Search results for: 6G networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2801

Search results for: 6G networks

1151 Unified Public Transportation System for Mumbai Using Radio Frequency Identification

Authors: Saurabh Parkhedkar, Rajanikant Tenguria

Abstract:

The paper proposes revamping the public transportation system in Mumbai with the use of Radio Frequency Identification (RFID) technology in order to provide better integration and compatibility across various modes of transport. In Mumbai, mass transport system suffers from poor inter-compatible ticketing system, subpar money collection techniques, and lack of planning for optimum utilization of resources. Development of suburbs and growth in population will result in growing demand for mass transportation networks. Hence, the growing demand for the already overburdened public transportation system is only going to worsen the scenario. Thus, a superior system is essential in order to regulate, manage and supervise future transportation needs. The proposed RFID based system integrates Mumbai Suburban Railway, BEST (Brihanmumbai Electric Supply and Transport Undertaking transport wing) Bus, Mumbai Monorail and Mumbai Metro systems into a Unified Public Transportation System (UPTS). The UTPS takes into account various drawbacks of the present day system and offers solution, suitable for the modern age Mumbai.

Keywords: urbanization, transportation, RFID, Mumbai, public transportation, smart city.

Procedia PDF Downloads 412
1150 Software Quality Assurance in 5G Technology-Redefining Wireless Communication: A Comprehensive Survey

Authors: Sumbal Riaz, Sardar-un-Nisa, Mehreen Sirshar

Abstract:

5G - The 5th generation of mobile phone and data communication standards is the next edge of innovation for whole mobile industry. 5G is Real Wireless World System and it will provide a totally wireless communication system all over the world without limitations. 5G uses many 4g technologies and it will hit the market in 2020. This research is the comprehensive survey on the quality parameters of 5G technology.5G provide High performance, Interoperability, easy roaming, fully converged services, friendly interface and scalability at low cost. To meet the traffic demands in future fifth generation wireless communications systems will include i) higher densification of heterogeneous networks with massive deployment of small base stations supporting various Radio Access Technologies (RATs), ii) use of massive Multiple Input Multiple Output (MIMO) arrays, iii) use of millimetre Wave spectrum where larger wider frequency bands are available, iv) direct device to device (D2D) communication, v) simultaneous transmission and reception, vi) cognitive radio technology.

Keywords: 5G, 5th generation, innovation, standard, wireless communication

Procedia PDF Downloads 444
1149 Policy Monitoring and Water Stakeholders Network Analysis in Shemiranat

Authors: Fariba Ebrahimi, Mehdi Ghorbani

Abstract:

Achieving to integrated Water management fundamentally needs to effective relation, coordination, collaboration and synergy among various actors who have common but different responsibilities. In this sense, the foundation of comprehensive and integrated management is not compatible with centralization and top-down strategies. The aim of this paper is analysis institutional network of water relevant stakeholders and water policy monitoring in Shemiranat. In this study collaboration networks between informal and formal institutions co-management process have been investigated. Stakeholder network analysis as a quantitative method has been implicated in this research. The results of this study indicate that institutional cohesion is medium; sustainability of institutional network is about 40 percent (medium). Additionally the core-periphery index has measured in this study according to reciprocity index. Institutional capacities for integrated natural resource management in regional level are measured in this study. Furthermore, the necessity of centrality reduction and promote stakeholders relations and cohesion are emphasized to establish a collaborative natural resource governance.

Keywords: policy monitoring, water management, social network, stakeholder, shemiranat

Procedia PDF Downloads 274
1148 The Application of Artificial Neural Networks for the Performance Prediction of Evacuated Tube Solar Air Collector with Phase Change Material

Authors: Sukhbir Singh

Abstract:

This paper describes the modeling of novel solar air collector (NSAC) system by using artificial neural network (ANN) model. The objective of the study is to demonstrate the application of the ANN model to predict the performance of the NSAC with acetamide as a phase change material (PCM) storage. Input data set consist of time, solar intensity and ambient temperature wherever as outlet air temperature of NSAC was considered as output. Experiments were conducted between 9.00 and 24.00 h in June and July 2014 underneath the prevailing atmospheric condition of Kurukshetra (city of the India). After that, experimental results were utilized to train the back propagation neural network (BPNN) to predict the outlet air temperature of NSAC. The results of proposed algorithm show that the BPNN is effective tool for the prediction of responses. The BPNN predicted results are 99% in agreement with the experimental results.

Keywords: Evacuated tube solar air collector, Artificial neural network, Phase change material, solar air collector

Procedia PDF Downloads 120
1147 Optimal Scheduling of Trains in Complex National Scale Railway Networks

Authors: Sanat Ramesh, Tarun Dutt, Abhilasha Aswal, Anushka Chandrababu, G. N. Srinivasa Prasanna

Abstract:

Optimal Schedule Generation for a large national railway network operating thousands of passenger trains with tens of thousands of kilometers of track is a grand computational challenge in itself. We present heuristics based on a Mixed Integer Program (MIP) formulation for local optimization. These methods provide flexibility in scheduling new trains with varying speed and delays and improve utilization of infrastructure. We propose methods that provide a robust solution with hundreds of trains being scheduled over a portion of the railway network without significant increases in delay. We also provide techniques to validate the nominal schedules thus generated over global correlated variations in travel times thereby enabling us to detect conflicts arising due to delays. Our validation results which assume only the support of the arrival and departure time distributions takes an order of few minutes for a portion of the network and is computationally efficient to handle the entire network.

Keywords: mixed integer programming, optimization, railway network, train scheduling

Procedia PDF Downloads 158
1146 A Tactic for a Cosmopolitan City Comparison through a Data-Driven Approach: Case of Climate City Networking

Authors: Sombol Mokhles

Abstract:

Tackling climate change requires expanding networking opportunities between a diverse range of cities to accelerate climate actions. Existing climate city networks have limitations in actively engaging “ordinary” cities in networking processes between cities, as they encourage a few powerful cities to be followed by the many “ordinary” cities. To reimagine the networking opportunities between cities beyond global cities, this paper incorporates “cosmopolitan comparison” to expand our knowledge of a diverse range of cities using a data-driven approach. Through a cosmopolitan perspective, a framework is presented on how to utilise large data to expand knowledge of cities beyond global cities to reimagine the existing hierarchical networking practices. The contribution of this framework is beyond urban climate governance but inclusive of different fields which strive for a more inclusive and cosmopolitan comparison attentive to the differences across cities.

Keywords: cosmopolitan city comparison, data-driven approach, climate city networking, urban climate governance

Procedia PDF Downloads 111
1145 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition

Authors: Yalong Jiang, Zheru Chi

Abstract:

In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.

Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation

Procedia PDF Downloads 153
1144 Green Building for Positive Energy Districts in European Cities

Authors: Paola Clerici Maestosi

Abstract:

Positive Energy District (PED) is a rather recent concept whose aim is to contribute to the main objectives of the Energy Union strategy. It is based on an integrated multi-sectoral approach in response to Europe's most complex challenges. PED integrates energy efficiency, renewable energy production, and energy flexibility in an integrated, multi-sectoral approach at the city level. The core idea behind Positive Energy Districts (PEDs) is to establish an urban area that can generate more energy than it consumes. Additionally, it should be flexible enough to adapt to changes in the energy market. This is crucial because a PED's goal is not just to achieve an annual surplus of net energy but also to help reduce the impact on the interconnected centralized energy networks. It achieves this by providing options to increase on-site load matching and self-consumption, employing technologies for short- and long-term energy storage, and offering energy flexibility through smart control. Thus, it seems that PEDs can encompass all types of buildings in the city environment. Given this which is the added value of having green buildings being constitutive part of PEDS? The paper will present a systematic literature review identifying the role of green building in Positive Energy District to provide answer to following questions: (RQ1) the state of the art of PEDs implementation; (RQ2) penetration of green building in Positive Energy District selected case studies. Methodological approach is based on a broad holistic study of bibliographic sources according to Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) further data will be analysed, mapped and text mining through VOSviewer. Main contribution of research is a cognitive framework on Positive Energy District in Europe and a selection of case studies where green building supported the transition to PED. The inclusion of green buildings within Positive Energy Districts (PEDs) adds significant value for several reasons. Firstly, green buildings are designed and constructed with a focus on environmental sustainability, incorporating energy-efficient technologies, materials, and design principles. As integral components of PEDs, these structures contribute directly to the district's overall ability to generate more energy than it consumes. Secondly, green buildings typically incorporate renewable energy sources, such as solar panels or wind turbines, further boosting the district's capacity for energy generation. This aligns with the PED objective of achieving a surplus of net energy. Moreover, green buildings often feature advanced systems for on-site energy management, load-matching, and self-consumption. This enhances the PED's capability to respond to variations in the energy market, making the district more agile and flexible in optimizing energy use. Additionally, the environmental considerations embedded in green buildings align with the broader sustainability goals of PEDs. By reducing the ecological footprint of individual structures, PEDs with green buildings contribute to minimizing the overall impact on centralized energy networks and promote a more sustainable urban environment. In summary, the incorporation of green buildings within PEDs not only aligns with the district's energy objectives but also enhances environmental sustainability, energy efficiency, and the overall resilience of the urban environment.

Keywords: positive energy district, renewables energy production, energy flexibility, energy efficiency

Procedia PDF Downloads 48
1143 A Neural Network Modelling Approach for Predicting Permeability from Well Logs Data

Authors: Chico Horacio Jose Sambo

Abstract:

Recently neural network has gained popularity when come to solve complex nonlinear problems. Permeability is one of fundamental reservoir characteristics system that are anisotropic distributed and non-linear manner. For this reason, permeability prediction from well log data is well suited by using neural networks and other computer-based techniques. The main goal of this paper is to predict reservoir permeability from well logs data by using neural network approach. A multi-layered perceptron trained by back propagation algorithm was used to build the predictive model. The performance of the model on net results was measured by correlation coefficient. The correlation coefficient from testing, training, validation and all data sets was evaluated. The results show that neural network was capable of reproducing permeability with accuracy in all cases, so that the calculated correlation coefficients for training, testing and validation permeability were 0.96273, 0.89991 and 0.87858, respectively. The generalization of the results to other field can be made after examining new data, and a regional study might be possible to study reservoir properties with cheap and very fast constructed models.

Keywords: neural network, permeability, multilayer perceptron, well log

Procedia PDF Downloads 403
1142 Application of Artificial Neural Network Technique for Diagnosing Asthma

Authors: Azadeh Bashiri

Abstract:

Introduction: Lack of proper diagnosis and inadequate treatment of asthma leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. Methods: The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. Results: According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different models were made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Conclusion: Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. Therefore, considering the data mining approaches due to the nature of medical data is necessary.

Keywords: asthma, data mining, Artificial Neural Network, intelligent system

Procedia PDF Downloads 273
1141 Movement Optimization of Robotic Arm Movement Using Soft Computing

Authors: V. K. Banga

Abstract:

Robots are now playing a very promising role in industries. Robots are commonly used in applications in repeated operations or where operation by human is either risky or not feasible. In most of the industrial applications, robotic arm manipulators are widely used. Robotic arm manipulator with two link or three link structures is commonly used due to their low degrees-of-freedom (DOF) movement. As the DOF of robotic arm increased, complexity increases. Instrumentation involved with robotics plays very important role in order to interact with outer environment. In this work, optimal control for movement of various DOFs of robotic arm using various soft computing techniques has been presented. We have discussed about different robotic structures having various DOF robotics arm movement. Further stress is on kinematics of the arm structures i.e. forward kinematics and inverse kinematics. Trajectory planning of robotic arms using soft computing techniques is demonstrating the flexibility of this technique. The performance is optimized for all possible input values and results in optimized movement as resultant output. In conclusion, soft computing has been playing very important role for achieving optimized movement of robotic arm. It also requires very limited knowledge of the system to implement soft computing techniques.

Keywords: artificial intelligence, kinematics, robotic arm, neural networks, fuzzy logic

Procedia PDF Downloads 297
1140 Real-Time Scheduling and Control of Supply Chain Networks: Challenges and Graph-Based Solution Approach

Authors: Jens Ehm

Abstract:

Manufacturing in supply chains requires an efficient organisation of production and transport processes in order to guarantee the supply of all partners within the chain with the material that is needed for the reliable fulfilment of tasks. If one partner is not able to supply products for a certain period, these products might be missing as the working material for the customer to perform the next manufacturing step, potentially as supply for further manufacturing steps. This way, local disruptions can influence the whole supply chain. In order to avoid material shortages, an efficient scheduling of tasks is necessary. However, the occurrence of unexpected disruptions cannot be eliminated, so that a modification of the schedule should be arranged as fast as possible. This paper discusses the challenges for the implementation of real-time scheduling and control methods and presents a graph-based approach that enables the integrated scheduling of production and transport processes for multiple supply chain partners and offers the potential for quick adaptations to parts of the initial schedule.

Keywords: production, logistics, integrated scheduling, real-time scheduling

Procedia PDF Downloads 374
1139 Recurrent Neural Networks with Deep Hierarchical Mixed Structures for Chinese Document Classification

Authors: Zhaoxin Luo, Michael Zhu

Abstract:

In natural languages, there are always complex semantic hierarchies. Obtaining the feature representation based on these complex semantic hierarchies becomes the key to the success of the model. Several RNN models have recently been proposed to use latent indicators to obtain the hierarchical structure of documents. However, the model that only uses a single-layer latent indicator cannot achieve the true hierarchical structure of the language, especially a complex language like Chinese. In this paper, we propose a deep layered model that stacks arbitrarily many RNN layers equipped with latent indicators. After using EM and training it hierarchically, our model solves the computational problem of stacking RNN layers and makes it possible to stack arbitrarily many RNN layers. Our deep hierarchical model not only achieves comparable results to large pre-trained models on the Chinese short text classification problem but also achieves state of art results on the Chinese long text classification problem.

Keywords: nature language processing, recurrent neural network, hierarchical structure, document classification, Chinese

Procedia PDF Downloads 68
1138 Stop Texting While Learning: A Meta-Analysis of Social Networks Use and Academic Performances

Authors: Proud Arunrangsiwed, Sarinya Kongtieng

Abstract:

Teachers and university lecturers face an unsolved problem, which is students’ multitasking behaviors during class time, such as texting or playing a game. It is important to examine the most powerful predictor that can result in students’ educational performances. Meta-analysis was used to analyze the research articles, which were published with the keywords, multitasking, class performance, and texting. We selected 14 research articles published during 2008-2013 from online databases, and four articles met the predetermined inclusion criteria. Effect size of each pair of variables was used as the dependent variable. The findings revealed that the students’ expectancy and value on SNSs usages is the best significant predictor of their educational performances, followed by their motivation and ability in using SNSs, prior educational performances, usage behaviors of SNSs in class, and their personal characteristics, respectively. Future study should conduct a longitudinal design to better understand the effect of multitasking in the classroom.

Keywords: meta-regression analysis, social networking sites, academic Performances, multitasking, motivation

Procedia PDF Downloads 277
1137 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples

Authors: Wullapa Wongsinlatam

Abstract:

Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.

Keywords: artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization

Procedia PDF Downloads 152
1136 Prediction of Structural Response of Reinforced Concrete Buildings Using Artificial Intelligence

Authors: Juan Bojórquez, Henry E. Reyes, Edén Bojórquez, Alfredo Reyes-Salazar

Abstract:

This paper addressed the use of Artificial Intelligence to obtain the structural reliability of reinforced concrete buildings. For this purpose, artificial neuronal networks (ANN) are developed to predict seismic demand hazard curves. In order to have enough input-output data to train the ANN, a set of reinforced concrete buildings (low, mid, and high rise) are designed, then a probabilistic seismic hazard analysis is made to obtain the seismic demand hazard curves. The results are then used as input-output data to train the ANN in a feedforward backpropagation model. The predicted values of the seismic demand hazard curves found by the ANN are then compared. Finally, it is concluded that the computer time analysis is significantly lower and the predictions obtained from the ANN were accurate in comparison to the values obtained from the conventional methods.

Keywords: structural reliability, seismic design, machine learning, artificial neural network, probabilistic seismic hazard analysis, seismic demand hazard curves

Procedia PDF Downloads 196
1135 Influence of Scalable Energy-Related Sensor Parameters on Acoustic Localization Accuracy in Wireless Sensor Swarms

Authors: Joyraj Chakraborty, Geoffrey Ottoy, Jean-Pierre Goemaere, Lieven De Strycker

Abstract:

Sensor swarms can be a cost-effectieve and more user-friendly alternative for location based service systems in different application like health-care. To increase the lifetime of such swarm networks, the energy consumption should be scaled to the required localization accuracy. In this paper we have investigated some parameter for energy model that couples localization accuracy to energy-related sensor parameters such as signal length,Bandwidth and sample frequency. The goal is to use the model for the localization of undetermined environmental sounds, by means of wireless acoustic sensors. we first give an overview of TDOA-based localization together with the primary sources of TDOA error (including reverberation effects, Noise). Then we show that in localization, the signal sample rate can be under the Nyquist frequency, provided that enough frequency components remain present in the undersampled signal. The resulting localization error is comparable with that of similar localization systems.

Keywords: sensor swarms, localization, wireless sensor swarms, scalable energy

Procedia PDF Downloads 422
1134 A Generative Adversarial Framework for Bounding Confounded Causal Effects

Authors: Yaowei Hu, Yongkai Wu, Lu Zhang, Xintao Wu

Abstract:

Causal inference from observational data is receiving wide applications in many fields. However, unidentifiable situations, where causal effects cannot be uniquely computed from observational data, pose critical barriers to applying causal inference to complicated real applications. In this paper, we develop a bounding method for estimating the average causal effect (ACE) under unidentifiable situations due to hidden confounders. We propose to parameterize the unknown exogenous random variables and structural equations of a causal model using neural networks and implicit generative models. Then, with an adversarial learning framework, we search the parameter space to explicitly traverse causal models that agree with the given observational distribution and find those that minimize or maximize the ACE to obtain its lower and upper bounds. The proposed method does not make any assumption about the data generating process and the type of the variables. Experiments using both synthetic and real-world datasets show the effectiveness of the method.

Keywords: average causal effect, hidden confounding, bound estimation, generative adversarial learning

Procedia PDF Downloads 191
1133 Emotiv EPOC BCI Matrix Speller Based on Single Emokey

Authors: S. M. Abdullah Al Mamun

Abstract:

Human Computer Interaction (HCI) is an excellent area for the researchers to make daily life more simple and fast. Necessary hardware equipments for any BCI are generally expensive and not affordable for most of the people. Emotiv is one of the solutions for this problem, which can provide electroencephalograph (EEG) signal and explain the brain activities. BCI virtual speller was one of the important applications for the people who have lost their hand or speaking ability because of diseases or unexpected accident. In this paper, a matrix speller has been designed for the first time for Bengali speaking people around the world. Bengali is one of the most commonly spoken languages. Among them, a lot of disabled person will be able to express their desire in their mother tongue. This application is also usable for the social networks and daily life communications. For this virtual keyboard, the well-known matrix speller method with column flashing is applied and controlled by single Emokey only. Emokey is a great feature which translates emotional state for application inputs. In this paper, it is presented that the ITR (Information Transfer Rate) were 29.4 bits/min and typing speed achieved up to 7.43 char/per min.

Keywords: brain computer interface, Emotiv EPOC, EEG, virtual keyboard, matrix speller

Procedia PDF Downloads 308
1132 Hybrid Approximate Structural-Semantic Frequent Subgraph Mining

Authors: Montaceur Zaghdoud, Mohamed Moussaoui, Jalel Akaichi

Abstract:

Frequent subgraph mining refers usually to graph matching and it is widely used in when analyzing big data with large graphs. A lot of research works dealt with structural exact or inexact graph matching but a little attention is paid to semantic matching when graph vertices and/or edges are attributed and typed. Therefore, it seems very interesting to integrate background knowledge into the analysis and that extracted frequent subgraphs should become more pruned by applying a new semantic filter instead of using only structural similarity in graph matching process. Consequently, this paper focuses on developing a new hybrid approximate structuralsemantic graph matching to discover a set of frequent subgraphs. It uses simultaneously an approximate structural similarity function based on graph edit distance function and a possibilistic vertices similarity function based on affinity function. Both structural and semantic filters contribute together to prune extracted frequent set. Indeed, new hybrid structural-semantic frequent subgraph mining approach searches will be suitable to be applied to several application such as community detection in social networks.

Keywords: approximate graph matching, hybrid frequent subgraph mining, graph mining, possibility theory

Procedia PDF Downloads 403
1131 Drug-Drug Interaction Prediction in Diabetes Mellitus

Authors: Rashini Maduka, C. R. Wijesinghe, A. R. Weerasinghe

Abstract:

Drug-drug interactions (DDIs) can happen when two or more drugs are taken together. Today DDIs have become a serious health issue due to adverse drug effects. In vivo and in vitro methods for identifying DDIs are time-consuming and costly. Therefore, in-silico-based approaches are preferred in DDI identification. Most machine learning models for DDI prediction are used chemical and biological drug properties as features. However, some drug features are not available and costly to extract. Therefore, it is better to make automatic feature engineering. Furthermore, people who have diabetes already suffer from other diseases and take more than one medicine together. Then adverse drug effects may happen to diabetic patients and cause unpleasant reactions in the body. In this study, we present a model with a graph convolutional autoencoder and a graph decoder using a dataset from DrugBank version 5.1.3. The main objective of the model is to identify unknown interactions between antidiabetic drugs and the drugs taken by diabetic patients for other diseases. We considered automatic feature engineering and used Known DDIs only as the input for the model. Our model has achieved 0.86 in AUC and 0.86 in AP.

Keywords: drug-drug interaction prediction, graph embedding, graph convolutional networks, adverse drug effects

Procedia PDF Downloads 100
1130 Water Supply and Utility Management to Address Urban Sanitation Issues

Authors: Akshaya P., Priyanjali Prabhkaran

Abstract:

The paper examines the formulation of strategies to develop a comprehensive model of city level water utility management to addressing urban sanitation issues. The water is prime life sustaining natural resources and nature’s gifts to all living beings on the earth multiple urban sanitation issues are addressed in the supply of water in a city. Many of these urban sanitation issues are linked to population expansion and economic inequity. Increased usage of water and the development caused water scarcity. The lack of water supply results increases the chance of unhygienic situations in the cities. In this study, the urban sanitation issues are identified with respect to water supply and utility management. The study compared based on their best practices and initiatives. From this, best practices and initiatives identify suitable sustainable measures to address water supply issues in the city level. The paper concludes with the listed provision that should be considered suitable measures for water supply and utility management in city level to address the urban sanitation issues.

Keywords: water, benchmarking water supply, water supply networks, water supply management

Procedia PDF Downloads 109
1129 Naturally Occurring Abietic Acid for Liquid Crystalline Epoxy Curing Agents

Authors: Rasha A.Ibrahim El-Ghazawy, Ashraf M. El-Saeed, Heusin El-Shafey, M. Abdel-Raheim, Maher A. El-Sockary

Abstract:

Two thermotropic liquid crystalline curing agents based on abietic acid with different mesogens (LCC1 and LCC2) were synthesized for producing thermally stable liquid crystal networks suitable for high performance epoxy coatings. Differential scanning calorimetry (DSC) and polarized optical microscope (POM) was used to identify the liquid crystal phase transformation temperatures and texture, respectively. POM micro graphs for both LCCs revealing cholesteric texture. A multifunctional epoxy resin with two abietic acid moieties was also synthesized. Dynamic mechanical (DMA) and thermogravimetric (TGA) analyses show that the fully bio-based cured epoxies by either LCCs possess high glass transition temperature (Tg), high modulus (G`) and improved thermal stability. The chemical structure of the synthesized LCCs and epoxy resin was investigated through FTIR and 1HNMR spectroscopic techniques.

Keywords: abietic acid, dynamic mechanical analysis, epoxy resin, liquid crystal, thermo gravimetric analysis

Procedia PDF Downloads 363
1128 Reduction of Energy Consumption Using Smart Home Techniques in the Household Sector

Authors: Ahmed Al-Adaileh, Souheil Khaddaj

Abstract:

Outcomes of exhaustion of natural resources started influencing each spirit on this planet. Energy is an essential factor in this aspect. To restore the circumstance to the appropriate track, all attempts must focus on two fundamental branches: producing electricity from clean and renewable reserves and decreasing the overall unnecessary consumption of energy. The focal point of this paper will be on lessening the power consumption in the household's segment. This paper is an attempt to give a clear understanding of a framework called Reduction of Energy Consumption in Household Sector (RECHS) and how it should help householders to reduce their power consumption by substituting their household appliances, turning-off the appliances when stand-by modus is detected, and scheduling their appliances operation periods. Technically, the framework depends on utilizing Z-Wave compatible plug-ins which will be connected to the usual house devices to gauge and control them remotely and semi-automatically. The suggested framework underpins numerous quality characteristics, for example, integrability, scalability, security and adaptability.

Keywords: smart energy management systems, internet of things, wireless mesh networks, microservices, cloud computing, big data

Procedia PDF Downloads 196
1127 A Blockchain-Based Protection Strategy against Social Network Phishing

Authors: Francesco Buccafurri, Celeste Romolo

Abstract:

Nowadays phishing is the most frequent starting point of cyber-attack vectors. Phishing is implemented both via email and social network messages. While a wide scientific literature exists which addresses the problem of contrasting email spam-phishing, no specific countermeasure has been so far proposed for phishing included into private messages of social network platforms. Unfortunately, the problem is severe. This paper proposes an approach against social network phishing, based on a non invasive collaborative information-sharing approach which leverages blockchain. The detection method works by filtering candidate messages, by distilling them by means of a distance-preserving hash function, and by publishing hashes over a public blockchain through a trusted smart contract (thus avoiding denial of service attacks). Phishing detection exploits social information embedded into social network profiles to identify similar messages belonging to disjoint contexts. The main contribution of the paper is to introduce a new approach to contrasting the problem of social network phishing, which, despite its severity, received little attention by both research and industry.

Keywords: phishing, social networks, information sharing, blockchain

Procedia PDF Downloads 328
1126 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field

Authors: Yana Snegireva

Abstract:

Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.

Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model

Procedia PDF Downloads 75
1125 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction

Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic

Abstract:

Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.

Keywords: bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks

Procedia PDF Downloads 385
1124 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection

Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim

Abstract:

As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).

Keywords: intrusion detection, supervised learning, traffic classification, computer networks

Procedia PDF Downloads 350
1123 Fair Federated Learning in Wireless Communications

Authors: Shayan Mohajer Hamidi

Abstract:

Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on distributed data without the need for centralized data aggregation. In the realm of wireless communications, FL has the potential to leverage the vast amounts of data generated by wireless devices to improve model performance and enable intelligent applications. However, the fairness aspect of FL in wireless communications remains largely unexplored. This abstract presents an idea for fair federated learning in wireless communications, addressing the challenges of imbalanced data distribution, privacy preservation, and resource allocation. Firstly, the proposed approach aims to tackle the issue of imbalanced data distribution in wireless networks. In typical FL scenarios, the distribution of data across wireless devices can be highly skewed, resulting in unfair model updates. To address this, we propose a weighted aggregation strategy that assigns higher importance to devices with fewer samples during the aggregation process. By incorporating fairness-aware weighting mechanisms, the proposed approach ensures that each participating device's contribution is proportional to its data distribution, thereby mitigating the impact of data imbalance on model performance. Secondly, privacy preservation is a critical concern in federated learning, especially in wireless communications where sensitive user data is involved. The proposed approach incorporates privacy-enhancing techniques, such as differential privacy, to protect user privacy during the model training process. By adding carefully calibrated noise to the gradient updates, the proposed approach ensures that the privacy of individual devices is preserved without compromising the overall model accuracy. Moreover, the approach considers the heterogeneity of devices in terms of computational capabilities and energy constraints, allowing devices to adaptively adjust the level of privacy preservation to strike a balance between privacy and utility. Thirdly, efficient resource allocation is crucial for federated learning in wireless communications, as devices operate under limited bandwidth, energy, and computational resources. The proposed approach leverages optimization techniques to allocate resources effectively among the participating devices, considering factors such as data quality, network conditions, and device capabilities. By intelligently distributing the computational load, communication bandwidth, and energy consumption, the proposed approach minimizes resource wastage and ensures a fair and efficient FL process in wireless networks. To evaluate the performance of the proposed fair federated learning approach, extensive simulations and experiments will be conducted. The experiments will involve a diverse set of wireless devices, ranging from smartphones to Internet of Things (IoT) devices, operating in various scenarios with different data distributions and network conditions. The evaluation metrics will include model accuracy, fairness measures, privacy preservation, and resource utilization. The expected outcomes of this research include improved model performance, fair allocation of resources, enhanced privacy preservation, and a better understanding of the challenges and solutions for fair federated learning in wireless communications. The proposed approach has the potential to revolutionize wireless communication systems by enabling intelligent applications while addressing fairness concerns and preserving user privacy.

Keywords: federated learning, wireless communications, fairness, imbalanced data, privacy preservation, resource allocation, differential privacy, optimization

Procedia PDF Downloads 75
1122 Harnessing the Potential of Renewable Energy Sources to Reduce Fossil Energy Consumption in the Wastewater Treatment Process

Authors: Hen Friman

Abstract:

Various categories of aqueous solutions are discharged within residential, institutional, commercial, and industrial structures. To safeguard public health and preserve the environment, it is imperative to subject wastewater to treatment processes that eliminate pathogens (such as bacteria and viruses), nutrients (such as nitrogen and phosphorus), and other compounds. Failure to address untreated sewage accumulation can result in an array of adverse consequences. Israel exemplifies a special case in wastewater management. Appropriate wastewater treatment significantly benefits sectors such as agriculture, tourism, horticulture, and industry. Nevertheless, untreated sewage in settlements lacking proper sewage collection or transportation networks remains an ongoing and substantial threat. Notably, the process of wastewater treatment entails substantial energy consumption. Consequently, this study explores the integration of solar energy as a renewable power source within the wastewater treatment framework. By incorporating renewable energy sources into the process, costs can be minimized, and decentralized facilities can be established even in areas lacking adequate infrastructure for traditional treatment methods.

Keywords: renewable energy, solar energy, innovative, wastewater treatment

Procedia PDF Downloads 108