strategies for the potential of web 2.0 tools for sharing and integration of indigenous knowledge.

Keywords: communities of practice, indigenous knowledge, participation, structuration model of technology, Web 2.0 tools

Procedia PDF Downloads 253
177 European Project Meter Matters in Sports: Fostering Criteria for Inclusion through Sport

Authors: Maria Campos, Alain Massart, Hugo Sarmento

Abstract:

The Meter Matters Erasmus Sport European Project (ID: 101050372) explores the field of social inclusion in and through sports with the aim of a) proposing appropriate criteria for co-funding sports programs involving people with intellectual and developmental disabilities and other more vulnerable people, primarily in mainstream sports organizations and b) proposing a model for co-funding social inclusion in and through sports at the national level. This European project (2022-2024) involves 6 partners from 3 countries: Univerza V Ljubljani – coordinator and Drustvo Specialna Olimpiada Slovenije (Slovenia); Magyar Specialis Olimpia Szovetseg and Magyar Testnevelesi Es Sporttudomanyi Egyetem (Hungary) and APPDA Coimbra - Associação Portuguesa para as Perturbações do Desenvolvimento e Autismo and Universidade De Coimbra, Faculty of Sport Sciences and Physical Education (Portugal). Equal involvement of all people in sports activities is, in terms of national and international guidelines, enshrined in some conventions and strategies in the field of sports, as well as human rights, social security, physical and mental health, architecture, environment and public administration. However, there is a gap between the practice and EU guidelines in terms of sustainable support for socially inclusive sports programs in the form of co-funding by state and local (municipal) resources. We observe considerable opacity in the regulation of the field. Given that there are both relevant programs and inclusive legislation and policies, we believe that the reason for the missing article is reflected in the undeveloped criteria for measuring social inclusion in sports. Major sports programs are usually co-funded based on crowds (number of involved athletes) and performance (sports score). In the field of social inclusion in sports, the criteria cannot be the same, as it is a smaller population. Therefore, the goals of inclusion in sports should not be the focused on competitive results but on opening equal opportunities for all, regardless of their psychophysical abilities. In the Meter Matters program, we are searching for criteria for co-funding social inclusion in sports through focus groups with coaches, social workers, psychologists and others professionals involved in inclusive sports programs in regular sports clubs and with athletes and their parents or guardians. Moreover, experts in the field of social inclusion in sports were also interviewed. Based on the proposals for measuring social inclusion in sports, we developed a model for co-funding socially inclusive sports programs.

Keywords: European project, meter matters, inclusion, sport

Procedia PDF Downloads 111
176 Interpretation of Heritage Revitalization

Authors: Jarot Mahendra

Abstract:

The primary objective of this paper is to provide a view in the interpretation of the revitalization of heritage buildings. This objective is achieved by analyzing the concept of interpretation that is oriented in the perspective of law, urban spatial planning, and stakeholder perspective, and then develops the theoretical framework of interpretation in the cultural resources management through issues of identity, heritage as a process, and authenticity in heritage. The revitalization of heritage buildings with the interpretation of these three issues is that interpretation can be used as a communication process to express the meaning and relation of heritage to the community so as to avoid the conflict that will arise and develop as a result of different perspectives of stakeholders. Using case studies in Indonesia, this study focuses on the revitalization of heritage sites in the National Gallery of Indonesia (GNI). GNI is a cultural institution that uses several historical buildings that have been designated as heritage and have not been designated as a heritage according to the regulations applicable in Indonesia, in carrying out its function as the center of Indonesian art development and art museums. The revitalization of heritage buildings is taken as a step to meet space needs in running the current GNI function. In the revitalization master plan, there are physical interventions on the building of heritage and the removal of some historic buildings which will then be built new buildings at that location. The research matrix was used to map out the main elements of the study (the concept of GNI revitalization, heritage as identity, heritage as a process, and authenticity in the heritage). Expert interviews and document studies are the main tools used in collecting data. Qualitative data is then analyzed through content analysis and template analysis. This study identifies the significance of historic buildings (heritage buildings and buildings not defined as heritage) as an important value of history, architecture, education, and culture. The significance becomes the basis for revisiting the revitalization master plan which is then reviewed according to applicable regulations and the spatial layout of Jakarta. The interpretation that is built is (1) GNI is one of the elements of the embodiment of the National Cultural Center in the context of the region, where there are National Monument, National Museum and National Library in the same area, so the heritage not only gives identity to the past culture but the culture of current community; (2) The heritage should be seen as a dynamic cultural process towards the cultural change of community, where heritage must develop along with the urban development, so that the heritage buildings can remain alive and side by side with modern buildings but still observe the principles of preservation of heritage; (3) The authenticity of heritage should be able to balance the cultural heritage conservation approach with urban development, where authenticity can serve as a 'Value Transmitter' so that authenticity can be used to evaluate, preserve and manage heritage buildings by considering tangible and intangible aspects.

Keywords: authenticity, culture process, identity, interpretation, revitalization

Procedia PDF Downloads 148
175 Modeling the Acquisition of Expertise in a Sequential Decision-Making Task

Authors: Cristóbal Moënne-Loccoz, Rodrigo C. Vergara, Vladimir López, Domingo Mery, Diego Cosmelli

Abstract:

Our daily interaction with computational interfaces is plagued of situations in which we go from inexperienced users to experts through self-motivated exploration of the same task. In many of these interactions, we must learn to find our way through a sequence of decisions and actions before obtaining the desired result. For instance, when drawing cash from an ATM machine, choices are presented in a step-by-step fashion so that a specific sequence of actions must be performed in order to produce the expected outcome. But, as they become experts in the use of such interfaces, do users adopt specific search and learning strategies? Moreover, if so, can we use this information to follow the process of expertise development and, eventually, predict future actions? This would be a critical step towards building truly adaptive interfaces that can facilitate interaction at different moments of the learning curve. Furthermore, it could provide a window into potential mechanisms underlying decision-making behavior in real world scenarios. Here we tackle this question using a simple game interface that instantiates a 4-level binary decision tree (BDT) sequential decision-making task. Participants have to explore the interface and discover an underlying concept-icon mapping in order to complete the game. We develop a Hidden Markov Model (HMM)-based approach whereby a set of stereotyped, hierarchically related search behaviors act as hidden states. Using this model, we are able to track the decision-making process as participants explore, learn and develop expertise in the use of the interface. Our results show that partitioning the problem space into such stereotyped strategies is sufficient to capture a host of exploratory and learning behaviors. Moreover, using the modular architecture of stereotyped strategies as a Mixture of Experts, we are able to simultaneously ask the experts about the user's most probable future actions. We show that for those participants that learn the task, it becomes possible to predict their next decision, above chance, approximately halfway through the game. Our long-term goal is, on the basis of a better understanding of real-world decision-making processes, to inform the construction of interfaces that can establish dynamic conversations with their users in order to facilitate the development of expertise.

Keywords: behavioral modeling, expertise acquisition, hidden markov models, sequential decision-making

Procedia PDF Downloads 252
174 Exploring Coexisting Opportunity of Earthquake Risk and Urban Growth

Authors: Chang Hsueh-Sheng, Chen Tzu-Ling

Abstract:

Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience, and further increase vulnerability. Due to earthquakes do not kill people, buildings do. When buildings located nearby earthquake-prone areas and constructed upon poorer soil areas might result in earthquake-induced ground damage. In addition, many existing buildings built before any improved seismic provisions began to be required in building codes and inappropriate land usage with highly dense population might result in much serious earthquake disaster. Indeed, not only do earthquake disaster impact seriously on urban environment, but urban growth might increase the vulnerability. Since 1980s, ‘Cutting down risks and vulnerability’ has been brought up in both urban planning and architecture and such concept has way beyond retrofitting of seismic damages, seismic resistance, and better anti-seismic structures, and become the key action on disaster mitigation. Land use planning and zoning are two critical non-structural measures on controlling physical development while it is difficult for zoning boards and governing bodies restrict development of questionable lands to uses compatible with the hazard without credible earthquake loss projection. Therefore, identifying potential earthquake exposure, vulnerability people and places, and urban development areas might become strongly supported information for decision makers. Taiwan locates on the Pacific Ring of Fire where a seismically active zone is. Some of the active faults have been found close by densely populated and highly developed built environment in the cities. Therefore, this study attempts to base on the perspective of carrying capacity and draft out micro-zonation according to both vulnerability index and urban growth index while considering spatial variances of multi factors via geographical weighted principle components (GWPCA). The purpose in this study is to construct supported information for decision makers on revising existing zoning in high-risk areas for a more compatible use and the public on managing risks.

Keywords: earthquake disaster, vulnerability, urban growth, carrying capacity, /geographical weighted principle components (GWPCA), bivariate spatial association statistic

Procedia PDF Downloads 256
173 The Importance of Clinical Pharmacy and Computer Aided Drug Design

Authors: Mario Hanna Louis Hanna

Abstract:

The use of CAD (pc Aided layout) generation is ubiquitous inside the structure, engineering and construction (AEC) industry. This has led to its inclusion in the curriculum of structure faculties in Nigeria as an important part of the training module. This newsletter examines the moral troubles involved in implementing CAD (pc Aided layout) content into the architectural training curriculum. Using current literature, this study begins with the advantages of integrating CAD into architectural education and the responsibilities of various stakeholders in the implementation process. It also examines issues related to the terrible use of records generation and the perceived bad effect of CAD use on design creativity. The use of a survey technique, information from the architecture department of Chukwuemeka Odumegwu Ojukwu Uli college changed into accumulated to serve as a case observe on how the problems raised have been being addressed. The object draws conclusions on what guarantees a hit moral implementation. Tens of millions of human beings around the sector suffer from hepatitis C, one of the international's deadliest sicknesses. Interferon (IFN) is a remedy alternative for patients with hepatitis C, but these treatments have their aspect outcomes. Our research targeted growing an oral small molecule drug that goals hepatitis C virus (HCV) proteins and has fewer facet effects. Our contemporary study targets to broaden a drug primarily based on a small molecule antiviral drug precise for the hepatitis C virus (HCV). Drug improvement and the use of laboratory experiments isn't always best high-priced, however also time-eating to behavior those experiments. instead, on this in silicon have a look at, we used computational strategies to recommend a particular antiviral drug for the protein domain names of discovered in the hepatitis C virus. This examines used homology modeling and abs initio modeling to generate the 3-D shape of the proteins, then figuring out pockets within the proteins. Proper lagans for pocket pills were advanced the usage of the de novo drug design method. Pocket geometry is taken into consideration while designing ligands. A few of the various lagans generated, a different for each of the HCV protein domains has been proposed.

Keywords: drug design, anti-viral drug, in-silicon drug design, Hepatitis C virus (HCV) CAD (Computer Aided Design), CAD education, education improvement, small-size contractor automatic pharmacy, PLC, control system, management system, communication.

Procedia PDF Downloads 27
172 Economic Evaluation of Degradation by Corrosion of an On-Grid Battery Energy Storage System: A Case Study in Algeria Territory

Authors: Fouzia Brihmat

Abstract:

Economic planning models, which are used to build microgrids and distributed energy resources, are the current norm for expressing such confidence (DER). These models often decide both short-term DER dispatch and long-term DER investments. This research investigates the most cost-effective hybrid (photovoltaic-diesel) renewable energy system (HRES) based on Total Net Present Cost (TNPC) in an Algerian Saharan area, which has a high potential for solar irradiation and has a production capacity of 1GW/h. Lead-acid batteries have been around much longer and are easier to understand, but have limited storage capacity. Lithium-ion batteries last longer, are lighter, but generally more expensive. By combining the advantages of each chemistry, we produce cost-effective high-capacity battery banks that operate solely on AC coupling. The financial implications of this research describe the corrosion process that occurs at the interface between the active material and grid material of the positive plate of a lead-acid battery. The best cost study for the HRES is completed with the assistance of the HOMER Pro MATLAB Link. Additionally, during the course of the project's 20 years, the system is simulated for each time step. In this model, which takes into consideration decline in solar efficiency, changes in battery storage levels over time, and rises in fuel prices above the rate of inflation. The trade-off is that the model is more accurate, but it took longer to compute. As a consequence, the model is more precise, but the computation takes longer. We initially utilized the Optimizer to run the model without MultiYear in order to discover the best system architecture. The optimal system for the single-year scenario is the Danvest generator, which has 760 kW, 200 kWh of the necessary quantity of lead-acid storage, and a somewhat lower COE of $0.309/kWh. Different scenarios that account for fluctuations in the gasified biomass generator's production of electricity have been simulated, and various strategies to guarantee the balance between generation and consumption have been investigated. The technological optimization of the same system has been finished and is being reviewed in a recent paper study.

Keywords: battery, corrosion, diesel, economic planning optimization, hybrid energy system, lead-acid battery, multi-year planning, microgrid, price forecast, PV, total net present cost

Procedia PDF Downloads 88
171 Profiling Risky Code Using Machine Learning

Authors: Zunaira Zaman, David Bohannon

Abstract:

This study explores the application of machine learning (ML) for detecting security vulnerabilities in source code. The research aims to assist organizations with large application portfolios and limited security testing capabilities in prioritizing security activities. ML-based approaches offer benefits such as increased confidence scores, false positives and negatives tuning, and automated feedback. The initial approach using natural language processing techniques to extract features achieved 86% accuracy during the training phase but suffered from overfitting and performed poorly on unseen datasets during testing. To address these issues, the study proposes using the abstract syntax tree (AST) for Java and C++ codebases to capture code semantics and structure and generate path-context representations for each function. The Code2Vec model architecture is used to learn distributed representations of source code snippets for training a machine-learning classifier for vulnerability prediction. The study evaluates the performance of the proposed methodology using two datasets and compares the results with existing approaches. The Devign dataset yielded 60% accuracy in predicting vulnerable code snippets and helped resist overfitting, while the Juliet Test Suite predicted specific vulnerabilities such as OS-Command Injection, Cryptographic, and Cross-Site Scripting vulnerabilities. The Code2Vec model achieved 75% accuracy and a 98% recall rate in predicting OS-Command Injection vulnerabilities. The study concludes that even partial AST representations of source code can be useful for vulnerability prediction. The approach has the potential for automated intelligent analysis of source code, including vulnerability prediction on unseen source code. State-of-the-art models using natural language processing techniques and CNN models with ensemble modelling techniques did not generalize well on unseen data and faced overfitting issues. However, predicting vulnerabilities in source code using machine learning poses challenges such as high dimensionality and complexity of source code, imbalanced datasets, and identifying specific types of vulnerabilities. Future work will address these challenges and expand the scope of the research.

Keywords: code embeddings, neural networks, natural language processing, OS command injection, software security, code properties

Procedia PDF Downloads 107
170 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation

Authors: Mohammad Abu-Shaira, Weishi Shi

Abstract:

Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.

Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression

Procedia PDF Downloads 13
169 Body, Experience, Sense, and Place: Past and Present Sensory Mappings of Istiklal Street in Istanbul

Authors: Asiye Nisa Kartal

Abstract:

An attempt to recognize the undiscovered bounds of Istiklal Street in Istanbul between its sensory experiences (intangible qualities) and physical setting (tangible qualities) could be taken as the first inspiration point for this study. ‘The dramatic physical changes’ and ‘their current impacts on sensory attributions’ of Istiklal Street have directed this study to consider the role of changing the physical layout on sensory dimensions which have a subtle but important role in the examination of urban places. The public places have always been subject to transformation, so in the last years, the changing socio-cultural structure, economic and political movements, law and city regulations, innovative transportation and communication activities have resulted in a controversial modification of Istanbul. And, as the culture, entertainment, tourism, and shopping focus of Istanbul, Istiklal Street has witnessed different changing stages within the last years. In this process, because of the projects being implemented, many buildings such as cinemas, theatres, and bookstores have restored, moved, converted, closed and demolished which have been significant elements in terms of the qualitative value of this area. And, the multi-layered socio-cultural, and architectural structure of Istiklal Street has been changing in a dramatical and controversial way. But importantly, while the physical setting of Istiklal Street has changed, the transformation has not been spatial, socio-cultural, economic; avoidably the sensory dimensions of Istiklal Street which have great importance in terms of intangible qualities of this area have begun to lose their distinctive features. This has created the challenge of this research. As the main hypothesis, this study claims that the physical transformations have led to change in the sensory characteristic of Istiklal Street, therefore the Sensescape of Istiklal Street deserve to be recorded, decoded and promoted as expeditiously as possible to observe the sensory reflections of physical transformations in this area. With the help of the method of ‘Sensewalking’ which is an efficient research tool to generate knowledge on sensory dimensions of an urban settlement, this study suggests way of ‘mapping’ to understand how do ‘changes of physical setting’ play role on ‘sensory qualities’ of Istiklal Street which have been changed or lost over time. Basically, this research focuses on the sensory mapping of Istiklal Street from the 1990s until today to picture, interpret, criticize the ‘sensory mapping of Istiklal Street in present’ and the ‘sensory mapping of Istiklal Street in past’. Through the sensory mapping of Istiklal Street, this study intends to increase the awareness about the distinctive sensory qualities of places. It is worthwhile for further studies that consider the sensory dimensions of places especially in the field of architecture.

Keywords: Istiklal street, sense, sensewalking, sensory mapping

Procedia PDF Downloads 177
168 Building Exoskeletons for Seismic Retrofitting

Authors: Giuliana Scuderi, Patrick Teuffel

Abstract:

The proven vulnerability of the existing social housing building heritage to natural or induced earthquakes requires the development of new design concepts and conceptual method to preserve materials and object, at the same time providing new performances. An integrate intervention between civil engineering, building physics and architecture can convert the social housing districts from a critical part of the city to a strategic resource of revitalization. Referring to bio-mimicry principles the present research proposes a taxonomy with the exoskeleton of the insect, an external, light and resistant armour whose role is to protect the internal organs from external potentially dangerous inputs. In the same way, a “building exoskeleton”, acting from the outside of the building as an enclosing cage, can restore, protect and support the existing building, assuming a complex set of roles, from the structural to the thermal, from the aesthetical to the functional. This study evaluates the structural efficiency of shape memory alloys devices (SMADs) connecting the “building exoskeleton” with the existing structure to rehabilitate, in order to prevent the out-of-plane collapse of walls and for the passive dissipation of the seismic energy, with a calibrated operability in relation to the intensity of the horizontal loads. The two case studies of a masonry structure and of a masonry structure with concrete frame are considered, and for each case, a theoretical social housing building is exposed to earthquake forces, to evaluate its structural response with or without SMADs. The two typologies are modelled with the finite element program SAP2000, and they are respectively defined through a “frame model” and a “diagonal strut model”. In the same software two types of SMADs, called the 00-10 SMAD and the 05-10 SMAD are defined, and non-linear static and dynamic analyses, namely push over analysis and time history analysis, are performed to evaluate the seismic response of the building. The effectiveness of the devices in limiting the control joint displacements resulted higher in one direction, leading to the consideration of a possible calibrated use of the devices in the different walls of the building. The results show also a higher efficiency of the 00-10 SMADs in controlling the interstory drift, but at the same time the necessity to improve the hysteretic behaviour, to maximise the passive dissipation of the seismic energy.

Keywords: adaptive structure, biomimetic design, building exoskeleton, social housing, structural envelope, structural retrofitting

Procedia PDF Downloads 420
167 SAFECARE: Integrated Cyber-Physical Security Solution for Healthcare Critical Infrastructure

Authors: Francesco Lubrano, Fabrizio Bertone, Federico Stirano

Abstract:

Modern societies strongly depend on Critical Infrastructures (CI). Hospitals, power supplies, water supplies, telecommunications are just few examples of CIs that provide vital functions to societies. CIs like hospitals are very complex environments, characterized by a huge number of cyber and physical systems that are becoming increasingly integrated. Ensuring a high level of security within such critical infrastructure requires a deep knowledge of vulnerabilities, threats, and potential attacks that may occur, as well as defence and prevention or mitigation strategies. The possibility to remotely monitor and control almost everything is pushing the adoption of network-connected devices. This implicitly introduces new threats and potential vulnerabilities, posing a risk, especially to those devices connected to the Internet. Modern medical devices used in hospitals are not an exception and are more and more being connected to enhance their functionalities and easing the management. Moreover, hospitals are environments with high flows of people, that are difficult to monitor and can somehow easily have access to the same places used by the staff, potentially creating damages. It is therefore clear that physical and cyber threats should be considered, analysed, and treated together as cyber-physical threats. This means that an integrated approach is required. SAFECARE, an integrated cyber-physical security solution, tries to respond to the presented issues within healthcare infrastructures. The challenge is to bring together the most advanced technologies from the physical and cyber security spheres, to achieve a global optimum for systemic security and for the management of combined cyber and physical threats and incidents and their interconnections. Moreover, potential impacts and cascading effects are evaluated through impact propagation models that rely on modular ontologies and a rule-based engine. Indeed, SAFECARE architecture foresees i) a macroblock related to cyber security field, where innovative tools are deployed to monitor network traffic, systems and medical devices; ii) a physical security macroblock, where video management systems are coupled with access control management, building management systems and innovative AI algorithms to detect behavior anomalies; iii) an integration system that collects all the incoming incidents, simulating their potential cascading effects, providing alerts and updated information regarding assets availability.

Keywords: cyber security, defence strategies, impact propagation, integrated security, physical security

Procedia PDF Downloads 165
166 The Outcome of Using Machine Learning in Medical Imaging

Authors: Adel Edwar Waheeb Louka

Abstract:

Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.

Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery

Procedia PDF Downloads 73
165 Systematic Study of Structure Property Relationship in Highly Crosslinked Elastomers

Authors: Natarajan Ramasamy, Gurulingamurthy Haralur, Ramesh Nivarthu, Nikhil Kumar Singha

Abstract:

Elastomers are polymeric materials with varied backbone architectures ranging from linear to dendrimeric structures and wide varieties of monomeric repeat units. These elastomers show strongly viscous and weakly elastic when it is not cross-linked. But when crosslinked, based on the extent the properties of these elastomers can range from highly flexible to highly stiff nature. Lightly cross-linked systems are well studied and reported. Understanding the nature of highly cross-linked rubber based upon chemical structure and architecture is critical for varieties of applications. One of the critical parameters is cross-link density. In the current work, we have studied the highly cross-linked state of linear, lightly branched to star-shaped branched elastomers and determined the cross-linked density by using different models. Change in hardness, shift in Tg, change in modulus and swelling behavior were measured experimentally as a function of the extent of curing. These properties were analyzed using varied models to determine cross-link density. We used hardness measurements to examine cure time. Hardness to the extent of curing relationship is determined. It is well known that micromechanical transitions like Tg and storage modulus are related to the extent of crosslinking. The Tg of the elastomer in different crosslinked state was determined by DMA, and based on plateau modulus the crosslink density is estimated by using Nielsen’s model. Usually for lightly crosslinked systems, based on equilibrium swelling ratio in solvent the cross link density is estimated by using Flory–Rhener model. When it comes to highly crosslinked system, Flory-Rhener model is not valid because of smaller chain length. So models based on the assumption of polymer as a Non-Gaussian chain like 1) Helmis–Heinrich–Straube (HHS) model, 2) Gloria M.gusler and Yoram Cohen Model, 3) Barbara D. Barr-Howell and Nikolaos A. Peppas model is used for estimating crosslink density. In this work, correction factors are determined to the existing models and based upon it structure-property relationship of highly crosslinked elastomers was studied.

Keywords: dynamic mechanical analysis, glass transition temperature, parts per hundred grams of rubber, crosslink density, number of networks per unit volume of elastomer

Procedia PDF Downloads 165
164 Exploration of Building Information Modelling Software to Develop Modular Coordination Design Tool for Architects

Authors: Muhammad Khairi bin Sulaiman

Abstract:

The utilization of Building Information Modelling (BIM) in the construction industry has provided an opportunity for designers in the Architecture, Engineering and Construction (AEC) industry to proceed from the conventional method of using manual drafting to a way that creates alternative designs quickly, produces more accurate, reliable and consistent outputs. By using BIM Software, designers can create digital content that manipulates the use of data using the parametric model of BIM. With BIM software, more alternative designs can be created quickly and design problems can be explored further to produce a better design faster than conventional design methods. Generally, BIM is used as a documentation mechanism and has not been fully explored and utilised its capabilities as a design tool. Relative to the current issue, Modular Coordination (MC) design as a sustainable design practice is encouraged since MC design will reduce material wastage through standard dimensioning, pre-fabrication, repetitive, modular construction and components. However, MC design involves a complex process of rules and dimensions. Therefore, a tool is needed to make this process easier. Since the parameters in BIM can easily be manipulated to follow MC rules and dimensioning, thus, the integration of BIM software with MC design is proposed for architects during the design stage. With this tool, there will be an improvement in acceptance and practice in the application of MC design effectively. Consequently, this study will analyse and explore the function and customization of BIM objects and the capability of BIM software to expedite the application of MC design during the design stage for architects. With this application, architects will be able to create building models and locate objects within reference modular grids that adhere to MC rules and dimensions. The parametric modeling capabilities of BIM will also act as a visual tool that will further enhance the automation of the 3-Dimensional space planning modeling process. (Method) The study will first analyze and explore the parametric modeling capabilities of rule-based BIM objects, which eventually customize a reference grid within the rules and dimensioning of MC. Eventually, the approach will further enhance the architect's overall design process and enable architects to automate complex modeling, which was nearly impossible before. A prototype using a residential quarter will be modeled. A set of reference grids guided by specific MC rules and dimensions will be used to develop a variety of space planning and configuration. With the use of the design, the tool will expedite the design process and encourage the use of MC Design in the construction industry.

Keywords: building information modeling, modular coordination, space planning, customization, BIM application, MC space planning

Procedia PDF Downloads 84
163 Setting up a Prototype for the Artificial Interactive Reality Unified System to Transform Psychosocial Intervention in Occupational Therapy

Authors: Tsang K. L. V., Lewis L. A., Griffith S., Tucker P.

Abstract:

Background:  Many children with high incidence disabilities, such as autism spectrum disorder (ASD), struggle to participate in the community in a socially acceptable manner. There are limitations for clinical settings to provide natural, real-life scenarios for them to practice the life skills needed to meet their real-life challenges. Virtual reality (VR) offers potential solutions to resolve the existing limitations faced by clinicians to create simulated natural environments for their clients to generalize the facilitated skills. Research design: The research aimed to develop a prototype of an interactive VR system to provide realistic and immersive environments for clients to practice skills. The descriptive qualitative methodology is employed to design and develop the Artificial Interactive Reality Unified System (AIRUS) prototype, which provided insights on how to use advanced VR technology to create simulated real-life social scenarios and enable users to interact with the objects and people inside the virtual environment using natural eye-gazes, hand and body movements. The eye tracking (e.g., selective or joint attention), hand- or body-tracking (e.g., repetitive stimming or fidgeting), and facial tracking (e.g., emotion recognition) functions allowed behavioral data to be captured and managed in the AIRUS architecture. Impact of project: Instead of using external controllers or sensors, hand tracking software enabled the users to interact naturally with the simulated environment using daily life behavior such as handshaking and waving to control and interact with the virtual objects and people. The AIRUS protocol offers opportunities for breakthroughs in future VR-based psychosocial assessment and intervention in occupational therapy. Implications for future projects: AI technology can allow more efficient data capturing and interpretation of object identification and human facial emotion recognition at any given moment. The data points captured can be used to pinpoint our users’ focus and where their interests lie. AI can further help advance the data interpretation system.

Keywords: occupational therapy, psychosocial assessment and intervention, simulated interactive environment, virtual reality

Procedia PDF Downloads 36
162 Emissions and Total Cost of Ownership Assessment of Hybrid Propulsion Concepts for Bus Transport with Compressed Natural Gases or Diesel Engine

Authors: Volker Landersheim, Daria Manushyna, Thinh Pham, Dai-Duong Tran, Thomas Geury, Omar Hegazy, Steven Wilkins

Abstract:

Air pollution is one of the emerging problems in our society. Targets of reduction of CO₂ emissions address low-carbon and resource-efficient transport. (Plug-in) hybrid electric propulsion concepts offer the possibility to reduce total cost of ownership (TCO) and emissions for public transport vehicles (e.g., bus application). In this context, typically, diesel engines are used to form the hybrid propulsion system of the vehicle. Though the technological development of diesel engines experience major advantages, some challenges such as the high amount of particle emissions remain relevant. Gaseous fuels (i.e., compressed natural gases (CNGs) or liquefied petroleum gases (LPGs) represent an attractive alternative to diesel because of their composition. In the framework of the research project 'Optimised Real-world Cost-Competitive Modular Hybrid Architecture' (ORCA), which was funded by the EU, two different hybrid-electric propulsion concepts have been investigated: one using a diesel engine as internal combustion engine and one using CNG as fuel. The aim of the current study is to analyze specific benefits for the aforementioned hybrid propulsion systems for predefined driving scenarios with regard to emissions and total cost of ownership in bus application. Engine models based on experimental data for diesel and CNG were developed. For the purpose of designing optimal energy management strategies for each propulsion system, maps-driven or quasi-static models for specific engine types are used in the simulation framework. An analogous modelling approach has been chosen to represent emissions. This paper compares the two concepts regarding their CO₂ and NOx emissions. This comparison is performed for relevant bus missions (urban, suburban, with and without zero-emission zone) and with different energy management strategies. In addition to the emissions, also the downsizing potential of the combustion engine has been analysed to minimize the powertrain TCO (pTCO) for plug-in hybrid electric buses. The results of the performed analyses show that the hybrid vehicle concept using the CNG engine shows advantages both with respect to emissions as well as to pTCO. The pTCO is 10% lower, CO₂ emissions are 13% lower, and the NOx emissions are more than 50% lower than with the diesel combustion engine. These results are consistent across all usage profiles under investigation.

Keywords: bus transport, emissions, hybrid propulsion, pTCO, CNG

Procedia PDF Downloads 147
161 Tuning the Emission Colour of Phenothiazine by Introduction of Withdrawing Electron Groups

Authors: Andrei Bejan, Luminita Marin, Dalila Belei

Abstract:

Phenothiazine with electron-rich nitrogen and sulfur heteroatoms has a high electron-donating ability which promotes a good conjugation and therefore low band-gap with consequences upon charge carrier mobility improving and shifting of light emission in visible domain. Moreover, its non-planar butterfly conformation inhibits molecular aggregation and thus preserves quite well the fluorescence quantum yield in solid state compared to solution. Therefore phenothiazine and its derivatives are promising hole transport materials for use in organic electronic and optoelectronic devices as light emitting diodes, photovoltaic cells, integrated circuit sensors or driving circuits for large area display devices. The objective of this paper was to obtain a series of new phenothiazine derivatives by introduction of different electron withdrawing substituents as formyl, carboxyl and cyanoacryl units in order to create a push pull system which has potential to improve the electronic and optical properties. Bromine atom was used as electrono-donor moiety to extend furthermore the existing conjugation. The understudy compounds were structural characterized by FTIR and 1H-NMR spectroscopy and single crystal X-ray diffraction. Besides, the single crystal X-ray diffraction brought information regarding the supramolecular architecture of the compounds. Photophysical properties were monitored by UV-vis and photoluminescence spectroscopy, while the electrochemical behavior was established by cyclic voltammetry. The absorption maxima of the studied compounds vary in a large range (322-455 nm), reflecting the different electronic delocalization degree, depending by the substituent nature. In a similar manner, the emission spectra reveal different color of emitted light, a red shift being evident for the groups with higher electron withdrawing ability. The emitted light is pure and saturated for the compounds containing strong withdrawing formyl or cyanoacryl units and reach the highest quantum yield of 71% for the compound containing bromine and cyanoacrilic units. Electrochemical study show reversible oxidative and reduction processes for all the compounds and a close correlation of the HOMO-LUMO band gap with substituent nature. All these findings suggest the obtained compounds as promising materials for optoelectronic devices.

Keywords: electrochemical properties, phenothiazine derivatives, photoluminescence, quantum yield

Procedia PDF Downloads 329
160 Microglia Activation in Animal Model of Schizophrenia

Authors: Esshili Awatef, Manitz Marie-Pierre, Eßlinger Manuela, Gerhardt Alexandra, Plümper Jennifer, Wachholz Simone, Friebe Astrid, Juckel Georg

Abstract:

Maternal immune activation (MIA) resulting from maternal viral infection during pregnancy is a known risk factor for schizophrenia. The neural mechanisms by which maternal infections increase the risk for schizophrenia remain unknown, although the prevailing hypothesis argues that an activation of the maternal immune system induces changes in the maternal-fetal environment that might interact with fetal brain development. It may lead to an activation of fetal microglia inducing long-lasting functional changes of these cells. Based on post-mortem analysis showing an increased number of activated microglial cells in patients with schizophrenia, it can be hypothesized that these cells contribute to disease pathogenesis and may actively be involved in gray matter loss observed in such patients. In the present study, we hypothesize that prenatal treatment with the inflammatory agent Poly(I:C) during embryogenesis at contributes to microglial activation in the offspring, which may, therefore, represent a contributing factor to the pathogenesis of schizophrenia and underlines the need for new pharmacological treatment options. Pregnant rats were treated with intraperitoneal injections a single dose of Poly(I:C) or saline on gestation day 17. Brains of control and Poly(I:C) offspring, were removed and into 20-μm-thick coronal sections were cut by using a Cryostat. Brain slices were fixed and immunostained with ba1 antibody. Subsequently, Iba1-immunoreactivity was detected using a secondary antibody, goat anti-rabbit. The sections were viewed and photographed under microscope. The immunohistochemical analysis revealed increases in microglia cell number in the prefrontal cortex, in offspring of poly(I:C) treated-rats as compared to the controls injected with NaCl. However, no significant differences were observed in microglia activation in the cerebellum among the groups. Prenatal immune challenge with Poly(I:C) was able to induce long-lasting changes in the offspring brains. This lead to a higher activation of microglia cells in the prefrontal cortex, a brain region critical for many higher brain functions, including working memory and cognitive flexibility. which might be implicated in possible changes in cortical neuropil architecture in schizophrenia. Further studies will be needed to clarify the association between microglial cells activation and schizophrenia-related behavioral alterations.

Keywords: Microglia, neuroinflammation, PolyI:C, schizophrenia

Procedia PDF Downloads 416
159 Systematic Evaluation of Convolutional Neural Network on Land Cover Classification from Remotely Sensed Images

Authors: Eiman Kattan, Hong Wei

Abstract:

In using Convolutional Neural Network (CNN) for classification, there is a set of hyperparameters available for the configuration purpose. This study aims to evaluate the impact of a range of parameters in CNN architecture i.e. AlexNet on land cover classification based on four remotely sensed datasets. The evaluation tests the influence of a set of hyperparameters on the classification performance. The parameters concerned are epoch values, batch size, and convolutional filter size against input image size. Thus, a set of experiments were conducted to specify the effectiveness of the selected parameters using two implementing approaches, named pertained and fine-tuned. We first explore the number of epochs under several selected batch size values (32, 64, 128 and 200). The impact of kernel size of convolutional filters (1, 3, 5, 7, 10, 15, 20, 25 and 30) was evaluated against the image size under testing (64, 96, 128, 180 and 224), which gave us insight of the relationship between the size of convolutional filters and image size. To generalise the validation, four remote sensing datasets, AID, RSD, UCMerced and RSCCN, which have different land covers and are publicly available, were used in the experiments. These datasets have a wide diversity of input data, such as number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in both training and testing. The results have shown that increasing the number of epochs leads to a higher accuracy rate, as expected. However, the convergence state is highly related to datasets. For the batch size evaluation, it has shown that a larger batch size slightly decreases the classification accuracy compared to a small batch size. For example, selecting the value 32 as the batch size on the RSCCN dataset achieves the accuracy rate of 90.34 % at the 11th epoch while decreasing the epoch value to one makes the accuracy rate drop to 74%. On the other extreme, setting an increased value of batch size to 200 decreases the accuracy rate at the 11th epoch is 86.5%, and 63% when using one epoch only. On the other hand, selecting the kernel size is loosely related to data set. From a practical point of view, the filter size 20 produces 70.4286%. The last performed image size experiment shows a dependency in the accuracy improvement. However, an expensive performance gain had been noticed. The represented conclusion opens the opportunities toward a better classification performance in various applications such as planetary remote sensing.

Keywords: CNNs, hyperparamters, remote sensing, land cover, land use

Procedia PDF Downloads 169
158 Identification of Damage Mechanisms in Interlock Reinforced Composites Using a Pattern Recognition Approach of Acoustic Emission Data

Authors: M. Kharrat, G. Moreau, Z. Aboura

Abstract:

The latest advances in the weaving industry, combined with increasingly sophisticated means of materials processing, have made it possible to produce complex 3D composite structures. Mainly used in aeronautics, composite materials with 3D architecture offer better mechanical properties than 2D reinforced composites. Nevertheless, these materials require a good understanding of their behavior. Because of the complexity of such materials, the damage mechanisms are multiple, and the scenario of their appearance and evolution depends on the nature of the exerted solicitations. The AE technique is a well-established tool for discriminating between the damage mechanisms. Suitable sensors are used during the mechanical test to monitor the structural health of the material. Relevant AE-features are then extracted from the recorded signals, followed by a data analysis using pattern recognition techniques. In order to better understand the damage scenarios of interlock composite materials, a multi-instrumentation was set-up in this work for tracking damage initiation and development, especially in the vicinity of the first significant damage, called macro-damage. The deployed instrumentation includes video-microscopy, Digital Image Correlation, Acoustic Emission (AE) and micro-tomography. In this study, a multi-variable AE data analysis approach was developed for the discrimination between the different signal classes representing the different emission sources during testing. An unsupervised classification technique was adopted to perform AE data clustering without a priori knowledge. The multi-instrumentation and the clustered data served to label the different signal families and to build a learning database. This latter is useful to construct a supervised classifier that can be used for automatic recognition of the AE signals. Several materials with different ingredients were tested under various solicitations in order to feed and enrich the learning database. The methodology presented in this work was useful to refine the damage threshold for the new generation materials. The damage mechanisms around this threshold were highlighted. The obtained signal classes were assigned to the different mechanisms. The isolation of a 'noise' class makes it possible to discriminate between the signals emitted by damages without resorting to spatial filtering or increasing the AE detection threshold. The approach was validated on different material configurations. For the same material and the same type of solicitation, the identified classes are reproducible and little disturbed. The supervised classifier constructed based on the learning database was able to predict the labels of the classified signals.

Keywords: acoustic emission, classifier, damage mechanisms, first damage threshold, interlock composite materials, pattern recognition

Procedia PDF Downloads 155
157 A Microwave and Millimeter-Wave Transmit/Receive Switch Subsystem for Communication Systems

Authors: Donghyun Lee, Cam Nguyen

Abstract:

Multi-band systems offer a great deal of benefit in modern communication and radar systems. In particular, multi-band antenna-array radar systems with their extended frequency diversity provide numerous advantages in detection, identification, locating and tracking a wide range of targets, including enhanced detection coverage, accurate target location, reduced survey time and cost, increased resolution, improved reliability and target information. An accurate calibration is a critical issue in antenna array systems. The amplitude and phase errors in multi-band and multi-polarization antenna array transceivers result in inaccurate target detection, deteriorated resolution and reduced reliability. Furthermore, the digital beam former without the RF domain phase-shifting is less immune to unfiltered interference signals, which can lead to receiver saturation in array systems. Therefore, implementing integrated front-end architecture, which can support calibration function with low insertion and filtering function from the farthest end of an array transceiver is of great interest. We report a dual K/Ka-band T/R/Calibration switch module with quasi-elliptic dual-bandpass filtering function implementing a Q-enhanced metamaterial transmission line. A unique dual-band frequency response is incorporated in the reception and calibration path of the proposed switch module utilizing the composite right/left-handed meta material transmission line coupled with a Colpitts-style negative generation circuit. The fabricated fully integrated T/R/Calibration switch module in 0.18-μm BiCMOS technology exhibits insertion loss of 4.9-12.3 dB and isolation of more than 45 dB in the reception, transmission and calibration mode of operation. In the reception and calibration mode, the dual-band frequency response centered at 24.5 and 35 GHz exhibits out-of-band rejection of more than 30 dB compared to the pass bands below 10.5 GHz and above 59.5 GHz. The rejection between the pass bands reaches more than 50 dB. In all modes of operation, the IP1-dB is between 4 and 11 dBm. Acknowledgement: This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: microwaves, millimeter waves, T/R switch, wireless communications, wireless communications

Procedia PDF Downloads 160
156 Scalable UI Test Automation for Large-scale Web Applications

Authors: Kuniaki Kudo, Raviraj Solanki, Kaushal Patel, Yash Virani

Abstract:

This research mainly concerns optimizing UI test automation for large-scale web applications. The test target application is the HHAexchange homecare management WEB application that seamlessly connects providers, state Medicaid programs, managed care organizations (MCOs), and caregivers through one platform with large-scale functionalities. This study focuses on user interface automation testing for the WEB application. The quality assurance team must execute many manual users interface test cases in the development process to confirm no regression bugs. The team automated 346 test cases; the UI automation test execution time was over 17 hours. The business requirement was reducing the execution time to release high-quality products quickly, and the quality assurance automation team modernized the test automation framework to optimize the execution time. The base of the WEB UI automation test environment is Selenium, and the test code is written in Python. Adopting a compilation language to write test code leads to an inefficient flow when introducing scalability into a traditional test automation environment. In order to efficiently introduce scalability into Test Automation, a scripting language was adopted. The scalability implementation is mainly implemented with AWS's serverless technology, an elastic container service. The definition of scalability here is the ability to automatically set up computers to test automation and increase or decrease the number of computers running those tests. This means the scalable mechanism can help test cases run parallelly. Then test execution time is dramatically decreased. Also, introducing scalable test automation is for more than just reducing test execution time. There is a possibility that some challenging bugs are detected by introducing scalable test automation, such as race conditions, Etc. since test cases can be executed at same timing. If API and Unit tests are implemented, the test strategies can be adopted more efficiently for this scalability testing. However, in WEB applications, as a practical matter, API and Unit testing cannot cover 100% functional testing since they do not reach front-end codes. This study applied a scalable UI automation testing strategy to the large-scale homecare management system. It confirmed the optimization of the test case execution time and the detection of a challenging bug. This study first describes the detailed architecture of the scalable test automation environment, then describes the actual performance reduction time and an example of challenging issue detection.

Keywords: aws, elastic container service, scalability, serverless, ui automation test

Procedia PDF Downloads 107