Search results for: NDVI change detection
8602 Estimation of Soil Moisture at High Resolution through Integration of Optical and Microwave Remote Sensing and Applications in Drought Analyses
Authors: Donglian Sun, Yu Li, Paul Houser, Xiwu Zhan
Abstract:
California experienced severe drought conditions in the past years. In this study, the drought conditions in California are analyzed using soil moisture anomalies derived from integrated optical and microwave satellite observations along with auxiliary land surface data. Based on the U.S. Drought Monitor (USDM) classifications, three typical drought conditions were selected for the analysis: extreme drought conditions in 2007 and 2013, severe drought conditions in 2004 and 2009, and normal conditions in 2005 and 2006. Drought is defined as negative soil moisture anomaly. To estimate soil moisture at high spatial resolutions, three approaches are explored in this study: the universal triangle model that estimates soil moisture from Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST); the basic model that estimates soil moisture under different conditions with auxiliary data like precipitation, soil texture, topography, and surface types; and the refined model that uses accumulated precipitation and its lagging effects. It is found that the basic model shows better agreements with the USDM classifications than the universal triangle model, while the refined model using precipitation accumulated from the previous summer to current time demonstrated the closest agreements with the USDM patterns.Keywords: soil moisture, high resolution, regional drought, analysis and monitoring
Procedia PDF Downloads 1368601 Relation between Electrical Properties and Application of Chitosan Nanocomposites
Authors: Evgen Prokhorov, Gabriel Luna-Barcenas
Abstract:
The polysaccharide chitosan (CS) is an attractive biopolymer for the stabilization of several nanoparticles in acidic aqueous media. This is due in part to the presence of abundant primary NH2 and OH groups which may lead to steric or chemical stabilization. Applications of most CS nanocomposites are based upon the interaction of high surface area nanoparticles (NPs) with different substance. Therefore, agglomeration of NPs leads to decreasing effective surface area such that it may decrease the efficiency of nanocomposites. The aim of this work is to measure nanocomposite’s electrical conductivity phenomena that will allow one to formulate optimal concentrations of conductivity NPs in CS-based nanocomposites. Additionally, by comparing the efficiency of such nanocomposites, one can guide applications in the biomedical (antibacterial properties and tissue regeneration) and sensor fields (detection of copper and nitrate ions in aqueous solutions). It was shown that the best antibacterial (CS-AgNPs, CS-AgNPs-carbon nanotubes) and would healing properties (CS-AuNPs) are observed in nanocomposites with concentrations of NPs near the percolation threshold. In this regard, the best detection limit in potentiometric and impedimetric sensors for detection of copper ions (using CS-AuNPs membrane) and nitrate ions (using CS-clay membrane) in aqueous solutions have been observed for membranes with concentrations of NPs near percolation threshold. It is well known that at the percolation concentration of NPs an abrupt increasing of conductivity is observed due to the presence of physical contacts between NPs; above this concentration, agglomeration of NPs takes place such that a decrease in the effective surface and performance of nanocomposite appear. The obtained relationship between electrical percolation threshold and performance of polymer nanocomposites with conductivity NPs is important for the design and optimization of polymer-based nanocomposites for different applications.Keywords: chitosan, conductivity nanoparticles, percolation threshold, polymer nanocomposites
Procedia PDF Downloads 2128600 Determination of Various Properties of Biodiesel Produced from Different Feedstocks
Authors: Faisal Anwar, Dawar Zaidi, Shubham Dixit, Nafees Ahmedii
Abstract:
This paper analyzes the various properties of biodiesel such as pour point, cloud point, viscosity, calorific value, etc produced from different feedstocks. The aim of the work is to analyze change in these properties after converting feedstocks to biodiesel and then comparring it with ASTM 6751-02 standards to check whether they are suitable for diesel engines or not. The conversion of feedstocks is carried out by a process called transesterification. This conversion is carried out to reduce viscosity, pour point, etc. It has been observed that there is some remarkable change in the properties of oil after conversion.Keywords: biodiesel, ethyl ester, free fatty acid, production
Procedia PDF Downloads 3678599 Detection of Curvilinear Structure via Recursive Anisotropic Diffusion
Authors: Sardorbek Numonov, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Dongeun Choi, Byung-Woo Hong
Abstract:
The detection of curvilinear structures often plays an important role in the analysis of images. In particular, it is considered as a crucial step for the diagnosis of chronic respiratory diseases to localize the fissures in chest CT imagery where the lung is divided into five lobes by the fissures that are characterized by linear features in appearance. However, the characteristic linear features for the fissures are often shown to be subtle due to the high intensity variability, pathological deformation or image noise involved in the imaging procedure, which leads to the uncertainty in the quantification of anatomical or functional properties of the lung. Thus, it is desired to enhance the linear features present in the chest CT images so that the distinctiveness in the delineation of the lobe is improved. We propose a recursive diffusion process that prefers coherent features based on the analysis of structure tensor in an anisotropic manner. The local image features associated with certain scales and directions can be characterized by the eigenanalysis of the structure tensor that is often regularized via isotropic diffusion filters. However, the isotropic diffusion filters involved in the computation of the structure tensor generally blur geometrically significant structure of the features leading to the degradation of the characteristic power in the feature space. Thus, it is required to take into consideration of local structure of the feature in scale and direction when computing the structure tensor. We apply an anisotropic diffusion in consideration of scale and direction of the features in the computation of the structure tensor that subsequently provides the geometrical structure of the features by its eigenanalysis that determines the shape of the anisotropic diffusion kernel. The recursive application of the anisotropic diffusion with the kernel the shape of which is derived from the structure tensor leading to the anisotropic scale-space where the geometrical features are preserved via the eigenanalysis of the structure tensor computed from the diffused image. The recursive interaction between the anisotropic diffusion based on the geometry-driven kernels and the computation of the structure tensor that determines the shape of the diffusion kernels yields a scale-space where geometrical properties of the image structure are effectively characterized. We apply our recursive anisotropic diffusion algorithm to the detection of curvilinear structure in the chest CT imagery where the fissures present curvilinear features and define the boundary of lobes. It is shown that our algorithm yields precise detection of the fissures while overcoming the subtlety in defining the characteristic linear features. The quantitative evaluation demonstrates the robustness and effectiveness of the proposed algorithm for the detection of fissures in the chest CT in terms of the false positive and the true positive measures. The receiver operating characteristic curves indicate the potential of our algorithm as a segmentation tool in the clinical environment. This work was supported by the MISP(Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by the IITP(Institute for Information and Communications Technology Promotion).Keywords: anisotropic diffusion, chest CT imagery, chronic respiratory disease, curvilinear structure, fissure detection, structure tensor
Procedia PDF Downloads 2328598 Detection of Extrusion Blow Molding Defects by Airflow Analysis
Authors: Eva Savy, Anthony Ruiz
Abstract:
In extrusion blow molding, there is great variability in product quality due to the sensitivity of the machine settings. These variations lead to unnecessary rejects and loss of time. Yet production control is a major challenge for companies in this sector to remain competitive within their market. Current quality control methods only apply to finished products (vision control, leak test...). It has been shown that material melt temperature, blowing pressure, and ambient temperature have a significant impact on the variability of product quality. Since blowing is a key step in the process, we have studied this parameter in this paper. The objective is to determine if airflow analysis allows the identification of quality problems before the full completion of the manufacturing process. We conducted tests to determine if it was possible to identify a leakage defect and an obstructed defect, two common defects on products. The results showed that it was possible to identify a leakage defect by airflow analysis.Keywords: extrusion blow molding, signal, sensor, defects, detection
Procedia PDF Downloads 1518597 Interior Design: Changing Values
Authors: Kika Ioannou Kazamia
Abstract:
This paper examines the action research cycle of the second phase of longitudinal research on sustainable interior design practices, between two groups of stakeholders, designers and clients. During this phase of the action research, the second step - the change stage - of Lewin’s change management model has been utilized to change values, approaches, and attitudes toward sustainable design practices among the participants. Affective domain learning theory is utilized to attach new values. Learning with the use of information technology, collaborative learning, and problem-based learning are the learning methods implemented toward the acquisition of the objectives. Learning methods, and aims, require the design of interventions with participants' involvement in activities that would lead to the acknowledgment of the benefits of sustainable practices. Interventions are steered to measure participants’ decisions for the worth and relevance of ideas, and experiences; accept or commit to a particular stance or action. The data collection methods used in this action research are observers’ reports, participants' questionnaires, and interviews. The data analyses use both quantitative and qualitative methods. The main beneficial aspect of the quantitative method was to provide the means to separate many factors that obscured the main qualitative findings. The qualitative method allowed data to be categorized, to adapt the deductive approach, and then examine for commonalities that could reflect relevant categories or themes. The results from the data indicate that during the second phase, designers and clients' participants altered their behaviours.Keywords: design, change, sustainability, learning, practices
Procedia PDF Downloads 778596 Spectral Anomaly Detection and Clustering in Radiological Search
Authors: Thomas L. McCullough, John D. Hague, Marylesa M. Howard, Matthew K. Kiser, Michael A. Mazur, Lance K. McLean, Johanna L. Turk
Abstract:
Radiological search and mapping depends on the successful recognition of anomalies in large data sets which contain varied and dynamic backgrounds. We present a new algorithmic approach for real-time anomaly detection which is resistant to common detector imperfections, avoids the limitations of a source template library and provides immediate, and easily interpretable, user feedback. This algorithm is based on a continuous wavelet transform for variance reduction and evaluates the deviation between a foreground measurement and a local background expectation using methods from linear algebra. We also present a technique for recognizing and visualizing spectrally similar clusters of data. This technique uses Laplacian Eigenmap Manifold Learning to perform dimensional reduction which preserves the geometric "closeness" of the data while maintaining sensitivity to outlying data. We illustrate the utility of both techniques on real-world data sets.Keywords: radiological search, radiological mapping, radioactivity, radiation protection
Procedia PDF Downloads 6968595 Revisiting the Donning and Doffing Procedure: Ensuring a Coordinated Practice
Authors: Deanna Ruano-Meas, Laura Shenkman
Abstract:
Variances are seen in the way healthcare personnel (HCP) don and doff PPE risking contamination to self and others. By standardizing practice, variances in technique decrease, and so does the risk of contamination. To implement this change, the Model for Improvement will be used. A system change will be developed that will outline the role of the organizational leader’s support of HCP in the proper donning and doffing of PPE. Interventions will include environmental surveys to assess the safety and work situation ensuring a permissible environment, plan audits to confirm consistency, and the assessment of PPE wear for standardization. The change will also include an educational plan that will involve instruction of the current guidelines recommended by the Centers for Disease Control and Prevention (CDC) to all pertinent HCP, and the incorporation of PPE education in yearly educational training. The goal is a standardized practice and a reduced risk of contamination through education and organizational support. Personal protective equipment has had recent attention with the coming of the SARS-CoV-2. The realization that proper technique is important to decreasing contamination of pathogens has led to the revising of current processes.Keywords: donning and doffing, HAI, infection control, PPE
Procedia PDF Downloads 2058594 Real-Time Monitoring of Drinking Water Quality Using Advanced Devices
Authors: Amani Abdallah, Isam Shahrour
Abstract:
The quality of drinking water is a major concern of public health. The control of this quality is generally performed in the laboratory, which requires a long time. This type of control is not adapted for accidental pollution from sudden events, which can have serious consequences on population health. Therefore, it is of major interest to develop real-time innovative solutions for the detection of accidental contamination in drinking water systems This paper presents researches conducted within the SunRise Demonstrator for ‘Smart and Sustainable Cities’ with a particular focus on the supervision of the water quality. This work aims at (i) implementing a smart water system in a large water network (Campus of the University Lille1) including innovative equipment for real-time detection of abnormal events, such as those related to the contamination of drinking water and (ii) develop a numerical modeling of the contamination diffusion in the water distribution system. The first step included verification of the water quality sensors and their effectiveness on a network prototype of 50m length. This part included the evaluation of the efficiency of these sensors in the detection both bacterial and chemical contamination events in drinking water distribution systems. An on-line optical sensor integral with a laboratory-scale distribution system (LDS) was shown to respond rapidly to changes in refractive index induced by injected loads of chemical (cadmium, mercury) and biological contaminations (Escherichia coli). All injected substances were detected by the sensor; the magnitude of the response depends on the type of contaminant introduced and it is proportional to the injected substance concentration.Keywords: distribution system, drinking water, refraction index, sensor, real-time
Procedia PDF Downloads 3558593 Virulence Factors and Drug Resistance of Enterococci Species Isolated from the Intensive Care Units of Assiut University Hospitals, Egypt
Authors: Nahla Elsherbiny, Ahmed Ahmed, Hamada Mohammed, Mohamed Ali
Abstract:
Background: The enterococci may be considered as opportunistic agents particularly in immunocompromised patients. It is one of the top three pathogens causing many healthcare associated infections (HAIs). Resistance to several commonly used antimicrobial agents is a remarkable characteristic of most species which may carry various genes contributing to virulence. Objectives: to determine the prevalence of enterococci species in different intensive care units (ICUs) causing health care-associated infections (HAIs), intestinal carriage and environmental contamination. Also, to study the antimicrobial susceptibility pattern of the isolates with special reference to vancomycin resistance. In addition to phenotypic and genotypic detection of gelatinase, cytolysin and biofilm formation among isolates. Patients and Methods: This study was carried out in the infection control laboratory at Assiut University Hospitals over a period of one year. Clinical samples were collected from 285 patients with various (HAIs) acquired after admission to different ICUs. Rectal swabs were taken from 14 cases for detection of enterococci carriage. In addition, 1377 environmental samples were collected from the surroundings of the patients. Identification was done by conventional bacteriological methods and confirmed by analytical profile index (API). Antimicrobial sensitivity testing was performed by Kirby Bauer disc diffusion method and detection of vancomycin resistance was done by agar screen method. For the isolates, phenotypic detection of cytolysin, gelatinase production and detection of biofilm by tube method, Congo red method and microtiter plate. We performed polymerase chain reaction (PCR) for detection of some virulence genes (gelE, cylA, vanA, vanB and esp). Results: Enterococci caused 10.5% of the HAIs. Respiratory tract infection was the predominant type (86.7%). The commonest species were E.gallinarum (36.7%), E.casseliflavus (30%), E.faecalis (30%), and E.durans (3.4 %). Vancomycin resistance was detected in a total of 40% (12/30) of those isolates. The risk factors associated with acquiring vancomycin resistant enterococci (VRE) were immune suppression (P= 0.031) and artificial feeding (P= 0.008). For the rectal swabs, enterococci species were detected in 71.4% of samples with the predominance of E. casseliflavus (50%). Most of the isolates were vancomycin resistant (70%). Out of a total 1377 environmental samples, 577 (42%) samples were contaminated with different microorganisms. Enterococci were detected in 1.7% (10/577) of total contaminated samples, 50% of which were vancomycin resistant. All isolates were resistant to penicillin, ampicillin, oxacillin, ciprofloxacin, amikacin, erythromycin, clindamycin and trimethoprim-sulfamethaxazole. For the remaining antibiotics, variable percentages of resistance were reported. Cytolysin and gelatinase were detected phenotypically in 16% and 48 % of the isolates respectively. The microtiter plate method showed the highest percentages of detection of biofilm among all isolated species (100%). The studied virulence genes gelE, esp, vanA and vanB were detected in 62%, 12%, 2% and 12% respectively, while cylA gene was not detected in any isolates. Conclusions: A significant percentage of enterococci was isolated from patients and environments in the ICUs. Many virulence factors were detected phenotypically and genotypically among isolates. The high percentage of resistance, coupled with the risk of cross transmission to other patients make enterococci infections a significant infection control issue in hospitals.Keywords: antimicrobial resistance, enterococci, ICUs, virulence factors
Procedia PDF Downloads 2858592 Practices of Self-Directed Professional Development of Teachers in South African Public Schools
Authors: Rosaline Govender
Abstract:
This research study is an exploration of the self-directed professional development of teachers who teach in public schools in an era of democracy and educational change in South Africa. Amidst an ever-changing educational system, the teachers in this study position themselves as self-directed teacher-learners where they adopt particular learning practices which enable change within the broader discourses of public schooling. Life-story interviews were used to enter into the private and public spaces of five teachers which offer glimpses of how particular systems shaped their identities, and how the meanings of self-directed teacher-learner shaped their learning practices. Through the Multidimensional framework of analysis and interpretation the teachers’ stories were analysed through three lenses: restorying the field texts - the self through story; the teacher-learner in relation to social contexts, and practices of self-directed learning.This study shows that as teacher-learners learn for change through self-directed learning practices, they develop their agency as transformative intellectuals, which is necessary for the reworking of South African public schools.Keywords: professional development, professionality, professionalism, self-directed learning
Procedia PDF Downloads 4298591 Alphabet Recognition Using Pixel Probability Distribution
Authors: Vaidehi Murarka, Sneha Mehta, Dishant Upadhyay
Abstract:
Our project topic is “Alphabet Recognition using pixel probability distribution”. The project uses techniques of Image Processing and Machine Learning in Computer Vision. Alphabet recognition is the mechanical or electronic translation of scanned images of handwritten, typewritten or printed text into machine-encoded text. It is widely used to convert books and documents into electronic files etc. Alphabet Recognition based OCR application is sometimes used in signature recognition which is used in bank and other high security buildings. One of the popular mobile applications includes reading a visiting card and directly storing it to the contacts. OCR's are known to be used in radar systems for reading speeders license plates and lots of other things. The implementation of our project has been done using Visual Studio and Open CV (Open Source Computer Vision). Our algorithm is based on Neural Networks (machine learning). The project was implemented in three modules: (1) Training: This module aims “Database Generation”. Database was generated using two methods: (a) Run-time generation included database generation at compilation time using inbuilt fonts of OpenCV library. Human intervention is not necessary for generating this database. (b) Contour–detection: ‘jpeg’ template containing different fonts of an alphabet is converted to the weighted matrix using specialized functions (contour detection and blob detection) of OpenCV. The main advantage of this type of database generation is that the algorithm becomes self-learning and the final database requires little memory to be stored (119kb precisely). (2) Preprocessing: Input image is pre-processed using image processing concepts such as adaptive thresholding, binarizing, dilating etc. and is made ready for segmentation. “Segmentation” includes extraction of lines, words, and letters from the processed text image. (3) Testing and prediction: The extracted letters are classified and predicted using the neural networks algorithm. The algorithm recognizes an alphabet based on certain mathematical parameters calculated using the database and weight matrix of the segmented image.Keywords: contour-detection, neural networks, pre-processing, recognition coefficient, runtime-template generation, segmentation, weight matrix
Procedia PDF Downloads 3898590 UWB Open Spectrum Access for a Smart Software Radio
Authors: Hemalatha Rallapalli, K. Lal Kishore
Abstract:
In comparison to systems that are typically designed to provide capabilities over a narrow frequency range through hardware elements, the next generation cognitive radios are intended to implement a broader range of capabilities through efficient spectrum exploitation. This offers the user the promise of greater flexibility, seamless roaming possible on different networks, countries, frequencies, etc. It requires true paradigm shift i.e., liberalization over a wide band of spectrum as well as a growth path to more and greater capability. This work contributes towards the design and implementation of an open spectrum access (OSA) feature to unlicensed users thus offering a frequency agile radio platform that is capable of performing spectrum sensing over a wideband. Thus, an ultra-wideband (UWB) radio, which has the intelligence of spectrum sensing only, unlike the cognitive radio with complete intelligence, is named as a Smart Software Radio (SSR). The spectrum sensing mechanism is implemented based on energy detection. Simulation results show the accuracy and validity of this method.Keywords: cognitive radio, energy detection, software radio, spectrum sensing
Procedia PDF Downloads 4288589 Analysis of Relationship between Social Media Conversation and Mainstream Coverage to Mobilize Social Movement
Authors: Sakulsri Srisaracam
Abstract:
Social media has become an important source of information for the public and the media profession. Some social issues raised on social media are picked up by journalists to report on other platforms. This relationship between social media and mainstream media can sometimes drive public debate or stimulate social movements. The question to examine is in what situations can social media conversations raise awareness and stimulate change on public issues. This study addresses the communication patterns of social media conversations driving covert issues into mainstream media and leading to social advocacy movements. In methodological terms, the study findings are based on a content analysis of Facebook, Twitter, news websites and television media reports on three different case studies – saving Bryde’s whale, protests against a government proposal to downsize the Office of Knowledge Management and Development in Thailand, and a dengue fever campaign. These case studies were chosen because they represent issues that most members of the public do not pay much attention to but social media conversations stimulated public debate and calls to action. This study found: 1) Collective social media conversations can stimulate public debate and encourage change at three levels – awareness, public debate, and action of policy and social change. The level depends on the communication patterns of online users and media coverage. 2) Patterns of communication have to be designed to combine social media conversations, online opinion leaders, mainstream media coverage and call to both online and offline action to motivate social change. Thus, this result suggests that social media is a powerful platform for collective communication and setting the agenda on public issues for mainstream media. However, for social change to succeed, social media should be used to mobilize online movements to move offline too.Keywords: public issues, mainstream media, social media, social movement
Procedia PDF Downloads 2828588 Applying Push Notifications with Behavioral Change Strategies in Fitness Applications: A Survey of User's Perception Based on Consumer Engagement
Authors: Yali Liu, Maria Avello Iturriagagoitia
Abstract:
Background: Fitness applications (apps) are one of the most popular mobile health (mHealth) apps. These apps can help prevent/control health issues such as obesity, which is one of the most serious public health challenges in the developed world in recent decades. Compared with the traditional intervention like face-to-face treatment, it is cheaper and more convenient to use fitness apps to interfere with physical activities and healthy behaviors. Nevertheless, fitness applications apps tend to have high abandonment rates and low levels of user engagement. Therefore, maintaining the endurance of users' usage is challenging. In fact, previous research shows a variety of strategies -goal-setting, self-monitoring, coaching, etc.- for promoting fitness and health behavior change. These strategies can influence the users’ perseverance and self-monitoring of the program as well as favoring their adherence to routines that involve a long-term behavioral change. However, commercial fitness apps rarely incorporate these strategies into their design, thus leading to a lack of engagement with the apps. Most of today’s mobile services and brands engage their users proactively via push notifications. Push notifications. These notifications are visual or auditory alerts to inform mobile users about a wide range of topics that entails an effective and personal mean of communication between the app and the user. One of the research purposes of this article is to implement the application of behavior change strategies through push notifications. Proposes: This study aims to better understand the influence that effective use of push notifications combined with the behavioral change strategies will have on users’ engagement with the fitness app. And the secondary objectives are 1) to discuss the sociodemographic differences in utilization of push notifications of fitness apps; 2) to determine the impact of each strategy in customer engagement. Methods: The study uses a combination of the Consumer Engagement Theory and UTAUT2 based model to conduct an online survey among current users of fitness apps. The questionnaire assessed attitudes to each behavioral change strategy, and sociodemographic variables. Findings: Results show the positive effect of push notifications in the generation of consumer engagement and the different impacts of each strategy among different groups of population in customer engagement. Conclusions: Fitness apps with behavior change strategies have a positive impact on increasing users’ usage time and customer engagement. Theoretical experts can participate in designing fitness applications, along with technical designers.Keywords: behavioral change, customer engagement, fitness app, push notification, UTAUT2
Procedia PDF Downloads 1358587 Tracing Back the Bot Master
Authors: Sneha Leslie
Abstract:
The current situation in the cyber world is that crimes performed by Botnets are increasing and the masterminds (botmaster) are not detectable easily. The botmaster in the botnet compromises the legitimate host machines in the network and make them bots or zombies to initiate the cyber-attacks. This paper will focus on the live detection of the botmaster in the network by using the strong framework 'metasploit', when distributed denial of service (DDOS) attack is performed by the botnet. The affected victim machine will be continuously monitoring its incoming packets. Once the victim machine gets to know about the excessive count of packets from any IP, that particular IP is noted and details of the noted systems are gathered. Using the vulnerabilities present in the zombie machines (already compromised by botmaster), the victim machine will compromise them. By gaining access to the compromised systems, applications are run remotely. By analyzing the incoming packets of the zombies, the victim comes to know the address of the botmaster. This is an effective and a simple system where no specific features of communication protocol are considered.Keywords: bonet, DDoS attack, network security, detection system, metasploit framework
Procedia PDF Downloads 2548586 Comparative Analysis of Climate Mitigation Strategies Adopted by Farmers of Pakistan and the USA
Authors: Gulfam Hasan, Ijaz Ashraf, Saleem Ashraf, Muhammad Rafay Muzammil, Salman Asghar, Shafiq-Ur-Rehman Zia
Abstract:
The word “climate change” has become the most popular term when anyone observes any uncertain climate variation in their respective region. Asian countries are more prone to the impact of this phenomenon, and Pakistan is the leading affected country. Last few years, governments all over the world have been trying to cater to this issue for the best entrust of their population, especially agriculture. Now the farmers in Pakistan are fully aware of the term “climate change” and are more concerned about its solutions. On the other hand, developed countries like the USA are setting a benchmark for developing countries in every sphere of life. Based on cultural and other variations, the research was carried out to identify the behavior of farmers regarding the same issue. Cross-sectional survey research was designed for an in-depth study of relevant research questions. Face-to-face interviews were conducted in Pakistan, while virtual and face-to-face interviews were conducted in the Indiana State of the USA. The results of the present study and the responses of farmers were very interesting. The common climate change mitigation strategies suggested by farmers of both countries were less use of motor vehicles (replacement with bicycles in the circle of 10 Km), less dependency on chemical fertilizers (increased use of Manure, Bio-fertilizer, Compost), and plantation of the tree. The difference of opinion was in less government interest, lack of farmers’ education, political instability (views of Pakistani farmers), awareness of local communities, self-satisfaction, and economic disparities (views of USA farmers). Based on the given evidence, it was recommended that there is a dire need to address the climate change issue all over the world without discrimination of race, color, region, or religion. Because it will affect not only agriculture but also the real effect will be on HUMANITY.Keywords: climate change, mitigation strategies, forests, biodiversity
Procedia PDF Downloads 1258585 Ontology based Fault Detection and Diagnosis system Querying and Reasoning examples
Authors: Marko Batic, Nikola Tomasevic, Sanja Vranes
Abstract:
One of the strongholds in the ubiquitous efforts related to the energy conservation and energy efficiency improvement is represented by the retrofit of high energy consumers in buildings. In general, HVAC systems represent the highest energy consumers in buildings. However they usually suffer from mal-operation and/or malfunction, causing even higher energy consumption than necessary. Various Fault Detection and Diagnosis (FDD) systems can be successfully employed for this purpose, especially when it comes to the application at a single device/unit level. In the case of more complex systems, where multiple devices are operating in the context of the same building, significant energy efficiency improvements can only be achieved through application of comprehensive FDD systems relying on additional higher level knowledge, such as their geographical location, served area, their intra- and inter- system dependencies etc. This paper presents a comprehensive FDD system that relies on the utilization of common knowledge repository that stores all critical information. The discussed system is deployed as a test-bed platform at the two at Fiumicino and Malpensa airports in Italy. This paper aims at presenting advantages of implementation of the knowledge base through the utilization of ontology and offers improved functionalities of such system through examples of typical queries and reasoning that enable derivation of high level energy conservation measures (ECM). Therefore, key SPARQL queries and SWRL rules, based on the two instantiated airport ontologies, are elaborated. The detection of high level irregularities in the operation of airport heating/cooling plants is discussed and estimation of energy savings is reported.Keywords: airport ontology, knowledge management, ontology modeling, reasoning
Procedia PDF Downloads 5378584 Post-Earthquake Damage Detection Using System Identification with a Pair of Seismic Recordings
Authors: Lotfi O. Gargab, Ruichong R. Zhang
Abstract:
A wave-based framework is presented for modeling seismic motion in multistory buildings and using measured response for system identification which can be utilized to extract important information regarding structure integrity. With one pair of building response at two locations, a generalized model response is formulated based on wave propagation features and expressed as frequency and time response functions denoted, respectively, as GFRF and GIRF. In particular, GIRF is fundamental in tracking arrival times of impulsive wave motion initiated at response level which is dependent on local model properties. Matching model and measured-structure responses can help in identifying model parameters and infer building properties. To show the effectiveness of this approach, the Millikan Library in Pasadena, California is identified with recordings of the Yorba Linda earthquake of September 3, 2002.Keywords: system identification, continuous-discrete mass modeling, damage detection, post-earthquake
Procedia PDF Downloads 3698583 Bayesian System and Copula for Event Detection and Summarization of Soccer Videos
Authors: Dhanuja S. Patil, Sanjay B. Waykar
Abstract:
Event detection is a standout amongst the most key parts for distinctive sorts of area applications of video data framework. Recently, it has picked up an extensive interest of experts and in scholastics from different zones. While detecting video event has been the subject of broad study efforts recently, impressively less existing methodology has considered multi-model data and issues related efficiency. Start of soccer matches different doubtful circumstances rise that can't be effectively judged by the referee committee. A framework that checks objectively image arrangements would prevent not right interpretations because of some errors, or high velocity of the events. Bayesian networks give a structure for dealing with this vulnerability using an essential graphical structure likewise the probability analytics. We propose an efficient structure for analysing and summarization of soccer videos utilizing object-based features. The proposed work utilizes the t-cherry junction tree, an exceptionally recent advancement in probabilistic graphical models, to create a compact representation and great approximation intractable model for client’s relationships in an interpersonal organization. There are various advantages in this approach firstly; the t-cherry gives best approximation by means of junction trees class. Secondly, to construct a t-cherry junction tree can be to a great extent parallelized; and at last inference can be performed utilizing distributed computation. Examination results demonstrates the effectiveness, adequacy, and the strength of the proposed work which is shown over a far reaching information set, comprising more soccer feature, caught at better places.Keywords: summarization, detection, Bayesian network, t-cherry tree
Procedia PDF Downloads 3268582 Neural Network based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children
Authors: Budhvin T. Withana, Sulochana Rupasinghe
Abstract:
The educational system faces a significant concern with regards to Dyslexia and Dysgraphia, which are learning disabilities impacting reading and writing abilities. This is particularly challenging for children who speak the Sinhala language due to its complexity and uniqueness. Commonly used methods to detect the risk of Dyslexia and Dysgraphia rely on subjective assessments, leading to limited coverage and time-consuming processes. Consequently, delays in diagnoses and missed opportunities for early intervention can occur. To address this issue, the project developed a hybrid model that incorporates various deep learning techniques to detect the risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16, and YOLOv8 models were integrated to identify handwriting issues. The outputs of these models were then combined with other input data and fed into an MLP model. Hyperparameters of the MLP model were fine-tuned using Grid Search CV, enabling the identification of optimal values for the model. This approach proved to be highly effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention. The Resnet50 model exhibited a training accuracy of 0.9804 and a validation accuracy of 0.9653. The VGG16 model achieved a training accuracy of 0.9991 and a validation accuracy of 0.9891. The MLP model demonstrated impressive results with a training accuracy of 0.99918, a testing accuracy of 0.99223, and a loss of 0.01371. These outcomes showcase the high accuracy achieved by the proposed hybrid model in predicting the risk of Dyslexia and Dysgraphia.Keywords: neural networks, risk detection system, dyslexia, dysgraphia, deep learning, learning disabilities, data science
Procedia PDF Downloads 648581 Climate Change Adaptation Success in a Low Income Country Setting, Bangladesh
Authors: Tanveer Ahmed Choudhury
Abstract:
Background: Bangladesh is one of the largest deltas in the world, with high population density and high rates of poverty and illiteracy. 80% of the country is on low-lying floodplains, leaving the country one of the most vulnerable to the adverse effects of climate change: sea level rise, cyclones and storms, salinity intrusion, rising temperatures and heavy monsoon downpours. Such climatic events already limit Economic Development in the country. Although Bangladesh has had little responsibility in contributing to global climatic change, it is vulnerable to both its direct and indirect impacts. Real threats include reduced agricultural production, worsening food security, increased incidence of flooding and drought, spreading disease and an increased risk of conflict over scarce land and water resources. Currently, 8.3 million Bangladeshis live in cyclone high risk areas. However, by 2050 this is expected to grow to 20.3 million people, if proper adaptive actions are not taken. Under a high emissions scenario, an additional 7.6 million people will be exposed to very high salinity by 2050 compared to current levels. It is also projected that, an average of 7.2 million people will be affected by flooding due to sea level rise every year between 2070-2100 and If global emissions decrease rapidly and adaptation interventions are taken, the population affected by flooding could be limited to only about 14,000 people. To combat the climate change adverse effects, Bangladesh government has initiated many adaptive measures specially in infrastructure and renewable energy sector. Government is investing huge money and initiated many projects which have been proved very success full. Objectives: The objective of this paper is to describe some successful measures initiated by Bangladesh government in its effort to make the country a Climate Resilient. Methodology: Review of operation plan and activities of different relevant Ministries of Bangladesh government. Result: The following initiative projects, programs and activities are considered as best practices for Climate Change adaptation successes for Bangladesh: 1. The Infrastructure Development Company Limited (IDCOL); 2. Climate Change and Health Promotion Unit (CCHPU); 3. The Climate Change Trust Fund (CCTF); 4. Community Climate Change Project (CCCP); 5. Health, Population, Nutrition Sector Development Program (HPNSDP, 2011-2016)- "Climate Change and Environmental Issues"; 6. Ministry of Health and Family Welfare, Bangladesh and WHO Collaboration; - National Adaptation Plan. -"Building adaptation to climate change in health in least developed countries through resilient WASH". 7. COP-21 “Climate and health country profile -2015 Bangladesh. Conclusion: Due to a vast coastline, low-lying land and abundance of rivers, Bangladesh is highly vulnerable to climate change. Having extensive experience with facing natural disasters, Bangladesh has developed a successful adaptation program, which led to a significant reduction in casualties from extreme weather events. In a low income country setting, Bangladesh had successfully adapted various projects and initiatives to combat future Climate Change challenges.Keywords: climate, change, success, Bangladesh
Procedia PDF Downloads 2498580 Drivers on Climate in a Neotropical City: Urbanizations and Natural Variability
Authors: Nuria Vargas, Frances Rodriguez
Abstract:
Neotropical medium cities have opportunities to develop in a good manner. Xalapa City (Veracruz capital, Mexico) and its metropolitan region, near to the Gulf of Mexico, has already <1 million inhabitants, a medium city size, but it’s growing rapidly as several cities in Latin America. Inside a landscape where it had been a forest cloud and coffee land, emerges the city with an irregular topography. The rapid grow of the urbanization and the loss of vegetation has result in a change on the climate parameters. Frequently warms spells, floods and landslides had been impacted last 2 decades, also a higher incidence of dengue and diarrhea is mentioned in the region. Therefore, the analysis of hydrometeorological events is crucial to understand the role they play in its problem. The urbanization and others radiative forces has created a modulation that can explain the decadal climate changes on the Xalapa region. The Atlantic Multidecadal Oscillation directly influences the temperature and precipitation of the region, even more than climate change does. The total effect of these drivers can create a significant context that origin more risk. However, the most policies frequently consider only the climate change as a principal factor, but other drivers are important to consider and evaluate for the implementation of actions that improve our ambient and cities, in a context of climate change. Medium-sized cities could create better conditions for future citizens, preventing with urban planning that considers possible risks associated with weather and climate.Keywords: natural variability, urbanization, atlantic multidecadal oscillation, land use changes
Procedia PDF Downloads 648579 Low-Cost Image Processing System for Evaluating Pavement Surface Distress
Authors: Keerti Kembhavi, M. R. Archana, V. Anjaneyappa
Abstract:
Most asphalt pavement condition evaluation use rating frameworks in which asphalt pavement distress is estimated by type, extent, and severity. Rating is carried out by the pavement condition rating (PCR), which is tedious and expensive. This paper presents the development of a low-cost technique for image pavement distress analysis that permits the identification of pothole and cracks. The paper explores the application of image processing tools for the detection of potholes and cracks. Longitudinal cracking and pothole are detected using Fuzzy-C- Means (FCM) and proceeded with the Spectral Theory algorithm. The framework comprises three phases, including image acquisition, processing, and extraction of features. A digital camera (Gopro) with the holder is used to capture pavement distress images on a moving vehicle. FCM classifier and Spectral Theory algorithms are used to compute features and classify the longitudinal cracking and pothole. The Matlab2016Ra Image preparing tool kit utilizes performance analysis to identify the viability of pavement distress on selected urban stretches of Bengaluru city, India. The outcomes of image evaluation with the utilization semi-computerized image handling framework represented the features of longitudinal crack and pothole with an accuracy of about 80%. Further, the detected images are validated with the actual dimensions, and it is seen that dimension variability is about 0.46. The linear regression model y=1.171x-0.155 is obtained using the existing and experimental / image processing area. The R2 correlation square obtained from the best fit line is 0.807, which is considered in the linear regression model to be ‘large positive linear association’.Keywords: crack detection, pothole detection, spectral clustering, fuzzy-c-means
Procedia PDF Downloads 1818578 Invisible Aircraft Using Plasma Display
Authors: C. Ramamoorthy, R. Ranga Raj
Abstract:
In olden days the Ramayana epic depicts the usage of invisible and fuel less aircraft named pushpavimana. The change of color in the reptile family chameleon paves way for the concept of color change phenomenon available in nature. In present scenario the aircrafts are visible so it is easily identified. So there are too many problems from the threatening. Research is still going on about this problem by using Liquid Crystal Display (LCD). Objective of this paper is to find much better to use the concept of invisible aircraft using plasma display through Couple Charged Device camera (CCD), which has a high resolution and can be used for many purposes like spying, defense, etc. Moreover it is cost wise cheap then, escaping the foe viewing.Keywords: CCD camera, chameleon, invisible, plasma display
Procedia PDF Downloads 4038577 Migrants as Change Agents: A Study of Social Remittances between Finland and Russia
Authors: Ilona Bontenbal
Abstract:
In this research, the potential for societal change is researched through the idea of migrants as change agents. The viewpoint is on the potential that migrants have for affecting societal change in their country of origin through transmitting transnational peer-to-peer information. The focus is on the information that Russian migrants living in Finland transmit about their experiences and attitudes regarding the Nordic welfare state, its democratic foundation and the social rights embedded in it, to their family and friends in their country of origin. The welfare provision and level of democracy are very different in the two neighbouring countries of Finland and Russia. Finland is a Nordic welfare state with strong democratic institutions and a comprehensive actualizing of civil and social rights. In Russia, the state of democracy has on the other hand been declining, and the social and civil rights of its citizens are constantly undermined. Due to improvements in communications and travel technology, migrants can easily and relatively cheaply stay in contact with their family and friends in their country of origin. This is why it is possible for migrants to act as change agents. By telling about their experiences and attitudes about living in a democratic welfare state, migrants can affect what people in the country or origin know and think about welfare, democracy, and social rights. This phenomenon is approached through the concept of social remittances. Social remittances broadly stand for the ideas, know-how, world views, attitudes, norms of behavior, and social capital that flows through transnational networks from receiving- to sending- country communities and the other way around. The viewpoint is that historically and culturally formed democratic welfare models cannot be copied entirely nor that each country should achieve identical development paths, but rather that migrants themselves choose which aspects they see as important to remit to their acquaintances in their country of origin. This way the potential for social change and the agency of the migrants is accentuated. The empirical research material of this study is based on 30 qualitative interviews with Russian migrants living in Finland. Russians are the largest migrant group in Finland and Finland is a popular migration destination especially for individuals living in North-West Russia including the St. Petersburg region. The interviews are carried out in 2018-2019. The preliminary results indicate that Russian migrants discuss social rights and welfare a lot with their family members and acquaintances living in Russia. In general, the migrants feel that they have had an effect on the way that their friends and family think about Finland, the West, social rights and welfare provision. Democracy, on the other hand, is seen as a more difficult and less discussed topic. The transformative potential that the transmitted information and attitudes could have outside of the immediate circle of acquaintances on larger societal change is seen as ambiguous although not negligible.Keywords: migrants as change agents, Russian migrants, social remittances, welfare and democracy
Procedia PDF Downloads 1918576 Adaptive Decision Feedback Equalizer Utilizing Fixed-Step Error Signal for Multi-Gbps Serial Links
Authors: Alaa Abdullah Altaee
Abstract:
This paper presents an adaptive decision feedback equalizer (ADFE) for multi-Gbps serial links utilizing a fix-step error signal extracted from cross-points of received data symbols. The extracted signal is generated based on violation of received data symbols with minimum detection requirements at the clock and data recovery (CDR) stage. The iterations of the adaptation process search for the optimum feedback tap coefficients to maximize the data eye-opening and minimize the adaptation convergence time. The effectiveness of the proposed architecture is validated using the simulation results of a serial link designed in an IBM 130 nm 1.2V CMOS technology. The data link with variable channel lengths is analyzed using Spectre from Cadence Design Systems with BSIM4 device models.Keywords: adaptive DFE, CMOS equalizer, error detection, serial links, timing jitter, wire-line communication
Procedia PDF Downloads 1208575 The Application of Artificial Neural Networks for the Performance Prediction of Evacuated Tube Solar Air Collector with Phase Change Material
Authors: Sukhbir Singh
Abstract:
This paper describes the modeling of novel solar air collector (NSAC) system by using artificial neural network (ANN) model. The objective of the study is to demonstrate the application of the ANN model to predict the performance of the NSAC with acetamide as a phase change material (PCM) storage. Input data set consist of time, solar intensity and ambient temperature wherever as outlet air temperature of NSAC was considered as output. Experiments were conducted between 9.00 and 24.00 h in June and July 2014 underneath the prevailing atmospheric condition of Kurukshetra (city of the India). After that, experimental results were utilized to train the back propagation neural network (BPNN) to predict the outlet air temperature of NSAC. The results of proposed algorithm show that the BPNN is effective tool for the prediction of responses. The BPNN predicted results are 99% in agreement with the experimental results.Keywords: Evacuated tube solar air collector, Artificial neural network, Phase change material, solar air collector
Procedia PDF Downloads 1208574 Enhancing Code Security with AI-Powered Vulnerability Detection
Authors: Zzibu Mark Brian
Abstract:
As software systems become increasingly complex, ensuring code security is a growing concern. Traditional vulnerability detection methods often rely on manual code reviews or static analysis tools, which can be time-consuming and prone to errors. This paper presents a distinct approach to enhancing code security by leveraging artificial intelligence (AI) and machine learning (ML) techniques. Our proposed system utilizes a combination of natural language processing (NLP) and deep learning algorithms to identify and classify vulnerabilities in real-world codebases. By analyzing vast amounts of open-source code data, our AI-powered tool learns to recognize patterns and anomalies indicative of security weaknesses. We evaluated our system on a dataset of over 10,000 open-source projects, achieving an accuracy rate of 92% in detecting known vulnerabilities. Furthermore, our tool identified previously unknown vulnerabilities in popular libraries and frameworks, demonstrating its potential for improving software security.Keywords: AI, machine language, cord security, machine leaning
Procedia PDF Downloads 368573 Forced Degradation Study of Rifaximin Formulated Tablets to Determine Stability Indicating Nature of High-Performance Liquid Chromatography Analytical Method
Authors: Abid Fida Masih
Abstract:
Forced degradation study of Rifaximin was conducted to determine the stability indicating potential of HPLC testing method for detection of Rifaximin in formulated tablets to be employed for quality control and stability testing. The questioned method applied with mobile phase methanol: water (70:30), 5µm, 250 x 4.6mm, C18 column, wavelength 293nm and flow rate of 1.0 ml/min. Forced degradation study was performed under oxidative, acidic, basic, thermal and photolytic conditions. The applied method successfully determined the degradation products after acidic and basic degradation without interfering with Rifaximin detection. Therefore, the method was said to be stability indicating and can be applied for quality control and stability testing of Rifaxmin tablets during its shelf life.Keywords: forced degradation, high-performance liquid chromatography, method validation, rifaximin, stability indicating method
Procedia PDF Downloads 314