Search results for: Artificial Neural network
5047 Minimization of Propagation Delay in Multi Unmanned Aerial Vehicle Network
Authors: Purva Joshi, Rohit Thanki, Omar Hanif
Abstract:
Unmanned aerial vehicles (UAVs) are becoming increasingly important in various industrial applications and sectors. Nowadays, a multi UAV network is used for specific types of communication (e.g., military) and monitoring purposes. Therefore, it is critical to reducing propagation delay during communication between UAVs, which is essential in a multi UAV network. This paper presents how the propagation delay between the base station (BS) and the UAVs is reduced using a searching algorithm. Furthermore, the iterative-based K-nearest neighbor (k-NN) algorithm and Travelling Salesmen Problem (TSP) algorthm were utilized to optimize the distance between BS and individual UAV to overcome the problem of propagation delay in multi UAV networks. The simulation results show that this proposed method reduced complexity, improved reliability, and reduced propagation delay in multi UAV networks.Keywords: multi UAV network, optimal distance, propagation delay, K - nearest neighbor, traveling salesmen problem
Procedia PDF Downloads 2075046 Assessing the Effectiveness of Machine Learning Algorithms for Cyber Threat Intelligence Discovery from the Darknet
Authors: Azene Zenebe
Abstract:
Deep learning is a subset of machine learning which incorporates techniques for the construction of artificial neural networks and found to be useful for modeling complex problems with large dataset. Deep learning requires a very high power computational and longer time for training. By aggregating computing power, high performance computer (HPC) has emerged as an approach to resolving advanced problems and performing data-driven research activities. Cyber threat intelligence (CIT) is actionable information or insight an organization or individual uses to understand the threats that have, will, or are currently targeting the organization. Results of review of literature will be presented along with results of experimental study that compares the performance of tree-based and function-base machine learning including deep learning algorithms using secondary dataset collected from darknet.Keywords: deep-learning, cyber security, cyber threat modeling, tree-based machine learning, function-based machine learning, data science
Procedia PDF Downloads 1565045 Evaluating the Perception of Roma in Europe through Social Network Analysis
Authors: Giulia I. Pintea
Abstract:
The Roma people are a nomadic ethnic group native to India, and they are one of the most prevalent minorities in Europe. In the past, Roma were enslaved and they were imprisoned in concentration camps during the Holocaust; today, Roma are subject to hate crimes and are denied access to healthcare, education, and proper housing. The aim of this project is to analyze how the public perception of the Roma people may be influenced by antiziganist and pro-Roma institutions in Europe. In order to carry out this project, we used social network analysis to build two large social networks: The antiziganist network, which is composed of institutions that oppress and racialize Roma, and the pro-Roma network, which is composed of institutions that advocate for and protect Roma rights. Measures of centrality, density, and modularity were obtained to determine which of the two social networks is exerting the greatest influence on the public’s perception of Roma in European societies. Furthermore, data on hate crimes on Roma were gathered from the Organization for Security and Cooperation in Europe (OSCE). We analyzed the trends in hate crimes on Roma for several European countries for 2009-2015 in order to see whether or not there have been changes in the public’s perception of Roma, thus helping us evaluate which of the two social networks has been more influential. Overall, the results suggest that there is a greater and faster exchange of information in the pro-Roma network. However, when taking the hate crimes into account, the impact of the pro-Roma institutions is ambiguous, due to differing patterns among European countries, suggesting that the impact of the pro-Roma network is inconsistent. Despite antiziganist institutions having a slower flow of information, the hate crime patterns also suggest that the antiziganist network has a higher impact on certain countries, which may be due to institutions outside the political sphere boosting the spread of antiziganist ideas and information to the European public.Keywords: applied mathematics, oppression, Roma people, social network analysis
Procedia PDF Downloads 2795044 The Nature and the Structure of Scientific and Innovative Collaboration Networks
Authors: Afshin Moazami, Andrea Schiffauerova
Abstract:
The objective of this work is to investigate the development and the role of collaboration networks in the creation of knowledge and innovations in the US and Canada, with a special focus on Quebec. In order to create scientific networks, the data on journal articles were extracted from SCOPUS, and the networks were built based on the co-authorship of the journal papers. For innovation networks, the USPTO database was used, and the networks were built on the patent co-inventorship. Various indicators characterizing the evolution of the network structure and the positions of the researchers and inventors in the networks were calculated. The comparison between the United States, Canada, and Quebec was then carried out. The preliminary results show that the nature of scientific collaboration networks differs from the one seen in innovation networks. Scientists work in bigger teams and are mostly interconnected within one giant network component, whereas the innovation network is much more clustered and fragmented, the inventors work more repetitively with the same partners, often in smaller isolated groups. In both Canada and the US, an increasing tendency towards collaboration was observed, and it was found that networks are getting bigger and more centralized with time. Moreover, a declining share of knowledge transfers per scientist was detected, suggesting an increasing specialization of science. The US collaboration networks tend to be more centralized than the Canadian ones. Quebec shares a lot of features with the Canadian network, but some differences were observed, for example, Quebec inventors rely more on the knowledge transmission through intermediaries.Keywords: Canada, collaboration, innovation network, scientific network, Quebec, United States
Procedia PDF Downloads 2055043 Energy Balance Routing to Enhance Network Performance in Wireless Sensor Network
Authors: G. Baraneedaran, Deepak Singh, Kollipara Tejesh
Abstract:
The wireless sensors network has been an active research area over the y-ear passed. Due to the limited energy and communication ability of sensor nodes, it seems especially important to design a routing protocol for WSNs so that sensing data can be transmitted to the receiver effectively, an energy-balanced routing method based on forward-aware factor (FAF-EBRM) is proposed in this paper. In FAF-EBRM, the next-hop node is selected according to the awareness of link weight and forward energy density. A spontaneous reconstruction mechanism for Local topology is designed additionally. In this experiment, FAF-EBRM is compared with LEACH and EECU, experimental results show that FAF-EBRM outperforms LEACH and EECU, which balances the energy consumption, prolongs the function lifetime and guarantees high Qos of WSN.Keywords: energy balance, forward-aware factor (FAF), forward energy density, link weight, network performance
Procedia PDF Downloads 5415042 A Taxonomy of Routing Protocols in Wireless Sensor Networks
Authors: A. Kardi, R. Zagrouba, M. Alqahtani
Abstract:
The Internet of Everything (IoE) presents today a very attractive and motivating field of research. It is basically based on Wireless Sensor Networks (WSNs) in which the routing task is the major analysis topic. In fact, it directly affects the effectiveness and the lifetime of the network. This paper, developed from recent works and based on extensive researches, proposes a taxonomy of routing protocols in WSNs. Our main contribution is that we propose a classification model based on nine classes namely application type, delivery mode, initiator of communication, network architecture, path establishment (route discovery), network topology (structure), protocol operation, next hop selection and latency-awareness and energy-efficient routing protocols. In order to provide a total classification pattern to serve as reference for network designers, each class is subdivided into possible subclasses, presented, and discussed using different parameters such as purposes and characteristics.Keywords: routing, sensor, survey, wireless sensor networks, WSNs
Procedia PDF Downloads 1855041 Exploration of Critical Success Factors in Business and Management in Artificial Intelligence Era
Authors: Najah Kalifah Almazmomi
Abstract:
In the time of artificial intelligence (AI), there is a need to know the determinants of success in business management, which are taking on a new dimension. This research purports to scrutinize the Critical Success Factors (CSFs) that drive and ignite the fire of success to help uncover the subtle and profound dynamics that might be operative in organizations. By means of a systematic literature review and a number of empirical methods, the paper is aimed at determining and assessing the key aspects of CSFs, putting emphasis on their role and meaning in the context of AI technology adoption. Some central features such as leadership ways, innovation models, strategic thinking methodologies, organizational culture transformations, and human resource management approaches are compared and contrasted with the AI-driven revolution. Additionally, this research will explore the interactive effects of these factors and their joint impact on the success, survival, and flexibility of a business in the current environment, which is changing due to AI development. Through the use of different qualitative and quantitative methodologies, the research concludes that the findings are significant in understanding the relative roles of individual CSFs and in studying the interactions between them in such an AI-enabled business environment.Keywords: critical success factors, business and management, artificial intelligence, leadership strategies
Procedia PDF Downloads 425040 Automatic Method for Classification of Informative and Noninformative Images in Colonoscopy Video
Authors: Nidhal K. Azawi, John M. Gauch
Abstract:
Colorectal cancer is one of the leading causes of cancer death in the US and the world, which is why millions of colonoscopy examinations are performed annually. Unfortunately, noise, specular highlights, and motion artifacts corrupt many images in a typical colonoscopy exam. The goal of our research is to produce automated techniques to detect and correct or remove these noninformative images from colonoscopy videos, so physicians can focus their attention on informative images. In this research, we first automatically extract features from images. Then we use machine learning and deep neural network to classify colonoscopy images as either informative or noninformative. Our results show that we achieve image classification accuracy between 92-98%. We also show how the removal of noninformative images together with image alignment can aid in the creation of image panoramas and other visualizations of colonoscopy images.Keywords: colonoscopy classification, feature extraction, image alignment, machine learning
Procedia PDF Downloads 2545039 Cyber Security Enhancement via Software Defined Pseudo-Random Private IP Address Hopping
Authors: Andre Slonopas, Zona Kostic, Warren Thompson
Abstract:
Obfuscation is one of the most useful tools to prevent network compromise. Previous research focused on the obfuscation of the network communications between external-facing edge devices. This work proposes the use of two edge devices, external and internal facing, which communicate via private IPv4 addresses in a software-defined pseudo-random IP hopping. This methodology does not require additional IP addresses and/or resources to implement. Statistical analyses demonstrate that the hopping surface must be at least 1e3 IP addresses in size with a broad standard deviation to minimize the possibility of coincidence of monitored and communication IPs. The probability of breaking the hopping algorithm requires a collection of at least 1e6 samples, which for large hopping surfaces will take years to collect. The probability of dropped packets is controlled via memory buffers and the frequency of hops and can be reduced to levels acceptable for video streaming. This methodology provides an impenetrable layer of security ideal for information and supervisory control and data acquisition systems.Keywords: moving target defense, cybersecurity, network security, hopping randomization, software defined network, network security theory
Procedia PDF Downloads 1915038 Evaluation of Security and Performance of Master Node Protocol in the Bitcoin Peer-To-Peer Network
Authors: Muntadher Sallal, Gareth Owenson, Mo Adda, Safa Shubbar
Abstract:
Bitcoin is a digital currency based on a peer-to-peer network to propagate and verify transactions. Bitcoin is gaining wider adoption than any previous crypto-currency. However, the mechanism of peers randomly choosing logical neighbors without any knowledge about underlying physical topology can cause a delay overhead in information propagation, which makes the system vulnerable to double-spend attacks. Aiming at alleviating the propagation delay problem, this paper introduces proximity-aware extensions to the current Bitcoin protocol, named Master Node Based Clustering (MNBC). The ultimate purpose of the proposed protocol, that are based on how clusters are formulated and how nodes can define their membership, is to improve the information propagation delay in the Bitcoin network. In MNBC protocol, physical internet connectivity increases, as well as the number of hops between nodes, decreases through assigning nodes to be responsible for maintaining clusters based on physical internet proximity. We show, through simulations, that the proposed protocol defines better clustering structures that optimize the performance of the transaction propagation over the Bitcoin protocol. The evaluation of partition attacks in the MNBC protocol, as well as the Bitcoin network, was done in this paper. Evaluation results prove that even though the Bitcoin network is more resistant against the partitioning attack than the MNBC protocol, more resources are needed to be spent to split the network in the MNBC protocol, especially with a higher number of nodes.Keywords: Bitcoin network, propagation delay, clustering, scalability
Procedia PDF Downloads 1195037 Design of Digital IIR Filter Using Opposition Learning and Artificial Bee Colony Algorithm
Authors: J. S. Dhillon, K. K. Dhaliwal
Abstract:
In almost all the digital filtering applications the digital infinite impulse response (IIR) filters are preferred over finite impulse response (FIR) filters because they provide much better performance, less computational cost and have smaller memory requirements for similar magnitude specifications. However, the digital IIR filters are generally multimodal with respect to the filter coefficients and therefore, reliable methods that can provide global optimal solutions are required. The artificial bee colony (ABC) algorithm is one such recently introduced meta-heuristic optimization algorithm. But in some cases it shows insufficiency while searching the solution space resulting in a weak exchange of information and hence is not able to return better solutions. To overcome this deficiency, the opposition based learning strategy is incorporated in ABC and hence a modified version called oppositional artificial bee colony (OABC) algorithm is proposed in this paper. Duplication of members is avoided during the run which also augments the exploration ability. The developed algorithm is then applied for the design of optimal and stable digital IIR filter structure where design of low-pass (LP) and high-pass (HP) filters is carried out. Fuzzy theory is applied to achieve maximize satisfaction of minimum magnitude error and stability constraints. To check the effectiveness of OABC, the results are compared with some well established filter design techniques and it is observed that in most cases OABC returns better or atleast comparable results.Keywords: digital infinite impulse response filter, artificial bee colony optimization, opposition based learning, digital filter design, multi-parameter optimization
Procedia PDF Downloads 4805036 A Review of Encryption Algorithms Used in Cloud Computing
Authors: Derick M. Rakgoale, Topside E. Mathonsi, Vusumuzi Malele
Abstract:
Cloud computing offers distributed online and on-demand computational services from anywhere in the world. Cloud computing services have grown immensely over the past years, especially in the past year due to the Coronavirus pandemic. Cloud computing has changed the working environment and introduced work from work phenomenon, which enabled the adoption of technologies to fulfill the new workings, including cloud services offerings. The increased cloud computing adoption has come with new challenges regarding data privacy and its integrity in the cloud environment. Previously advanced encryption algorithms failed to reduce the memory space required for cloud computing performance, thus increasing the computational cost. This paper reviews the existing encryption algorithms used in cloud computing. In the future, artificial neural networks (ANN) algorithm design will be presented as a security solution to ensure data integrity, confidentiality, privacy, and availability of user data in cloud computing. Moreover, MATLAB will be used to evaluate the proposed solution, and simulation results will be presented.Keywords: cloud computing, data integrity, confidentiality, privacy, availability
Procedia PDF Downloads 1385035 A Fuzzy Multiobjective Model for Bed Allocation Optimized by Artificial Bee Colony Algorithm
Authors: Jalal Abdulkareem Sultan, Abdulhakeem Luqman Hasan
Abstract:
With the development of health care systems competition, hospitals face more and more pressures. Meanwhile, resource allocation has a vital effect on achieving competitive advantages in hospitals. Selecting the appropriate number of beds is one of the most important sections in hospital management. However, in real situation, bed allocation selection is a multiple objective problem about different items with vagueness and randomness of the data. It is very complex. Hence, research about bed allocation problem is relatively scarce under considering multiple departments, nursing hours, and stochastic information about arrival and service of patients. In this paper, we develop a fuzzy multiobjective bed allocation model for overcoming uncertainty and multiple departments. Fuzzy objectives and weights are simultaneously applied to help the managers to select the suitable beds about different departments. The proposed model is solved by using Artificial Bee Colony (ABC), which is a very effective algorithm. The paper describes an application of the model, dealing with a public hospital in Iraq. The results related that fuzzy multi-objective model was presented suitable framework for bed allocation and optimum use.Keywords: bed allocation problem, fuzzy logic, artificial bee colony, multi-objective optimization
Procedia PDF Downloads 3295034 Impact of Artificial Intelligence Technologies on Information-Seeking Behaviors and the Need for a New Information Seeking Model
Authors: Mohammed Nasser Al-Suqri
Abstract:
Former information-seeking models are proposed more than two decades ago. These already existed models were given prior to the evolution of digital information era and Artificial Intelligence (AI) technologies. Lack of current information seeking models within Library and Information Studies resulted in fewer advancements for teaching students about information-seeking behaviors, design of library tools and services. In order to better facilitate the aforementioned concerns, this study aims to propose state-of-the-art model while focusing on the information seeking behavior of library users in the Sultanate of Oman. This study aims for the development, designing and contextualizing the real-time user-centric information seeking model capable of enhancing information needs and information usage along with incorporating critical insights for the digital library practices. Another aim is to establish far-sighted and state-of-the-art frame of reference covering Artificial Intelligence (AI) while synthesizing digital resources and information for optimizing information-seeking behavior. The proposed study is empirically designed based on a mix-method process flow, technical surveys, in-depth interviews, focus groups evaluations and stakeholder investigations. The study data pool is consist of users and specialist LIS staff at 4 public libraries and 26 academic libraries in Oman. The designed research model is expected to facilitate LIS by assisting multi-dimensional insights with AI integration for redefining the information-seeking process, and developing a technology rich model.Keywords: artificial intelligence, information seeking, information behavior, information seeking models, libraries, Sultanate of Oman
Procedia PDF Downloads 1175033 The Use of Artificial Intelligence to Curb Corruption in Brazil
Authors: Camila Penido Gomes
Abstract:
Over the past decade, an emerging body of research has been pointing to artificial intelligence´s great potential to improve the use of open data, increase transparency and curb corruption in the public sector. Nonetheless, studies on this subject are scant and usually lack evidence to validate AI-based technologies´ effectiveness in addressing corruption, especially in developing countries. Aiming to fill this void in the literature, this paper sets out to examine how AI has been deployed by civil society to improve the use of open data and prevent congresspeople from misusing public resources in Brazil. Building on the current debates and carrying out a systematic literature review and extensive document analyses, this research reveals that AI should not be deployed as one silver bullet to fight corruption. Instead, this technology is more powerful when adopted by a multidisciplinary team as a civic tool in conjunction with other strategies. This study makes considerable contributions, bringing to the forefront discussion a more accurate understanding of the factors that play a decisive role in the successful implementation of AI-based technologies in anti-corruption efforts.Keywords: artificial intelligence, civil society organization, corruption, open data, transparency
Procedia PDF Downloads 2065032 Proposal of Data Collection from Probes
Authors: M. Kebisek, L. Spendla, M. Kopcek, T. Skulavik
Abstract:
In our paper we describe the security capabilities of data collection. Data are collected with probes located in the near and distant surroundings of the company. Considering the numerous obstacles e.g. forests, hills, urban areas, the data collection is realized in several ways. The collection of data uses connection via wireless communication, LAN network, GSM network and in certain areas data are collected by using vehicles. In order to ensure the connection to the server most of the probes have ability to communicate in several ways. Collected data are archived and subsequently used in supervisory applications. To ensure the collection of the required data, it is necessary to propose algorithms that will allow the probes to select suitable communication channel.Keywords: communication, computer network, data collection, probe
Procedia PDF Downloads 3635031 A Novel Solution Methodology for Transit Route Network Design Problem
Authors: Ghada Moussa, Mamoud Owais
Abstract:
Transit Route Network Design Problem (TrNDP) is the most important component in Transit planning, in which the overall cost of the public transportation system highly depends on it. The main purpose of this study is to develop a novel solution methodology for the TrNDP, which goes beyond pervious traditional sophisticated approaches. The novelty of the solution methodology, adopted in this paper, stands on the deterministic operators which are tackled to construct bus routes. The deterministic manner of the TrNDP solution relies on using linear and integer mathematical formulations that can be solved exactly with their standard solvers. The solution methodology has been tested through Mandl’s benchmark network problem. The test results showed that the methodology developed in this research is able to improve the given network solution in terms of number of constructed routes, direct transit service coverage, transfer directness and solution reliability. Although the set of routes resulted from the methodology would stand alone as a final efficient solution for TrNDP, it could be used as an initial solution for meta-heuristic procedures to approach global optimal. Based on the presented methodology, a more robust network optimization tool would be produced for public transportation planning purposes.Keywords: integer programming, transit route design, transportation, urban planning
Procedia PDF Downloads 2765030 Neural Machine Translation for Low-Resource African Languages: Benchmarking State-of-the-Art Transformer for Wolof
Authors: Cheikh Bamba Dione, Alla Lo, Elhadji Mamadou Nguer, Siley O. Ba
Abstract:
In this paper, we propose two neural machine translation (NMT) systems (French-to-Wolof and Wolof-to-French) based on sequence-to-sequence with attention and transformer architectures. We trained our models on a parallel French-Wolof corpus of about 83k sentence pairs. Because of the low-resource setting, we experimented with advanced methods for handling data sparsity, including subword segmentation, back translation, and the copied corpus method. We evaluate the models using the BLEU score and find that transformer outperforms the classic seq2seq model in all settings, in addition to being less sensitive to noise. In general, the best scores are achieved when training the models on word-level-based units. For subword-level models, using back translation proves to be slightly beneficial in low-resource (WO) to high-resource (FR) language translation for the transformer (but not for the seq2seq) models. A slight improvement can also be observed when injecting copied monolingual text in the target language. Moreover, combining the copied method data with back translation leads to a substantial improvement of the translation quality.Keywords: backtranslation, low-resource language, neural machine translation, sequence-to-sequence, transformer, Wolof
Procedia PDF Downloads 1495029 Assessing the Efficacy of Artificial Intelligence Integration in the FLO Health Application
Authors: Reema Alghamdi, Rasees Aleisa, Layan Sukkar
Abstract:
The primary objective of this research is to conduct an examination of the Flo menstrual cycle application. We do that by evaluating the user experience and their satisfaction with integrated AI features. The study seeks to gather data from primary resources, primarily through surveys, to gather different insights about the application, like its usability functionality in addition to the overall user satisfaction. The focus of our project will be particularly directed towards the impact and user perspectives regarding the integration of artificial intelligence features within the application, contributing to an understanding of the holistic user experience.Keywords: period, women health, machine learning, AI features, menstrual cycle
Procedia PDF Downloads 805028 The Use of Artificial Intelligence in Language Learning and Teaching: A New Frontier in Education
Authors: Abdulaziz Fageeh
Abstract:
This study investigates the integration of artificial intelligence (AI) within the landscape of language learning and teaching, exploring its potential benefits and challenges. Employing a mixed-methods approach, the research draws upon a comprehensive literature review, case studies, user reviews, and in-depth interviews with educators and students. Findings demonstrate that AI tools, including language learning apps and writing assistants, can enhance personalization, improve writing skills, and increase accessibility to language learning resources. However, the study also highlights concerns regarding over-reliance on AI, potential accuracy and reliability issues, and ethical implications such as data privacy and potential bias. User and educator perspectives emphasize the importance of balancing AI with traditional teaching methods, fostering critical thinking skills, and addressing potential misuse. The study concludes by underscoring the need for ongoing research and development to ensure responsible AI integration in language learning, focusing on pedagogical strategies, ethical frameworks, and the long-term impact of AI on learning outcomes.Keywords: artificial intelligence, language learning, education, technology, ethical considerations, user perceptions
Procedia PDF Downloads 235027 Genetic Algorithm Based Node Fault Detection and Recovery in Distributed Sensor Networks
Authors: N. Nalini, Lokesh B. Bhajantri
Abstract:
In Distributed Sensor Networks, the sensor nodes are prone to failure due to energy depletion and some other reasons. In this regard, fault tolerance of network is essential in distributed sensor environment. Energy efficiency, network or topology control and fault-tolerance are the most important issues in the development of next-generation Distributed Sensor Networks (DSNs). This paper proposes a node fault detection and recovery using Genetic Algorithm (GA) in DSN when some of the sensor nodes are faulty. The main objective of this work is to provide fault tolerance mechanism which is energy efficient and responsive to network using GA, which is used to detect the faulty nodes in the network based on the energy depletion of node and link failure between nodes. The proposed fault detection model is used to detect faults at node level and network level faults (link failure and packet error). Finally, the performance parameters for the proposed scheme are evaluated.Keywords: distributed sensor networks, genetic algorithm, fault detection and recovery, information technology
Procedia PDF Downloads 4535026 Advancing Power Network Maintenance: The Development and Implementation of a Robotic Cable Splicing Machine
Authors: Ali Asmari, Alex Symington, Htaik Than, Austin Caradonna, John Senft
Abstract:
This paper presents the collaborative effort between ULC Technologies and Con Edison in developing a groundbreaking robotic cable splicing machine. The focus is on the machine's design, which integrates advanced robotics and automation to enhance safety and efficiency in power network maintenance. The paper details the operational steps of the machine, including cable grounding, cutting, and removal of different insulation layers, and discusses its novel technological approach. The significant benefits over traditional methods, such as improved worker safety and reduced outage times, are highlighted based on the field data collected during the validation phase of the project. The paper also explores the future potential and scalability of this technology, emphasizing its role in transforming the landscape of power network maintenance.Keywords: cable splicing machine, power network maintenance, electric distribution, electric transmission, medium voltage cable
Procedia PDF Downloads 675025 Artificial Intelligence Aided Improvement in Canada's Supply Chain Management
Authors: Mohammad Talebi
Abstract:
Supply chain administration could be a concern for all the countries within the world, whereas there's no special approach towards supportability. Generally, for one decade, manufactured insights applications in keen supply chains have found a key part. In this paper, applications of artificial intelligence in supply chain management have been clarified, and towards Canadian plans for smart supply chain management (SCM), a few notes have been suggested. A hierarchical framework for smart SCM might provide a great roadmap for decision-makers to find the most appropriate approach toward smart SCM. Within the system of decision-making, all the levels included in the accomplishment of smart SCM are included. In any case, more considerations are got to be paid to available and needed infrastructures.Keywords: smart SCM, AI, SSCM, procurement
Procedia PDF Downloads 905024 Simulation of Human Heart Activation Based on Diffusion Tensor Imaging
Authors: Ihab Elaff
Abstract:
Simulating the heart’s electrical stimulation is essential in modeling and evaluating the electrophysiology behavior of the heart. For achieving that, there are two structures in concern: the ventricles’ Myocardium, and the ventricles’ Conduction Network. Ventricles’ Myocardium has been modeled as anisotropic material from Diffusion Tensor Imaging (DTI) scan, and the Conduction Network has been extracted from DTI as a case-based structure based on the biological properties of the heart tissues and the working methodology of the Magnetic Resonance Imaging (MRI) scanner. Results of the produced activation were much similar to real measurements of the reference model that was presented in the literature.Keywords: diffusion tensor, DTI, heart, conduction network, excitation propagation
Procedia PDF Downloads 2705023 Stock Price Prediction Using Time Series Algorithms
Authors: Sumit Sen, Sohan Khedekar, Umang Shinde, Shivam Bhargava
Abstract:
This study has been undertaken to investigate whether the deep learning models are able to predict the future stock prices by training the model with the historical stock price data. Since this work required time series analysis, various models are present today to perform time series analysis such as Recurrent Neural Network LSTM, ARIMA and Facebook Prophet. Applying these models the movement of stock price of stocks are predicted and also tried to provide the future prediction of the stock price of a stock. Final product will be a stock price prediction web application that is developed for providing the user the ease of analysis of the stocks and will also provide the predicted stock price for the next seven days.Keywords: Autoregressive Integrated Moving Average, Deep Learning, Long Short Term Memory, Time-series
Procedia PDF Downloads 1455022 Voltage Sag Characteristics during Symmetrical and Asymmetrical Faults
Authors: Ioannis Binas, Marios Moschakis
Abstract:
Electrical faults in transmission and distribution networks can have great impact on the electrical equipment used. Fault effects depend on the characteristics of the fault as well as the network itself. It is important to anticipate the network’s behavior during faults when planning a new equipment installation, as well as troubleshooting. Moreover, working backwards, we could be able to estimate the characteristics of the fault when checking the perceived effects. Different transformer winding connections dominantly used in the Greek power transfer and distribution networks and the effects of 1-phase to neutral, phase-to-phase, 2-phases to neutral and 3-phase faults on different locations of the network were simulated in order to present voltage sag characteristics. The study was performed on a generic network with three steps down transformers on two voltage level buses (one 150 kV/20 kV transformer and two 20 kV/0.4 kV). We found that during faults, there are significant changes both on voltage magnitudes and on phase angles. The simulations and short-circuit analysis were performed using the PSCAD simulation package. This paper presents voltage characteristics calculated for the simulated network, with different approaches on the transformer winding connections during symmetrical and asymmetrical faults on various locations.Keywords: Phase angle shift, power quality, transformer winding connections, voltage sag propagation
Procedia PDF Downloads 1405021 Parkinson's Disease Gene Identification Using Physicochemical Properties of Amino Acids
Authors: Priya Arora, Ashutosh Mishra
Abstract:
Gene identification, towards the pursuit of mutated genes, leading to Parkinson’s disease, puts forward a challenge towards proactive cure of the disorder itself. Computational analysis is an effective technique for exploring genes in the form of protein sequences, as the theoretical and manual analysis is infeasible. The limitations and effectiveness of a particular computational method are entirely dependent on the previous data that is available for disease identification. The article presents a sequence-based classification method for the identification of genes responsible for Parkinson’s disease. During the initiation phase, the physicochemical properties of amino acids transform protein sequences into a feature vector. The second phase of the method employs Jaccard distances to select negative genes from the candidate population. The third phase involves artificial neural networks for making final predictions. The proposed approach is compared with the state of art methods on the basis of F-measure. The results confirm and estimate the efficiency of the method.Keywords: disease gene identification, Parkinson’s disease, physicochemical properties of amino acid, protein sequences
Procedia PDF Downloads 1425020 New Approach for Minimizing Wavelength Fragmentation in Wavelength-Routed WDM Networks
Authors: Sami Baraketi, Jean Marie Garcia, Olivier Brun
Abstract:
Wavelength Division Multiplexing (WDM) is the dominant transport technology used in numerous high capacity backbone networks, based on optical infrastructures. Given the importance of costs (CapEx and OpEx) associated to these networks, resource management is becoming increasingly important, especially how the optical circuits, called “lightpaths”, are routed throughout the network. This requires the use of efficient algorithms which provide routing strategies with the lowest cost. We focus on the lightpath routing and wavelength assignment problem, known as the RWA problem, while optimizing wavelength fragmentation over the network. Wavelength fragmentation poses a serious challenge for network operators since it leads to the misuse of the wavelength spectrum, and then to the refusal of new lightpath requests. In this paper, we first establish a new Integer Linear Program (ILP) for the problem based on a node-link formulation. This formulation is based on a multilayer approach where the original network is decomposed into several network layers, each corresponding to a wavelength. Furthermore, we propose an efficient heuristic for the problem based on a greedy algorithm followed by a post-treatment procedure. The obtained results show that the optimal solution is often reached. We also compare our results with those of other RWA heuristic methods.Keywords: WDM, lightpath, RWA, wavelength fragmentation, optimization, linear programming, heuristic
Procedia PDF Downloads 5295019 Social Economical Aspect of the City of Kigali Road Network Functionality
Authors: David Nkurunziza, Rahman Tafahomi
Abstract:
The population growth rate of the city of Kigali is increasing annually. In 1960 the population was six thousand, in 1990 it became two hundred thousand and is supposed to be 4 to 5 million incoming twenty years. With the increase in the residents living in the city of Kigali, there is also a need for an increase in social and economic infrastructures connected by the road networks to serve the residents effectively. A road network is a route that connects people to their needs and has to facilitate people to reach the social and economic facilities easily. This research analyzed the social and economic aspects of three selected roads networks passing through all three districts of the city of Kigali, whose center is the city center roundabout, thorough evaluation of the proximity of the social and economic facilities to the road network. These road networks are the city center to nyabugogo to karuruma, city center to kanogo to Rwanda to kicukiro center to Nyanza taxi park, and city center to Yamaha to kinamba to gakinjiro to kagugu health center road network. This research used a methodology of identifying and quantifying the social and economic facilities within a limited distance of 300 meters along each side of the road networks. Social facilities evaluated are the health facilities, education facilities, institution facilities, and worship facilities, while the economic facilities accessed are the commercial zones, industries, banks, and hotels. These facilities were evaluated and graded based on their distance from the road and their value. The total scores of each road network per kilometer were calculated and finally, the road networks were ranked based on their percentage score per one kilometer—this research was based on field surveys and interviews to collect data with forms and questionnaires. The analysis of the data collected declared that the road network from the city center to Yamaha to kinamba to gakinjiro to the kagugu health center is the best performer, the second is the road network from the city center to nyabugogo to karuruma, while the third is the road network from the city center to kanogo to rwandex to kicukiro center to nyaza taxi park.Keywords: social economical aspect, road network functionality, urban road network, economic and social facilities
Procedia PDF Downloads 1635018 Impact of Node Density and Transmission Range on the Performance of OLSR and DSDV Routing Protocols in VANET City Scenarios
Authors: Yassine Meraihi, Dalila Acheli, Rabah Meraihi
Abstract:
Vehicular Ad hoc Network (VANET) is a special case of Mobile Ad hoc Network (MANET) used to establish communications and exchange information among nearby vehicles and between vehicles and nearby fixed infrastructure. VANET is seen as a promising technology used to provide safety, efficiency, assistance and comfort to the road users. Routing is an important issue in Vehicular Ad Hoc Network to find and maintain communication between vehicles due to the highly dynamic topology, frequently disconnected network and mobility constraints. This paper evaluates the performance of two most popular proactive routing protocols OLSR and DSDV in real city traffic scenario on the basis of three metrics namely Packet delivery ratio, throughput and average end to end delay by varying vehicles density and transmission range.Keywords: DSDV, OLSR, quality of service, routing protocols, VANET
Procedia PDF Downloads 473