Search results for: work- family conflict
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16904

Search results for: work- family conflict

434 The Relationship between 21st Century Digital Skills and the Intention to Start a Digit Entrepreneurship

Authors: Kathrin F. Schneider, Luis Xavier Unda Galarza

Abstract:

In our modern world, few are the areas that are not permeated by digitalization: we use digital tools for work, study, entertainment, and daily life. Since technology changes rapidly, skills must adapt to the new reality, which gives a dynamic dimension to the set of skills necessary for people's academic, professional, and personal success. The concept of 21st-century digital skills, which includes skills such as collaboration, communication, digital literacy, citizenship, problem-solving, critical thinking, interpersonal skills, creativity, and productivity, have been widely discussed in the literature. Digital transformation has opened many economic opportunities for entrepreneurs for the development of their products, financing possibilities, and product distribution. One of the biggest advantages is the reduction in cost for the entrepreneur, which has opened doors not only for the entrepreneur or the entrepreneurial team but also for corporations through intrapreneurship. The development of students' general literacy level and their digital competencies is crucial for improving the effectiveness and efficiency of the learning process, as well as for students' adaptation to the constantly changing labor market. The digital economy allows a free substantial increase in the supply share of conditional and also innovative products; this is mainly achieved through 5 ways to reduce costs according to the conventional digital economy: search costs, replication, transport, tracking, and verification. Digital entrepreneurship worldwide benefits from such achievements. There is an expansion and democratization of entrepreneurship thanks to the use of digital technologies. The digital transformation that has been taking place in recent years is more challenging for developing countries, as they have fewer resources available to carry out this transformation while offering all the necessary support in terms of cybersecurity and educating their people. The degree of digitization (use of digital technology) in a country and the levels of digital literacy of its people often depend on the economic level and situation of the country. Telefónica's Digital Life Index (TIDL) scores are strongly correlated with country wealth, reflecting the greater resources that richer countries can contribute to promoting "Digital Life". According to the Digitization Index, Ecuador is in the group of "emerging countries", while Chile, Colombia, Brazil, Argentina, and Uruguay are in the group of "countries in transition". According to Herrera Espinoza et al. (2022), there are startups or digital ventures in Ecuador, especially in certain niches, but many of the ventures do not exceed six months of creation because they arise out of necessity and not out of the opportunity. However, there is a lack of relevant research, especially empirical research, to have a clearer vision. Through a self-report questionnaire, the digital skills of students will be measured in an Ecuadorian private university, according to the skills identified as the six 21st-century skills. The results will be put to the test against the variable of the intention to start a digital venture measured using the theory of planned behavior (TPB). The main hypothesis is that high digital competence is positively correlated with the intention to start digital entrepreneurship.

Keywords: new literacies, digital transformation, 21st century skills, theory of planned behavior, digital entrepreneurship

Procedia PDF Downloads 105
433 NEOM Coast from Intertidal to Sabkha Systems: A Geological Overview

Authors: Mohamed Abouelresh, Subhajit Kumar, Lamidi Babalola, Septriandi Chan, Ali Al Musabeh A., Thadickal V. Joydas, Bruno Pulido

Abstract:

Neom has a relatively long coastline on the Red Sea and the Gulf of Aqaba, which is about 300 kilometres long, in addition to many naturally formed bays along the Red Sea coast. Undoubtedly, these coasts provide an excellent opportunity for tourism and other activities; however, these coastal areas host a wide range of salinity-dependent ecosystems that need to be protected. The main objective of the study was to identify the coastal features, including tidal flats and salt flats, along the NEOM coast. A base map of the study area generated from the satellite images contained the main landform features and, in particular, the boundaries of the inland and coastal sabkhas. A field survey was conducted to map and characterize the intertidal and sabkha landforms. The coastal and inner coastal areas of NEOM are mainly covered by the quaternary sediments, which include gravel sheets, terraces, raised reef limestone, evaporite successions, eolian dunes, and undifferentiated sand/gravel deposits (alluvium, alluvial outwash, wind-blown sand beach). There are different landforms that characterizes the NEOM coast, including rocky coast, tidal zone, and sabkha. Sabkha area ranges between a few to tens of square kilometers. Coastal sabkha extended across the shoreline of NEOM, specifically at Gayal and Sharma areas, while the continental sabkha only existed at Gayal Town. The inland Sabkha at Gayal is mainly composed of a thin (15-25 cm) evaporite crust composed of a dark brown, cavernous, rugged, pitted, colloidal salty sand layer with salt-tolerant vegetation. The inland Sabkha is considered a groundwater-driven sedimentary system as indicated by syndepositional intra-sediment capillary evaporites, which precipitate in both marine and continental salt flats. Gayal coastal Sabkha is made up of tidal inlets, tidal creeks, and lagoons followed in a landward direction with well-developed sabkha layers. The surface sediments of the coastal Sabkha are composed of unlithified calcareous, gypsiferous, coarse to medium sands, and silt with bioclastic fragments underlain by several organic-rich layers. The coastal flat is graded landward into widespread, flat vegetated Sabkhas dissected by tributaries of the fluvial system, which debouches to the Red Sea. The coast from Gayal to Magna through Ras El-Sheikh Humaid is continuously subjected to tidal flows, which create an intertidal depositional system. The intertidal flats at NEOM are extensive, nearly horizontal land forming a very dynamic system in which several physical, chemical, geomorphological, and biological processes are acting simultaneously. The current work provides a field-based identification of the coastal sabkha and intertidal sites at NEOM. However, the mutual interaction between tidal flows and sabkha development, particularly at Gayal, needs to be well understood through comprehensive field and lab analysis.

Keywords: coast, intertidal, deposition, sabkha

Procedia PDF Downloads 82
432 Gastroprotective Effect of Copper Complex On Indomethacin-Induced Gastric Ulcer In Rats. Histological and Immunohistochemical Study

Authors: Heba M. Saad Eldien, Ola Abdel-Tawab Hussein, Ahmed Yassein Nassar

Abstract:

Background: Indomethacin is a non-steroidal anti inflammatory drug. Indomethacin induces an injury to gastrointestinal mucosa in experimental animals and humans and their use is associated with a significant risk of hemorrhage, erosions and perforation of both gastric and intestinal ulcers. The anti-inflammatory action of copper complexes is an important activity of their anti-ulcer effect achieved by their intermediary role as a transport form of copper that allow activation of the several copper-dependent enzymes. Therefore, several copper complexes were synthesized and investigated as promising alternative anti-ulcer therapy. Aim of the work: The purpose of this study was to evaluate a copper chelating complex consisting of egg albumin and copper as one of the copper peptides that can be used as anti-inflammatory agent and effective in ameliorates the hazards of the indomethacin on the histological structure of the fundus of the stomach that could be added to raise the efficacy of the currently used simple and cheap gastric anti-inflammatory drug mucogel. Material &methods: This study was carried out on 40 adult male albino rats,divided equally into 4 groups;Group I(control group) received distilled water,Group II(indomethacin treated group) received (25 mg/kg body weight, oral intubation) once, Group III (mucogel treated group)2 mL/rat once daily, oral incubation, Group IV(copper complex group) 1 mL /rat of 30 gm of copper albumin complex was mixed uniformly with mucogel to 100 mL. Treatment has been started six hour after Induction of Ulcers and continued till the 3rd day. The animals sacrificed and was processed for light, transmission electron microscopy(TEM) and immunostaining for inducible nitric oxide synthase(iNOS). Results: Fundic mucosa of group II, showed exfoliation of epithelial cells lining the gland, discontinuity of surface epithelial cells (ulcer formation), vacuolation and detachment of cells, eosinophilic infiltration and congestion of blood vessels in the lamina propria and submucosa. There was thickening and disarrangement of mucosa, weak positive reaction for PAS and marked increase in the collagen fibers lamina propria and the submucosa of the fundus. TEM revealed degeneration of cheif and parietal cells.Marked increase positive reactive of iNOS in all cells of the fundic gland. Group III showed reconstruction of gastric gland with cystic dilatation and vacuolation, moderate decrease of collagen fibers, reduced the intensity of iNOS while in Group IV healthy mucosa with normal surface lining epithelium and fundic glands, strong positive reaction for PAS, marked decrease of collagen fibers and positive reaction for iNOS. TEM revealed regeneration of cheif and parietal cells. Conclusion: Co treatment of copper-albumin complex seems to be useful for gastric ulcer treatment and ameliorates most of hazards of indomethacin.

Keywords: copper complex, gastric ulcer, indomethacin, rat

Procedia PDF Downloads 338
431 Transforming Challenges of Urban and Peri-Urban Agriculture into Opportunities for Urban Food Security in India

Authors: G. Kiran Kumar, K. Padmaja

Abstract:

The rise of urban and peri-urban agriculture (UPA) is an important urban phenomenon that needs to be well understood before we pronounce a verdict whether it is beneficial or not. The challenge of supply of safe and nutritious food is faced by urban inhabitants. The definition of urban and peri-urban varies from city to city depending on the local policies framed with a view to bring regulated urban habitations as part of governance. Expansion of cities and the blurring of boundaries between urban and rural areas make it difficult to define peri-urban agriculture. The problem is further exacerbated by the fact that definition adopted in one region may not fit in the other. On the other hand the proportion of urban population is on the rise vis-à-vis rural. The rise of UPA does not promise that the food requirements of cities can be entirely met from this practice, since availability of enormous amounts of spaces on rooftops and vacant plots is impossible for raising crops. However, UPA reduces impact of price volatility, particularly for vegetables, which relatively have a longer shelf life. UPA improves access to fresh, nutritious and safe food for the urban poor. UPA provides employment to food handlers and traders in the supply chain. UPA can pose environmental and health risks from inappropriate agricultural practices; increased competition for land, water and energy; alter the ecological landscape and make it vulnerable to increased pollution. The present work is based on case studies in peri-urban agriculture in Hyderabad, India and relies on secondary data. This paper tries to analyze the need for more intensive production technologies without affecting the environment. An optimal solution in terms of urban-rural linkages has to be devised. There is a need to develop a spatial vision and integrate UPA in urban planning in a harmonious manner. Zoning of peri-urban areas for agriculture, milk and poultry production is an essential step to preserve the traditional nurturing character of these areas. Urban local bodies in conjunction with Departments of Agriculture and Horticulture can provide uplift to existing UPA models, without which the UPA can develop into a haphazard phenomenon and add to the increasing list of urban challenges. Land to be diverted for peri-urban agriculture may render the concept of urban and peri-urban forestry ineffective. This paper suggests that UPA may be practiced for high value vegetables which can be cultivated under protected conditions and are better resilient to climate change. UPA can provide models for climate resilient agriculture in urban areas which can be replicated in rural areas. Production of organic farm produce is another option for promote UPA owing to the proximity to informed consumers and access to markets within close range. Waste lands in peri-urban areas can be allotted to unemployed rural youth with the support of Urban Local Bodies (ULBs) and used for UPA. This can serve the purposes of putting wastelands to food production, enhancing employment opportunities and enhancing access to fresh produce for urban consumers.

Keywords: environment, food security, urban and peri-urban agriculture, zoning

Procedia PDF Downloads 319
430 ADAM10 as a Potential Blood Biomarker of Cognitive Frailty

Authors: Izabela P. Vatanabe, Rafaela Peron, Patricia Manzine, Marcia R. Cominetti

Abstract:

Introduction: Considering the increase in life expectancy of world population, there is an emerging concern in health services to allocate better care and care to elderly, through promotion, prevention and treatment of health. It has been observed that frailty syndrome is prevalent in elderly people worldwide and this complex and heterogeneous clinical syndrome consist of the presence of physical frailty associated with cognitive dysfunction, though in absence of dementia. This can be characterized by exhaustion, unintentional weight loss, decreased walking speed, weakness and low level of physical activity, in addition, each of these symptoms may be a predictor of adverse outcomes such as hospitalization, falls, functional decline, institutionalization, and death. Cognitive frailty is a recent concept in literature, which is defined as the presence of physical frailty associated with mild cognitive impairment (MCI) however in absence of dementia. This new concept has been considered as a subtype of frailty, which along with aging process and its interaction with physical frailty, accelerates functional declines and can result in poor quality of life of the elderly. MCI represents a risk factor for Alzheimer's disease (AD) in view of high conversion rate for this disease. Comorbidities and physical frailty are frequently found in AD patients and are closely related to heterogeneity and clinical manifestations of the disease. The decreased platelets ADAM10 levels in AD patients, compared to cognitively healthy subjects, matched by sex, age and education. Objective: Based on these previous results, this study aims to evaluate whether ADAM10 platelet levels of could act as a biomarker of cognitive frailty. Methods: The study was approved by Ethics Committee of Federal University of São Carlos (UFSCar) and conducted in the municipality of São Carlos, headquarters of Federal University of São Carlos (UFSCar). Biological samples of subjects were collected, analyzed and then stored in a biorepository. ADAM10 platelet levels were analyzed by western blotting technique in subjects with MCI and compared to subjects without cognitive impairment, both with and without presence of frailty. Statistical tests of association, regression and diagnostic accuracy were performed. Results: The results have shown that ADAM10/β-actin ratio is decreased in elderly individuals with cognitive frailty compared to non-frail and cognitively healthy controls. Previous studies performed by this research group, already mentioned above, demonstrated that this reduction is still higher in AD patients. Therefore, the ADAM10/β-actin ratio appears to be a potential biomarker for cognitive frailty. The results bring important contributions to an accurate diagnosis of cognitive frailty from the perspective of ADAM10 as a biomarker for this condition, however, more experiments are being conducted, using a high number of subjects, and will help to understand the role of ADAM10 as biomarker of cognitive frailty and contribute to the implementation of tools that work in the diagnosis of cognitive frailty. Such tools can be used in public policies for the diagnosis of cognitive frailty in the elderly, resulting in a more adequate planning for health teams and better quality of life for the elderly.

Keywords: ADAM10, biomarkers, cognitive frailty, elderly

Procedia PDF Downloads 236
429 Reducing Diagnostic Error in Australian Emergency Departments Using a Behavioural Approach

Authors: Breanna Wright, Peter Bragge

Abstract:

Diagnostic error rates in healthcare are approximately 10% of cases. Diagnostic errors can cause patient harm due to inappropriate, inadequate or delayed treatment, and such errors contribute heavily to medical liability claims globally. Therefore, addressing diagnostic error is a high priority. In most cases, diagnostic errors are the result of faulty information synthesis rather than lack of knowledge. Specifically, the majority of diagnostic errors involve cognitive factors, and in particular, cognitive biases. Emergency Departments are an environment with heightened risk of diagnostic error due to time and resource pressures, a frequently chaotic environment, and patients arriving undifferentiated and with minimal context. This project aimed to develop a behavioural, evidence-informed intervention to reduce diagnostic error in Emergency Departments through co-design with emergency physicians, insurers, researchers, hospital managers, citizens and consumer representatives. The Forum Process was utilised to address this aim. This involves convening a small (4 – 6 member) expert panel to guide a focused literature and practice review; convening of a 10 – 12 person citizens panel to gather perspectives of laypeople, including those affected by misdiagnoses; and a 18 – 22 person structured stakeholder dialogue bringing together representatives of the aforementioned stakeholder groups. The process not only provides in-depth analysis of the problem and associated behaviours, but brings together expertise and insight to facilitate identification of a behaviour change intervention. Informed by the literature and practice review, the Citizens Panel focused on eliciting the values and concerns of those affected or potentially affected by diagnostic error. Citizens were comfortable with diagnostic uncertainty if doctors were honest with them. They also emphasised the importance of open communication between doctors and patients and their families. Citizens expect more consistent standards across the state and better access for both patients and their doctors to patient health information to avoid time-consuming re-taking of long patient histories and medication regimes when re-presenting at Emergency Departments and to reduce the risk of unintentional omissions. The structured Stakeholder Dialogue focused on identifying a feasible behavioural intervention to review diagnoses in Emergency Departments. This needed to consider the role of cognitive bias in medical decision-making; contextual factors (in Victoria, there is a legislated 4-hour maximum time between ED triage and discharge / hospital admission); resource availability; and the need to ensure the intervention could work in large metropolitan as well as small rural and regional ED settings across Victoria. The identified behavioural intervention will be piloted in approximately ten hospital EDs across Victoria, Australia. This presentation will detail the findings of all review and consultation activities, describe the behavioural intervention developed and present results of the pilot trial.

Keywords: behavioural intervention, cognitive bias, decision-making, diagnostic error

Procedia PDF Downloads 128
428 Investigation of Software Integration for Simulations of Buoyancy-Driven Heat Transfer in a Vehicle Underhood during Thermal Soak

Authors: R. Yuan, S. Sivasankaran, N. Dutta, K. Ebrahimi

Abstract:

This paper investigates the software capability and computer-aided engineering (CAE) method of modelling transient heat transfer process occurred in the vehicle underhood region during vehicle thermal soak phase. The heat retention from the soak period will be beneficial to the cold start with reduced friction loss for the second 14°C worldwide harmonized light-duty vehicle test procedure (WLTP) cycle, therefore provides benefits on both CO₂ emission reduction and fuel economy. When vehicle undergoes soak stage, the airflow and the associated convective heat transfer around and inside the engine bay is driven by the buoyancy effect. This effect along with thermal radiation and conduction are the key factors to the thermal simulation of the engine bay to obtain the accurate fluids and metal temperature cool-down trajectories and to predict the temperatures at the end of the soak period. Method development has been investigated in this study on a light-duty passenger vehicle using coupled aerodynamic-heat transfer thermal transient modelling method for the full vehicle under 9 hours of thermal soak. The 3D underhood flow dynamics were solved inherently transient by the Lattice-Boltzmann Method (LBM) method using the PowerFlow software. This was further coupled with heat transfer modelling using the PowerTHERM software provided by Exa Corporation. The particle-based LBM method was capable of accurately handling extremely complicated transient flow behavior on complex surface geometries. The detailed thermal modelling, including heat conduction, radiation, and buoyancy-driven heat convection, were integrated solved by PowerTHERM. The 9 hours cool-down period was simulated and compared with the vehicle testing data of the key fluid (coolant, oil) and metal temperatures. The developed CAE method was able to predict the cool-down behaviour of the key fluids and components in agreement with the experimental data and also visualised the air leakage paths and thermal retention around the engine bay. The cool-down trajectories of the key components obtained for the 9 hours thermal soak period provide vital information and a basis for the further development of reduced-order modelling studies in future work. This allows a fast-running model to be developed and be further imbedded with the holistic study of vehicle energy modelling and thermal management. It is also found that the buoyancy effect plays an important part at the first stage of the 9 hours soak and the flow development during this stage is vital to accurately predict the heat transfer coefficients for the heat retention modelling. The developed method has demonstrated the software integration for simulating buoyancy-driven heat transfer in a vehicle underhood region during thermal soak with satisfying accuracy and efficient computing time. The CAE method developed will allow integration of the design of engine encapsulations for improving fuel consumption and reducing CO₂ emissions in a timely and robust manner, aiding the development of low-carbon transport technologies.

Keywords: ATCT/WLTC driving cycle, buoyancy-driven heat transfer, CAE method, heat retention, underhood modeling, vehicle thermal soak

Procedia PDF Downloads 153
427 The Role of Group Interaction and Managers’ Risk-willingness for Business Model Innovation Decisions: A Thematic Analysis

Authors: Sarah Müller-Sägebrecht

Abstract:

Today’s volatile environment challenges executives to make the right strategic decisions to gain sustainable success. Entrepreneurship scholars postulate mainly positive effects of environmental changes on entrepreneurship behavior, such as developing new business opportunities, promoting ingenuity, and the satisfaction of resource voids. A strategic solution approach to overcome threatening environmental changes and catch new business opportunities is business model innovation (BMI). Although this research stream has gained further importance in the last decade, BMI research is still insufficient. Especially BMI barriers, such as inefficient strategic decision-making processes, need to be identified. Strategic decisions strongly impact organizational future and are, therefore, usually made in groups. Although groups draw on a more extensive information base than single individuals, group-interaction effects can influence the decision-making process - in a favorable but also unfavorable way. Decisions are characterized by uncertainty and risk, whereby their intensity is perceived individually differently. The individual risk-willingness influences which option humans choose. The special nature of strategic decisions, such as in BMI processes, is that these decisions are not made individually but in groups due to their high organizational scope. These groups consist of different personalities whose individual risk-willingness can vary considerably. It is known from group decision theory that these individuals influence each other, observable in different group-interaction effects. The following research questions arise: i) How does group interaction shape BMI decision-making from managers’ perspective? ii) What are the potential interrelations among managers’ risk-willingness, group biases, and BMI decision-making? After conducting 26 in-depth interviews with executives from the manufacturing industry, applied Gioia methodology reveals the following results: i) Risk-averse decision-makers have an increased need to be guided by facts. The more information available to them, the lower they perceive uncertainty and the more willing they are to pursue a specific decision option. However, the results also show that social interaction does not change the individual risk-willingness in the decision-making process. ii) Generally, it could be observed that during BMI decisions, group interaction is primarily beneficial to increase the group’s information base for making good decisions, less than for social interaction. Further, decision-makers mainly focus on information available to all decision-makers in the team but less on personal knowledge. This work contributes to strategic decision-making literature twofold. First, it gives insights into how group-interaction effects influence an organization’s strategic BMI decision-making. Second, it enriches risk-management research by highlighting how individual risk-willingness impacts organizational strategic decision-making. To date, it was known in BMI research that risk aversion would be an internal BMI barrier. However, with this study, it becomes clear that it is not risk aversion that inhibits BMI. Instead, the lack of information prevents risk-averse decision-makers from choosing a riskier option. Simultaneously, results show that risk-averse decision-makers are not easily carried away by the higher risk-willingness of their team members. Instead, they use social interaction to gather missing information. Therefore, executives need to provide sufficient information to all decision-makers to catch promising business opportunities.

Keywords: business model innovation, cognitive biases, group-interaction effects, strategic decision-making, risk-willingness

Procedia PDF Downloads 78
426 Development and Clinical Application of a Cochlear Implant Mapping Assistance System

Authors: Hong Mengdi, Li Jianan, Ji Fei, Chen Aiting, Wang Qian

Abstract:

Objective: To overcome the communication barriers that audiologists encounter during cochlear implant mapping, particularly the challenge of eliciting subjective feedback from recipients regarding electrical stimulation, and to enhance the capabilities of existing technologies, we teamed up with software engineers to design an interactive approach for patient-audiologist communication. This approach employs a tablet (PAD) as the interface for a communication and feedback system between patients and audiologists during the mapping process, known as the Cochlear Implant Mapping Assistance System. Methods: Capitalizing on the touchscreen functionality of the PAD, the recipients' subjective feedback during cochlear implant mapping is instantly transmitted to the audiologist's mapping computer. The system acts as a platform for auditory assessment instruments, facilitating immediate evaluation of recipients' post-mapping hearing and speech discrimination capabilities. Furthermore, the system is designed to augment the visual reinforcement audiometry (VRA) process. The system consists of six modules, including three testing projects: loudness testing, hearing threshold testing, and loudness balance testing; two assessment projects: warble tone testing and digit speech testing; and one VRA animation project. It also incorporates speech-to-text and text input display functions tailored to accommodate speech communication difficulties in hearing-impaired individuals, with pre-installed common exchange content between audiologists and recipients. Audiologists can input sentences by selecting options. The system supports switching between Chinese and English versions, suitable for audiologists and recipients who use English, facilitating international application of the system. Results: The Cochlear Implant Mapping Assistance System has been in use for over a year in the Auditory Implant Center of the Department of Otology and Neurotology, Medical Center of Otology and Head & Neck Surgery, Chinese PLA General Hospital, with more than 300 recipients using this mapping system. Currently, the system operates stably, with both audiologists and recipients providing positive feedback, indicating a significant improvement over previous methods. It is particularly well-received by pediatric recipients, significantly enhancing the work efficiency of audiologists and improving the feedback efficiency and accuracy of recipients. The system enhances the comprehensibility for cochlear implant recipients, improves wearing comfort and user experience, facilitates cochlear implant auditory mapping, and increases the collection of previously challenging-to-obtain data during the existing assisted mapping process, such as loudness testing data, electrical stimulation testing data, warble tone testing data, loudness balance testing data, digit speech testing data, and visual reinforcement audiometry testing data. Real-time data recording improves the accuracy of assisted mapping. The interface design is meticulously crafted to accommodate patients of varying ages and cognitive abilities, featuring an intuitive design that allows for effortless, guidance-free use by patients.

Keywords: audiologist, subjective feedback, mapping, cochlear implant

Procedia PDF Downloads 20
425 Evaluating the Social Learning Processes Involved in Developing Community-Informed Wildfire Risk Reduction Strategies in the Prince Albert Forest Management Area

Authors: Carly Madge, Melanie Zurba, Ryan Bullock

Abstract:

The Boreal Forest has experienced some of the most drastic climate change-induced temperature rises in Canada, with average winter temperatures increasing by 3°C since 1948. One of the main concerns of the province of Saskatchewan, and particularly wildfire managers, is the increased risk of wildfires due to climate change. With these concerns in mind Sakaw Askiy Management Inc., a forestry corporation located in Prince Albert, Saskatchewan with operations in the Boreal Forest biome, is developing wildfire risk reduction strategies that are supported by the shareholders of the corporation as well as the stakeholders of the Prince Albert Forest Management Area (which includes citizens, hunters, trappers, cottage owners, and outfitters). In the past, wildfire management strategies implemented through harvesting have been received with skepticism by some community members of Prince Albert. Engagement of the stakeholders of the Prince Albert Management Area through the development of the wildfire risk reduction strategies aims to reduce this skepticism and rebuild some of the trust that has been lost between industry and community. This research project works with the framework of social learning, which is defined as the learning that occurs when individuals come together to form a group with the purpose of understanding environmental challenges and determining appropriate responses to them. The project evaluates the social learning processes that occur through the development of the risk reduction strategies and how the learning has allowed Sakaw to work towards implementing the strategies into their forest harvesting plans. The incorporation of wildfire risk reduction strategies works to increase the adaptive capacity of Sakaw, which in this case refers to the ability to adjust to climate change, moderate potential damages, take advantage of opportunities, and cope with consequences. Using semi-structured interviews and wildfire workshop meetings shareholders and stakeholders shared their knowledge of wildfire, their main wildfire concerns, and changes they would like to see made in the Prince Albert Forest Management Area. Interviews and topics discussed in the workshops were inductively coded for themes related to learning, adaptive capacity, areas of concern, and preferred methods of wildfire risk reduction strategies. Analysis determined that some of the learning that has occurred has resulted through social interactions and the development of networks oriented towards wildfire and wildfire risk reduction strategies. Participants have learned new knowledge and skills regarding wildfire risk reduction. The formation of wildfire networks increases access to information on wildfire and the social capital (trust and strengthened relations) of wildfire personnel. Both factors can be attributed to increases in adaptive capacity. Interview results were shared with the General Manager of Sakaw, where the areas of concern and preferred strategies of wildfire risk reduction will be considered and accounted for in the implementation of new harvesting plans. This research also augments the growing conceptual and empirical evidence of the important role of learning and networks in regional wildfire risk management efforts.

Keywords: adaptive capacity, community-engagement, social learning, wildfire risk reduction

Procedia PDF Downloads 146
424 Measuring the Impact of Social Innovation Education on Student’s Engagement

Authors: Irene Kalemaki, Ioanna Garefi

Abstract:

Social Innovation Education (SIE) is a new educational approach that aims to empower students to take action for a more democratic and sustainable society. Conceptually and pedagogically wise, it is situated at the intersection of Enterprise Education and Citizenship Education as it aspires to i) combine action with activism, ii) personal development with collective efficacy, iii) entrepreneurial mindsets with democratic values and iv) individual competences with collective competences. This paper abstract presents the work of the NEMESIS project, funded by H2020, that aims to design, test and validate the first consolidated approach for embedding Social Innovation Education in schools of primary and secondary education. During the academic year 2018-2019, eight schools from five European countries experimented with different approaches and methodologies to incorporate SIE in their settings. This paper reports briefly on these attempts and discusses the wider educational philosophy underlying these interventions with a particular focus on analyzing the learning outcomes and impact on students. That said, this paper doesn’t only report on the theoretical and practical underpinnings of SIE, but most importantly, it provides evidence on the impact of SIE on students. In terms of methodology, the study took place from September 2018 to July 2019 in eight schools from Greece, Spain, Portugal, France, and the UK involving directly 56 teachers, 1030 students and 69 community stakeholders. Focus groups, semi-structured interviews, classroom observations as well as students' written narratives were used to extract data on the impact of SIE on students. The overall design of the evaluation activities was informed by a realist approach, which enabled us to go beyond “what happened” and towards understanding “why it happened”. Research findings suggested that SIE can benefit students in terms of their emotional, cognitive, behavioral and agentic engagement. Specifically, the emotional engagement of students was increased because through SIE interventions; students voice was heard, valued, and acted upon. This made students feel important to their school, increasing their sense of belonging, confidence and level of autonomy. As regards cognitive engagement, both students and teachers reported positive outcomes as SIE enabled students to take ownership of their ideas to drive their projects forward and thus felt more motivated to perform in class because it felt personal, important and relevant to them. In terms of behavioral engagement, the inclusive environment and the collective relationships that were reinforced through the SIE interventions had a direct positive impact on behaviors among peers. Finally, with regard to agentic engagement, it has been observed that students became very proactive which was connected to the strong sense of ownership and enthusiasm developed during collective efforts to deliver real-life social innovations. Concluding, from a practical and policy point of view these research findings could encourage the inclusion of SIE in schools, while from a research point of view, they could contribute to the scientific discourse providing evidence and clarity on the emergent field of SIE.

Keywords: education, engagement, social innovation, students

Procedia PDF Downloads 137
423 Numerical and Experimental Comparison of Surface Pressures around a Scaled Ship Wind-Assisted Propulsion System

Authors: James Cairns, Marco Vezza, Richard Green, Donald MacVicar

Abstract:

Significant legislative changes are set to revolutionise the commercial shipping industry. Upcoming emissions restrictions will force operators to look at technologies that can improve the efficiency of their vessels -reducing fuel consumption and emissions. A device which may help in this challenge is the Ship Wind-Assisted Propulsion system (SWAP), an actively controlled aerofoil mounted vertically on the deck of a ship. The device functions in a similar manner to a sail on a yacht, whereby the aerodynamic forces generated by the sail reach an equilibrium with the hydrodynamic forces on the hull and a forward velocity results. Numerical and experimental testing of the SWAP device is presented in this study. Circulation control takes the form of a co-flow jet aerofoil, utilising both blowing from the leading edge and suction from the trailing edge. A jet at the leading edge uses the Coanda effect to energise the boundary layer in order to delay flow separation and create high lift with low drag. The SWAP concept has been originated by the research and development team at SMAR Azure Ltd. The device will be retrofitted to existing ships so that a component of the aerodynamic forces acts forward and partially reduces the reliance on existing propulsion systems. Wind tunnel tests have been carried out at the de Havilland wind tunnel at the University of Glasgow on a 1:20 scale model of this system. The tests aim to understand the airflow characteristics around the aerofoil and investigate the approximate lift and drag coefficients that an early iteration of the SWAP device may produce. The data exhibits clear trends of increasing lift as injection momentum increases, with critical flow attachment points being identified at specific combinations of jet momentum coefficient, Cµ, and angle of attack, AOA. Various combinations of flow conditions were tested, with the jet momentum coefficient ranging from 0 to 0.7 and the AOA ranging from 0° to 35°. The Reynolds number across the tested conditions ranged from 80,000 to 240,000. Comparisons between 2D computational fluid dynamics (CFD) simulations and the experimental data are presented for multiple Reynolds-Averaged Navier-Stokes (RANS) turbulence models in the form of normalised surface pressure comparisons. These show good agreement for most of the tested cases. However, certain simulation conditions exhibited a well-documented shortcoming of RANS-based turbulence models for circulation control flows and over-predicted surface pressures and lift coefficient for fully attached flow cases. Work must be continued in finding an all-encompassing modelling approach which predicts surface pressures well for all combinations of jet injection momentum and AOA.

Keywords: CFD, circulation control, Coanda, turbo wing sail, wind tunnel

Procedia PDF Downloads 134
422 Towards Visual Personality Questionnaires Based on Deep Learning and Social Media

Authors: Pau Rodriguez, Jordi Gonzalez, Josep M. Gonfaus, Xavier Roca

Abstract:

Image sharing in social networks has increased exponentially in the past years. Officially, there are 600 million Instagrammers uploading around 100 million photos and videos per day. Consequently, there is a need for developing new tools to understand the content expressed in shared images, which will greatly benefit social media communication and will enable broad and promising applications in education, advertisement, entertainment, and also psychology. Following these trends, our work aims to take advantage of the existing relationship between text and personality, already demonstrated by multiple researchers, so that we can prove that there exists a relationship between images and personality as well. To achieve this goal, we consider that images posted on social networks are typically conditioned on specific words, or hashtags, therefore any relationship between text and personality can also be observed with those posted images. Our proposal makes use of the most recent image understanding models based on neural networks to process the vast amount of data generated by social users to determine those images most correlated with personality traits. The final aim is to train a weakly-supervised image-based model for personality assessment that can be used even when textual data is not available, which is an increasing trend. The procedure is described next: we explore the images directly publicly shared by users based on those accompanying texts or hashtags most strongly related to personality traits as described by the OCEAN model. These images will be used for personality prediction since they have the potential to convey more complex ideas, concepts, and emotions. As a result, the use of images in personality questionnaires will provide a deeper understanding of respondents than through words alone. In other words, from the images posted with specific tags, we train a deep learning model based on neural networks, that learns to extract a personality representation from a picture and use it to automatically find the personality that best explains such a picture. Subsequently, a deep neural network model is learned from thousands of images associated with hashtags correlated to OCEAN traits. We then analyze the network activations to identify those pictures that maximally activate the neurons: the most characteristic visual features per personality trait will thus emerge since the filters of the convolutional layers of the neural model are learned to be optimally activated depending on each personality trait. For example, among the pictures that maximally activate the high Openness trait, we can see pictures of books, the moon, and the sky. For high Conscientiousness, most of the images are photographs of food, especially healthy food. The high Extraversion output is mostly activated by pictures of a lot of people. In high Agreeableness images, we mostly see flower pictures. Lastly, in the Neuroticism trait, we observe that the high score is maximally activated by animal pets like cats or dogs. In summary, despite the huge intra-class and inter-class variabilities of the images associated to each OCEAN traits, we found that there are consistencies between visual patterns of those images whose hashtags are most correlated to each trait.

Keywords: emotions and effects of mood, social impact theory in social psychology, social influence, social structure and social networks

Procedia PDF Downloads 196
421 Concepts of Modern Design: A Study of Art and Architecture Synergies in Early 20ᵗʰ Century Europe

Authors: Stanley Russell

Abstract:

Until the end of the 19th century, European painting dealt almost exclusively with the realistic representation of objects and landscapes, as can be seen in the work of realist artists like Gustav Courbet. Architects of the day typically made reference to and recreated historical precedents in their designs. The curriculum of the first architecture school in Europe, The Ecole des Beaux Artes, based on the study of classical buildings, had a profound effect on the profession. Painting exhibited an increasing level of abstraction from the late 19th century, with impressionism, and the trend continued into the early 20th century when Cubism had an explosive effect sending shock waves through the art world that also extended into the realm of architectural design. Architect /painter Le Corbusier with “Purism” was one of the first to integrate abstract painting and building design theory in works that were equally shocking to the architecture world. The interrelationship of the arts, including architecture, was institutionalized in the Bauhaus curriculum that sought to find commonality between diverse art disciplines. Renowned painter and Bauhaus instructor Vassily Kandinsky was one of the first artists to make a semi-scientific analysis of the elements in “non-objective” painting while also drawing parallels between painting and architecture in his book Point and Line to plane. Russian constructivists made abstract compositions with simple geometric forms, and like the De Stijl group of the Netherlands, they also experimented with full-scale constructions and spatial explorations. Based on the study of historical accounts and original artworks, of Impressionism, Cubism, the Bauhaus, De Stijl, and Russian Constructivism, this paper begins with a thorough explanation of the art theory and several key works from these important art movements of the late 19th and early 20th century. Similarly, based on written histories and first-hand experience of built and drawn works, the author continues with an analysis of the theories and architectural works generated by the same groups, all of which actively pursued continuity between their art and architectural concepts. With images of specific works, the author shows how the trend toward abstraction and geometric purity in painting coincided with a similar trend in architecture that favored simple unornamented geometries. Using examples like the Villa Savoye, The Schroeder House, the Dessau Bauhaus, and unbuilt designs by Russian architect Chernikov, the author gives detailed examples of how the intersection of trends in Art and Architecture led to a unique and fruitful period of creative synergy when the same concepts that were used by artists to generate paintings were also used by architects in the making of objects, space, and buildings. In Conclusion, this article examines the extremely pivotal period in art and architecture history from the late 19th to early 20th century when the confluence of art and architectural theory led to many painted, drawn, and built works that continue to inspire architects and artists to this day.

Keywords: modern art, architecture, design methodologies, modern architecture

Procedia PDF Downloads 127
420 A Comparative Study on South-East Asian Leading Container Ports: Jawaharlal Nehru Port Trust, Chennai, Singapore, Dubai, and Colombo Ports

Authors: Jonardan Koner, Avinash Purandare

Abstract:

In today’s globalized world international business is a very key area for the country's growth. Some of the strategic areas for holding up a country’s international business to grow are in the areas of connecting Ports, Road Network, and Rail Network. India’s International Business is booming both in Exports as well as Imports. Ports play a very central part in the growth of international trade and ensuring competitive ports is of critical importance. India has a long coastline which is a big asset for the country as it has given the opportunity for development of a large number of major and minor ports which will contribute to the maritime trades’ development. The National Economic Development of India requires a well-functioning seaport system. To know the comparative strength of Indian ports over South-east Asian similar ports, the study is considering the objectives of (I) to identify the key parameters of an international mega container port, (II) to compare the five selected container ports (JNPT, Chennai, Singapore, Dubai, and Colombo Ports) according to user of the ports and iii) to measure the growth of selected five container ports’ throughput over time and their comparison. The study is based on both primary and secondary databases. The linear time trend analysis is done to show the trend in quantum of exports, imports and total goods/services handled by individual ports over the years. The comparative trend analysis is done for the selected five ports of cargo traffic handled in terms of Tonnage (weight) and number of containers (TEU’s). The comparative trend analysis is done between containerized and non-containerized cargo traffic in the five selected five ports. The primary data analysis is done comprising of comparative analysis of factor ratings through bar diagrams, statistical inference of factor ratings for the selected five ports, consolidated comparative line charts of factor rating for the selected five ports, consolidated comparative bar charts of factor ratings of the selected five ports and the distribution of ratings (frequency terms). The linear regression model is used to forecast the container capacities required for JNPT Port and Chennai Port by the year 2030. Multiple regression analysis is carried out to measure the impact of selected 34 explanatory variables on the ‘Overall Performance of the Port’ for each of the selected five ports. The research outcome is of high significance to the stakeholders of Indian container handling ports. Indian container port of JNPT and Chennai are benchmarked against international ports such as Singapore, Dubai, and Colombo Ports which are the competing ports in the neighbouring region. The study has analysed the feedback ratings for the selected 35 factors regarding physical infrastructure and services rendered to the port users. This feedback would provide valuable data for carrying out improvements in the facilities provided to the port users. These installations would help the ports’ users to carry out their work in more efficient manner.

Keywords: throughput, twenty equivalent units, TEUs, cargo traffic, shipping lines, freight forwarders

Procedia PDF Downloads 131
419 Characteristics-Based Lq-Control of Cracking Reactor by Integral Reinforcement

Authors: Jana Abu Ahmada, Zaineb Mohamed, Ilyasse Aksikas

Abstract:

The linear quadratic control system of hyperbolic first order partial differential equations (PDEs) are presented. The aim of this research is to control chemical reactions. This is achieved by converting the PDEs system to ordinary differential equations (ODEs) using the method of characteristics to reduce the system to control it by using the integral reinforcement learning. The designed controller is applied to a catalytic cracking reactor. Background—Transport-Reaction systems cover a large chemical and bio-chemical processes. They are best described by nonlinear PDEs derived from mass and energy balances. As a main application to be considered in this work is the catalytic cracking reactor. Indeed, the cracking reactor is widely used to convert high-boiling, high-molecular weight hydrocarbon fractions of petroleum crude oils into more valuable gasoline, olefinic gases, and others. On the other hand, control of PDEs systems is an important and rich area of research. One of the main control techniques is feedback control. This type of control utilizes information coming from the system to correct its trajectories and drive it to a desired state. Moreover, feedback control rejects disturbances and reduces the variation effects on the plant parameters. Linear-quadratic control is a feedback control since the developed optimal input is expressed as feedback on the system state to exponentially stabilize and drive a linear plant to the steady-state while minimizing a cost criterion. The integral reinforcement learning policy iteration technique is a strong method that solves the linear quadratic regulator problem for continuous-time systems online in real time, using only partial information about the system dynamics (i.e. the drift dynamics A of the system need not be known), and without requiring measurements of the state derivative. This is, in effect, a direct (i.e. no system identification procedure is employed) adaptive control scheme for partially unknown linear systems that converges to the optimal control solution. Contribution—The goal of this research is to Develop a characteristics-based optimal controller for a class of hyperbolic PDEs and apply the developed controller to a catalytic cracking reactor model. In the first part, developing an algorithm to control a class of hyperbolic PDEs system will be investigated. The method of characteristics will be employed to convert the PDEs system into a system of ODEs. Then, the control problem will be solved along the characteristic curves. The reinforcement technique is implemented to find the state-feedback matrix. In the other half, applying the developed algorithm to the important application of a catalytic cracking reactor. The main objective is to use the inlet fraction of gas oil as a manipulated variable to drive the process state towards desired trajectories. The outcome of this challenging research would yield the potential to provide a significant technological innovation for the gas industries since the catalytic cracking reactor is one of the most important conversion processes in petroleum refineries.

Keywords: PDEs, reinforcement iteration, method of characteristics, riccati equation, cracking reactor

Procedia PDF Downloads 91
418 Stress Reduction Techniques for First Responders: Scientifically Proven Methods

Authors: Esther Ranero Carrazana, Maria Karla Ramirez Valdes

Abstract:

First responders, including firefighters, police officers, and emergency medical personnel, are frequently exposed to high-stress scenarios that significantly increase their risk of mental health issues such as depression, anxiety, and post-traumatic stress disorder (PTSD). Their work involves life-threatening situations, witnessing suffering, and making critical decisions under pressure, all contributing to psychological strain. The objectives of this research on "Stress Reduction Techniques for First Responders: Scientifically Proven Methods" are as follows. One of them is to evaluate the effectiveness of stress reduction techniques. The primary objective is to assess the efficacy of various scientifically proven stress reduction techniques explicitly tailored for first responders. Heart Rate Variability (HRV) Training, Interoception and Exteroception, Sensory Integration, and Body Perception Awareness are scrutinized for their ability to mitigate stress-related symptoms. Furthermore, we evaluate and enhance the understanding of stress mechanisms in first responders by exploring how different techniques influence the physiological and psychological responses to stress. The study aims to deepen the understanding of stress mechanisms in high-risk professions. Additionally, the study promotes psychological resilience by seeking to identify and recommend methods that can significantly enhance the psychological resilience of first responders, thereby supporting their mental health and operational efficiency in high-stress environments. Guide training and policy development is an additional objective to provide evidence-based recommendations that can be used to guide training programs and policy development aimed at improving the mental health and well-being of first responders. Lastly, the study aims to contribute valuable insights to the existing body of knowledge in stress management, specifically tailored to the unique needs of first responders. This study involved a comprehensive literature review assessing the effectiveness of various stress reduction techniques tailored for first responders. Techniques evaluated include Heart Rate Variability (HRV) Training, Interoception and Exteroception, Sensory Integration, and Body Perception Awareness, focusing on their ability to alleviate stress-related symptoms. The review indicates promising results for several stress reduction methods. HRV Training demonstrates the potential to reflect stress vulnerability and enhance physiological and behavioral flexibility. Interoception and Exteroception help modulate the stress response by enhancing awareness of the body's internal state and its interaction with the environment. Sensory integration plays a crucial role in adaptive responses to stress by focusing on individual senses and their integration. Therefore, body perception awareness addresses stress and anxiety through enhanced body perception and mindfulness. The evaluated techniques show significant potential in reducing stress and improving the mental health of first responders. Implementing these scientifically supported methods into routine training could significantly enhance their psychological resilience and operational effectiveness in high-stress environments.

Keywords: first responders, HRV training, mental health, sensory integration, stress reduction

Procedia PDF Downloads 37
417 Phenolic Acids of Plant Origin as Promising Compounds for Elaboration of Antiviral Drugs against Influenza

Authors: Vladimir Berezin, Aizhan Turmagambetova, Andrey Bogoyavlenskiy, Pavel Alexyuk, Madina Alexyuk, Irina Zaitceva, Nadezhda Sokolova

Abstract:

Introduction: Influenza viruses could infect approximately 5% to 10% of the global human population annually, resulting in serious social and economic damage. Vaccination and etiotropic antiviral drugs are used for the prevention and treatment of influenza. Vaccination is important; however, antiviral drugs represent the second line of defense against new emerging influenza virus strains for which vaccines may be unsuccessful. However, the significant drawback of commercial synthetic anti-flu drugs is the appearance of drug-resistant influenza virus strains. Therefore, the search and development of new anti-flu drugs efficient against drug-resistant strains is an important medical problem for today. The aim of this work was a study of four phenolic acids of plant origin (Gallic, Syringic, Vanillic, and Protocatechuic acids) as a possible tool for treatment against influenza virus. Methods: Phenolic acids; gallic, syringic, vanillic, and protocatechuic have been prepared by extraction from plant tissues and purified using high-performance liquid chromatography fractionation. Avian influenza virus, strain A/Tern/South Africa/1/1961 (H5N3) and human epidemic influenza virus, strain A/Almaty/8/98 (H3N2) resistant to commercial anti-flu drugs (Rimantadine, Oseltamivir) were used for testing antiviral activity. Viruses were grown in the allantoic cavity of 10 days old chicken embryos. The chemotherapeutic index (CTI), determined as the ratio of an average toxic concentration of the tested compound (TC₅₀) to the average effective virus-inhibition concentration (EC₅₀), has been used as a criteria of specific antiviral action. Results: The results of study have shown that the structure of phenolic acids significantly affected their ability to suppress the reproduction of tested influenza virus strains. The highest antiviral activity among tested phenolic acids was detected for gallic acid, which contains three hydroxyl groups in the molecule at C3, C4, and C5 positions. Antiviral activity of gallic acid against A/H5N3 and A/H3N2 influenza virus strains was higher than antiviral activity of Oseltamivir and Rimantadine. gallic acid inhibited almost 100% of the infection activity of both tested viruses. Protocatechuic acid, which possesses 2 hydroxyl groups (C3 and C4) have shown weaker antiviral activity in comparison with gallic acid and inhibited less than 10% of virus infection activity. Syringic acid, which contains two hydroxyl groups (C3 and C5), was able to suppress up to 12% of infection activity. Substitution of two hydroxyl groups by methoxy groups resulted in the complete loss of antiviral activity. Vanillic acid, which is different from protocatechuic acid by replacing of C3 hydroxyl group to methoxy group, was able to suppress about 30% of infection activity of tested influenza viruses. Conclusion: For pronounced antiviral activity, the molecular of phenolic acid must have at least two hydroxyl groups. Replacement of hydroxyl groups to methoxy group leads to a reduction of antiviral properties. Gallic acid demonstrated high antiviral activity against influenza viruses, including Rimantadine and Oseltamivir resistant strains, and could be used as a potential candidate for the development of antiviral drug against influenza virus.

Keywords: antiviral activity, influenza virus, drug resistance, phenolic acids

Procedia PDF Downloads 141
416 Occipital Squama Convexity and Neurocranial Covariation in Extant Homo sapiens

Authors: Miranda E. Karban

Abstract:

A distinctive pattern of occipital squama convexity, known as the occipital bun or chignon, has traditionally been considered a derived Neandertal trait. However, some early modern and extant Homo sapiens share similar occipital bone morphology, showing pronounced internal and external occipital squama curvature and paralambdoidal flattening. It has been posited that these morphological patterns are homologous in the two groups, but this claim remains disputed. Many developmental hypotheses have been proposed, including assertions that the chignon represents a developmental response to a long and narrow cranial vault, a narrow or flexed basicranium, or a prognathic face. These claims, however, remain to be metrically quantified in a large subadult sample, and little is known about the feature’s developmental, functional, or evolutionary significance. This study assesses patterns of chignon development and covariation in a comparative sample of extant human growth study cephalograms. Cephalograms from a total of 549 European-derived North American subjects (286 male, 263 female) were scored on a 5-stage ranking system of chignon prominence. Occipital squama shape was found to exist along a continuum, with 34 subjects (6.19%) possessing defined chignons, and 54 subjects (9.84%) possessing very little occipital squama convexity. From this larger sample, those subjects represented by a complete radiographic series were selected for metric analysis. Measurements were collected from lateral and posteroanterior (PA) cephalograms of 26 subjects (16 male, 10 female), each represented at 3 longitudinal age groups. Age group 1 (range: 3.0-6.0 years) includes subjects during a period of rapid brain growth. Age group 2 (range: 8.0-9.5 years) includes subjects during a stage in which brain growth has largely ceased, but cranial and facial development continues. Age group 3 (range: 15.9-20.4 years) includes subjects at their adult stage. A total of 16 landmarks and 153 sliding semi-landmarks were digitized at each age point, and geometric morphometric analyses, including relative warps analysis and two-block partial least squares analysis, were conducted to study covariation patterns between midsagittal occipital bone shape and other aspects of craniofacial morphology. A convex occipital squama was found to covary significantly with a low, elongated neurocranial vault, and this pattern was found to exist from the youngest age group. Other tested patterns of covariation, including cranial and basicranial breadth, basicranial angle, midcoronal cranial vault shape, and facial prognathism, were not found to be significant at any age group. These results suggest that the chignon, at least in this sample, should not be considered an independent feature, but rather the result of developmental interactions relating to neurocranial elongation. While more work must be done to quantify chignon morphology in fossil subadults, this study finds no evidence to disprove the developmental homology of the feature in modern humans and Neandertals.

Keywords: chignon, craniofacial covariation, human cranial development, longitudinal growth study, occipital bun

Procedia PDF Downloads 201
415 Vitamin B9 Separation by Synergic Pertraction

Authors: Blaga Alexandra Cristina, Kloetzer Lenuta, Bompa Amalia Stela, Galaction Anca Irina, Cascaval Dan

Abstract:

Vitamin B9 is an important member of vitamins B group, being a growth factor, important for making genetic material as DNA and RNA, red blood cells, for building muscle tissues, especially during periods of infancy, adolescence and pregnancy. Its production by biosynthesis is based on the high metabolic potential of mutant Bacillus subtilis, due to a superior biodisponibility compared to that obtained by chemical pathways. Pertraction, defined as the extraction and transport through liquid membranes consists in the transfer of a solute between two aqueous phases of different pH-values, phases that are separated by a solvent layer of various sizes. The pertraction efficiency and selectivity could be significantly enhanced by adding a carrier in the liquid membrane, such as organophosphoric compounds, long chain amines or crown-ethers etc., the separation process being called facilitated pertraction. The aim of the work is to determine the impact of the presence of two extractants/carriers in the bulk liquid membrane, i.e. di(2-ethylhexyl) phosphoric acid (D2EHPA) and lauryltrialkylmetilamine (Amberlite LA2) on the transport kinetics of vitamin B9. The experiments have been carried out using two pertraction equipments for a free liquid membrane or bulk liquid membrane. One pertraction cell consists on a U-shaped glass pipe (used for the dichloromethane membrane) and the second one is an H-shaped glass pipe (used for h-heptane), having 45 mm inner diameter of the total volume of 450 mL, the volume of each compartment being of 150 mL. The aqueous solutions are independently mixed by means of double blade stirrers with 6 mm diameter and 3 mm height, having the rotation speed of 500 rpm. In order to reach high diffusional rates through the solvent layer, the organic phase has been mixed with a similar stirrer, at a similar rotation speed (500 rpm). The area of mass transfer surface, both for extraction and for reextraction, was of 1.59x10-³ m2. The study on facilitated pertraction with the mixture of two carriers, namely D2EHPA and Amberlite LA-2, dissolved in two solvents with different polarities: n-heptane and dichloromethane, indicated the possibility to obtain the synergic effect. The synergism has been analyzed by considering the vitamin initial and final mass flows, as well as the permeability factors through liquid membrane. The synergic effect has been observed at low D2EHPA concentrations and high Amberlite LA-2 concentrations, being more important for the low-polar solvent (n-heptane). The results suggest that the mechanism of synergic pertraction consists on the reaction between the organophosphoric carrier and vitamin B9 at the interface between the feed and membrane phases, while the aminic carrier enhances the hydrophobicity of this compound by solvation. However, the formation of this complex reduced the reextraction rate and, consequently, affects the synergism related to the final mass flows and permeability factor. For describing the influences of carriers concentrations on the synergistic coefficients, some equations have been proposed by taking into account the vitamin mass flows or permeability factors, with an average deviations between 4.85% and 10.73%.

Keywords: pertraction, synergism, vitamin B9, Amberlite LA-2, di(2-ethylhexyl) phosphoric acid

Procedia PDF Downloads 275
414 Inhabitants’ Adaptation to the Climate's Evolutions in Cities: a Survey of City Dwellers’ Climatic Experiences’ Construction

Authors: Geraldine Molina, Malou Allagnat

Abstract:

Entry through meteorological and climatic phenomena, technical knowledge and engineering sciences has long been favored by the research and local public action to analyze the urban climate, develop strategies to reduce its changes and adapt their spaces. However, in their daily practices and sensitive experiences, city dwellers are confronted with the climate and constantly deal with its fluctuations. In this way, these actors develop knowledge, skills and tactics to regulate their comfort and adapt to climatic variations. Therefore, the empirical observation and analysis of these living experiences represent major scientific and social challenges. This contribution proposes to question these relationships of the inhabitants to urban climate. It tackles the construction of inhabitants’ climatic experiences to answer a central question: how do city dwellers’ deal with the urban climate and adapt to its different variations? Indeed, the city raises the question of how populations adapt to different spatial and temporal climatic variations. Local impacts of global climate change are combined with the urban heat island phenomenon and other microclimatic effects, as well as seasonal, daytime and night-time fluctuations. To provide answers, the presentation will be focused on the results of a CNRS research project (Géraldine Molina), part of which is linked to the European project Nature For Cities (H2020, Marjorie Musy, Scientific Director). From a theoretical point of view, the contribution is based on a renewed definition of adaptation centered on the capacity of individuals and social groups, a recently opened entry from a theoretical point of view by social scientists. The research adopts a "radical interdisciplinary" approach to shed light on the links between social dynamics of climate (inhabitants’ perceptions, representations and practices) and physical processes that characterize urban climate. To do so, it relied on a methodological combination of different survey techniques borrowed from the social sciences (geography, anthropology, sociology) and linked to the work, methodologies and results of the engineering sciences. From 2016 to 2019, a survey was carried out in two districts of Lyon whose morphological, micro-climatic and social characteristics differ greatly, namely the 6th arrondissement and the Guillotière district. To explore the construction of climate experiences over the long term by putting it into perspective with the life trajectories of individuals, 70 semi-directive interviews were conducted with inhabitants. In order to also punctually survey the climate experiments as they unfold in a given time and moment, observation and measurement campaigns of physical phenomena and questionnaires have been conducted in public spaces by an interdisciplinary research team1. The contribution at the ICUC 2020 will mainly focus on the presentation of the presentation of the qualitative survey conducted thanks to the inhabitants’ interviews.

Keywords: sensitive experiences, ways of life, thermal comfort, radical interdisciplinarity

Procedia PDF Downloads 118
413 Music Piracy Revisited: Agent-Based Modelling and Simulation of Illegal Consumption Behavior

Authors: U. S. Putro, L. Mayangsari, M. Siallagan, N. P. Tjahyani

Abstract:

National Collective Management Institute (LKMN) in Indonesia stated that legal music products were about 77.552.008 unit while illegal music products were about 22.0688.225 unit in 1996 and this number keeps getting worse every year. Consequently, Indonesia named as one of the countries with high piracy levels in 2005. This study models people decision toward unlawful behavior, music content piracy in particular, using agent-based modeling and simulation (ABMS). The classification of actors in the model constructed in this study are legal consumer, illegal consumer, and neutral consumer. The decision toward piracy among the actors is a manifestation of the social norm which attributes are social pressure, peer pressure, social approval, and perceived prevalence of piracy. The influencing attributes fluctuate depending on the majority of surrounding behavior called social network. There are two main interventions undertaken in the model, campaign and peer influence, which leads to scenarios in the simulation: positively-framed descriptive norm message, negatively-framed descriptive norm message, positively-framed injunctive norm with benefits message, and negatively-framed injunctive norm with costs message. Using NetLogo, the model is simulated in 30 runs with 10.000 iteration for each run. The initial number of agent was set 100 proportion of 95:5 for illegal consumption. The assumption of proportion is based on the data stated that 95% sales of music industry are pirated. The finding of this study is that negatively-framed descriptive norm message has a worse reversed effect toward music piracy. The study discovers that selecting the context-based campaign is the key process to reduce the level of intention toward music piracy as unlawful behavior by increasing the compliance awareness. The context of Indonesia reveals that that majority of people has actively engaged in music piracy as unlawful behavior, so that people think that this illegal act is common behavior. Therefore, providing the information about how widespread and big this problem is could make people do the illegal consumption behavior instead. The positively-framed descriptive norm message scenario works best to reduce music piracy numbers as it focuses on supporting positive behavior and subject to the right perception on this phenomenon. Music piracy is not merely economical, but rather social phenomenon due to the underlying motivation of the actors which has shifted toward community sharing. The indication of misconception of value co-creation in the context of music piracy in Indonesia is also discussed. This study contributes theoretically that understanding how social norm configures the behavior of decision-making process is essential to breakdown the phenomenon of unlawful behavior in music industry. In practice, this study proposes that reward-based and context-based strategy is the most relevant strategy for stakeholders in music industry. Furthermore, this study provides an opportunity that findings may generalize well beyond music piracy context. As an emerging body of work that systematically constructs the backstage of law and social affect decision-making process, it is interesting to see how the model is implemented in other decision-behavior related situation.

Keywords: music piracy, social norm, behavioral decision-making, agent-based model, value co-creation

Procedia PDF Downloads 187
412 Adaptive Power Control of the City Bus Integrated Photovoltaic System

Authors: Piotr Kacejko, Mariusz Duk, Miroslaw Wendeker

Abstract:

This paper presents an adaptive controller to track the maximum power point of a photovoltaic modules (PV) under fast irradiation change on the city-bus roof. Photovoltaic systems have been a prominent option as an additional energy source for vehicles. The Municipal Transport Company (MPK) in Lublin has installed photovoltaic panels on its buses roofs. The solar panels turn solar energy into electric energy and are used to load the buses electric equipment. This decreases the buses alternators load, leading to lower fuel consumption and bringing both economic and ecological profits. A DC–DC boost converter is selected as the power conditioning unit to coordinate the operating point of the system. In addition to the conversion efficiency of a photovoltaic panel, the maximum power point tracking (MPPT) method also plays a main role to harvest most energy out of the sun. The MPPT unit on a moving vehicle must keep tracking accuracy high in order to compensate rapid change of irradiation change due to dynamic motion of the vehicle. Maximum power point track controllers should be used to increase efficiency and power output of solar panels under changing environmental factors. There are several different control algorithms in the literature developed for maximum power point tracking. However, energy performances of MPPT algorithms are not clarified for vehicle applications that cause rapid changes of environmental factors. In this study, an adaptive MPPT algorithm is examined at real ambient conditions. PV modules are mounted on a moving city bus designed to test the solar systems on a moving vehicle. Some problems of a PV system associated with a moving vehicle are addressed. The proposed algorithm uses a scanning technique to determine the maximum power delivering capacity of the panel at a given operating condition and controls the PV panel. The aim of control algorithm was matching the impedance of the PV modules by controlling the duty cycle of the internal switch, regardless of changes of the parameters of the object of control and its outer environment. Presented algorithm was capable of reaching the aim of control. The structure of an adaptive controller was simplified on purpose. Since such a simple controller, armed only with an ability to learn, a more complex structure of an algorithm can only improve the result. The presented adaptive control system of the PV system is a general solution and can be used for other types of PV systems of both high and low power. Experimental results obtained from comparison of algorithms by a motion loop are presented and discussed. Experimental results are presented for fast change in irradiation and partial shading conditions. The results obtained clearly show that the proposed method is simple to implement with minimum tracking time and high tracking efficiency proving superior to the proposed method. This work has been financed by the Polish National Centre for Research and Development, PBS, under Grant Agreement No. PBS 2/A6/16/2013.

Keywords: adaptive control, photovoltaic energy, city bus electric load, DC-DC converter

Procedia PDF Downloads 211
411 Multi-Plane Wrist Movement: Pathomechanics and Design of a 3D-Printed Splint

Authors: Sigal Portnoy, Yael Kaufman-Cohen, Yafa Levanon

Abstract:

Introduction: Rehabilitation following wrist fractures often includes exercising flexion-extension movements with a dynamic splint. However, during daily activities, we combine most of our wrist movements with radial and ulnar deviations. Also, the multi-plane wrist motion, named the ‘dart throw motion’ (DTM), was found to be a more stable motion in healthy individuals, in term of the motion of the proximal carpal bones, compared with sagittal wrist motion. The aim of this study was therefore to explore the pathomechanics of the wrist in a common multi-plane movement pattern (DTM) and design a novel splint for rehabilitation following distal radius fractures. Methods: First, a multi-axis electro-goniometer was used to quantify the plane angle of motion of the dominant and non-dominant wrists during various activities, e.g. drinking from a glass of water and answering a phone in 43 healthy individuals. The following protocols were then implemented with a population following distal radius fracture. Two dynamic scans were performed, one of the sagittal wrist motion and DTM, in a 3T magnetic resonance imaging (MRI) device, bilaterally. The scaphoid and lunate carpal bones, as well as the surface of the distal radius, were manually-segmented in SolidWorks and the angles of motion of the scaphoid and lunate bones were calculated. Subsequently, a patient-specific splint was designed using 3D scans of the hand. The brace design comprises of a proximal attachment to the arm and a distal envelope of the palm. An axle with two wheels is attached to the proximal part. Two wires attach the proximal part with the medial-palmar and lateral-ventral aspects of the distal part: when the wrist extends, the first wire is released and the second wire is strained towards the radius. The opposite occurs when the wrist flexes. The splint was attached to the wrist using Velcro and constrained the wrist movement to the desired calculated multi-plane of motion. Results: No significant differences were found between the multi-plane angles of the dominant and non-dominant wrists. The most common daily activities occurred at a plane angle of approximately 20° to 45° from the sagittal plane and the MRI studies show individual angles of the plane of motion. The printed splint fitted the wrist of the subjects and constricted movement to the desired multi-plane of motion. Hooks were inserted on each part to allow the addition of springs or rubber bands for resistance training towards muscle strengthening in the rehabilitation setting. Conclusions: It has been hypothesized that activation of the wrist in a multi-plane movement pattern following distal radius fractures will accelerate the recovery of the patient. Our results show that this motion can be determined from either the dominant or non-dominant wrists. The design of the patient-specific dynamic splint is the first step towards assessing whether splinting to induce combined movement is beneficial to the rehabilitation process, compared to conventional treatment. The evaluation of the clinical benefits of this method, compared to conventional rehabilitation methods following wrist fracture, are a part of a PhD work, currently conducted by an occupational therapist.

Keywords: distal radius fracture, rehabilitation, dynamic magnetic resonance imaging, dart throw motion

Procedia PDF Downloads 299
410 Respiratory Health and Air Movement Within Equine Indoor Arenas

Authors: Staci McGill, Morgan Hayes, Robert Coleman, Kimberly Tumlin

Abstract:

The interaction and relationships between horses and humans have been shown to be positive for physical, mental, and emotional wellbeing, however equine spaces where these interactions occur do include some environmental risks. There are 1.7 million jobs associated with the equine industry in the United States in addition to recreational riders, owners, and volunteers who interact with horses for substantial amounts of time daily inside built structures. One specialized facility, an “indoor arena” is a semi-indoor structure used for exercising horses and exhibiting skills during competitive events. Typically, indoor arenas have a sand or sand mixture as the footing or surface over which the horse travels, and increasingly, silica sand is being recommended due to its durable nature. It was previously identified in a semi-qualitative survey that the majority of individuals using indoor arenas have environmental concerns with dust. 27% (90/333) of respondents reported respiratory issues or allergy-like symptoms while riding with 21.6% (71/329) of respondents reporting these issues while standing on the ground observing or teaching. Frequent headaches and/or lightheadedness was reported in 9.9% (33/333) of respondents while riding and in 4.3% 14/329 while on the ground. Horse respiratory health is also negatively impacted with 58% (194/333) of respondents indicating horses cough during or after time in the indoor arena. Instructors who spent time in indoor arenas self-reported more respiratory issues than those individuals who identified as smokers, highlighting the health relevance of understanding these unique structures. To further elucidate environmental concerns and self-reported health issues, 35 facility assessments were conducted in a cross-sectional sampling design in the states of Kentucky and Ohio (USA). Data, including air speeds, were collected in a grid fashion at 15 points within the indoor arenas and then mapped spatially using krigging in ARCGIS. From the spatial maps, standard variances were obtained and differences were analyzed using multivariant analysis of variances (MANOVA) and analysis of variances (ANOVA). There were no differences for the variance of the air speeds in the spaces for facility orientation, presence and type of roof ventilation, climate control systems, amount of openings, or use of fans. Variability of the air speeds in the indoor arenas was 0.25 or less. Further analysis yielded that average air speeds within the indoor arenas were lower than 100 ft/min (0.51 m/s) which is considered still air in other animal facilities. The lack of air movement means that dust clearance is reliant on particle size and weight rather than ventilation. While further work on respirable dust is necessary, this characterization of the semi-indoor environment where animals and humans interact indicates insufficient air flow to eliminate or reduce respiratory hazards. Finally, engineering solutions to address air movement deficiencies within indoor arenas or mitigate particulate matter are critical to ensuring exposures do not lead to adverse health outcomes for equine professionals, volunteers, participants, and horses within these spaces.

Keywords: equine, indoor arena, ventilation, particulate matter, respiratory health

Procedia PDF Downloads 116
409 Monitoring the Production of Large Composite Structures Using Dielectric Tool Embedded Capacitors

Authors: Galatee Levadoux, Trevor Benson, Chris Worrall

Abstract:

With the rise of public awareness on climate change comes an increasing demand for renewable sources of energy. As a result, the wind power sector is striving to manufacture longer, more efficient and reliable wind turbine blades. Currently, one of the leading causes of blade failure in service is improper cure of the resin during manufacture. The infusion process creating the main part of the composite blade structure remains a critical step that is yet to be monitored in real time. This stage consists of a viscous resin being drawn into a mould under vacuum, then undergoing a curing reaction until solidification. Successful infusion assumes the resin fills all the voids and cures completely. Given that the electrical properties of the resin change significantly during its solidification, both the filling of the mould and the curing reaction are susceptible to be followed using dieletrometry. However, industrially available dielectrics sensors are currently too small to monitor the entire surface of a wind turbine blade. The aim of the present research project is to scale up the dielectric sensor technology and develop a device able to monitor the manufacturing process of large composite structures, assessing the conformity of the blade before it even comes out of the mould. An array of flat copper wires acting as electrodes are embedded in a polymer matrix fixed in an infusion mould. A multi-frequency analysis from 1 Hz to 10 kHz is performed during the filling of the mould with an epoxy resin and the hardening of the said resin. By following the variations of the complex admittance Y*, the filling of the mould and curing process are monitored. Results are compared to numerical simulations of the sensor in order to validate a virtual cure-monitoring system. The results obtained by drawing glycerol on top of the copper sensor displayed a linear relation between the wetted length of the sensor and the complex admittance measured. Drawing epoxy resin on top of the sensor and letting it cure at room temperature for 24 hours has provided characteristic curves obtained when conventional interdigitated sensor are used to follow the same reaction. The response from the developed sensor has shown the different stages of the polymerization of the resin, validating the geometry of the prototype. The model created and analysed using COMSOL has shown that the dielectric cure process can be simulated, so long as a sufficient time and temperature dependent material properties can be determined. The model can be used to help design larger sensors suitable for use with full-sized blades. The preliminary results obtained with the sensor prototype indicate that the infusion and curing process of an epoxy resin can be followed with the chosen configuration on a scale of several decimeters. Further work is to be devoted to studying the influence of the sensor geometry and the infusion parameters on the results obtained. Ultimately, the aim is to develop a larger scale sensor able to monitor the flow and cure of large composite panels industrially.

Keywords: composite manufacture, dieletrometry, epoxy, resin infusion, wind turbine blades

Procedia PDF Downloads 166
408 Understanding the Origins of Pesticides Metabolites in Natural Waters through the Land Use, Hydroclimatic Conditions and Water Quality

Authors: Alexis Grandcoin, Stephanie Piel, Estelle Baures

Abstract:

Brittany (France) is an agricultural region, where emerging pollutants are highly at risk to reach water bodies. Among them, pesticides metabolites are frequently detected in surface waters. The Vilaine watershed (11 000 km²) is of great interest, as a large drinking water treatment plant (100 000 m³/day) is located at the extreme downstream of it. This study aims to provide an evaluation of the pesticides metabolites pollution in the Vilaine watershed, and an understanding of their availability, in order to protect the water resource. Hydroclimatic conditions, land use, and water quality parameters controlling metabolites availability are emphasized. Later this knowledge will be used to understand the favoring conditions resulting in metabolites export towards surface water. 19 sampling points have been strategically chosen along the 220 km of the Vilaine river and its 3 main influents. Furthermore, the intakes of two drinking water plants have been sampled, one is located at the extreme downstream of the Vilaine river and the other is the riparian groundwater under the Vilaine river. 5 sampling campaigns with various hydroclimatic conditions have been carried out. Water quality parameters and hydroclimatic conditions have been measured. 15 environmentally relevant pesticides and metabolites have been analyzed. Also, these compounds are recalcitrant to classic water treatment that is why they have been selected. An evaluation of the watershed contamination has been done in 2016-2017. First observations showed that aminomethylphosphonic acid (AMPA) and metolachlor ethanesulfonic acid (MESA) are the most detected compounds in surface waters samples with 100 % and 98 % frequency of detection respectively. They are the main pollutants of the watershed regardless of the hydroclimatic conditions. AMPA concentration in the river strongly increases downstream of Rennes agglomeration (220k inhabitants) and reaches a maximum of 2.3 µg/l in low waters conditions. Groundwater contains mainly MESA, Diuron and metazachlor ESA at concentrations close to limits of quantification (LOQ) (0.02 µg/L). Metolachlor, metazachlor and alachlor due to their fast degradation in soils were found in small amounts (LOQ – 0.2 µg/L). Conversely glyphosate was regularly found during warm and sunny periods up to 0.6 µg/L. Soil uses (agricultural cultures types, urban areas, forests, wastewater treatment plants implementation), water quality parameters, and hydroclimatic conditions have been correlated to pesticides and metabolites concentration in waters. Statistical treatments showed that chloroacetamides metabolites and AMPA behave differently regardless of the hydroclimatic conditions. Chloroacetamides are correlated to each other, to agricultural areas and to typical agricultural tracers as nitrates. They are present in waters the whole year, especially during rainy periods, suggesting important stocks in soils. Also Chloroacetamides are negatively correlated with AMPA, the different forms of phosphorus, and organic matter. AMPA is ubiquitous but strongly correlated with urban areas despite the recent French regulation, restricting glyphosate to agricultural and private uses. This work helps to predict and understand metabolites present in the water resource used to craft drinking water. As the studied metabolites are difficult to remove, this project will be completed by a water treatment part.

Keywords: agricultural watershed, AMPA, metolachlor-ESA, water resource

Procedia PDF Downloads 159
407 Biodegradable Cross-Linked Composite Hydrogels Enriched with Small Molecule for Osteochondral Regeneration

Authors: Elena I. Oprita, Oana Craciunescu, Rodica Tatia, Teodora Ciucan, Reka Barabas, Orsolya Raduly, Anca Oancea

Abstract:

Healing of osteochondral defects requires repair of the damaged articular cartilage, the underlying subchondral bone and the interface between these tissues (the functional calcified layer). For this purpose, developing a single monophasic scaffold that can regenerate two specific lineages (cartilage and bone) becomes a challenge. The aim of this work was to develop variants of biodegradable cross-linked composite hydrogel based on natural polypeptides (gelatin), polysaccharides components (chondroitin-4-sulphate and hyaluronic acid), in a ratio of 2:0.08:0.02 (w/w/w) and mixed with Si-hydroxyapatite (Si-Hap), in two ratios of 1:1 and 2:1 (w/w). Si-Hap was synthesized and characterized as a better alternative to conventional Hap. Subsequently, both composite hydrogel variants were cross-linked with (N, N-(3-dimethylaminopropyl)-N-ethyl carbodiimide (EDC) and enriched with a small bioactive molecule (icariin). The small molecule icariin (Ica) (C33H40O15) is the main active constituent (flavonoid) of Herba epimedium used in traditional Chinese medicine to cure bone- and cartilage-related disorders. Ica enhances osteogenic and chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), facilitates matrix calcification and increases the specific extracellular matrix (ECM) components synthesis by chondrocytes. Afterward, the composite hydrogels were characterized for their physicochemical properties in terms of the enzymatic biodegradation in the presence of type I collagenase and trypsin, the swelling capacity and the degree of crosslinking (TNBS assay). The cumulative release of Ica and real-time concentration were quantified at predetermined periods of time, according to the standard curve of standard Ica, after hydrogels incubation in saline buffer at physiological parameters. The obtained cross-linked composite hydrogels enriched with small-molecule Ica were also characterized for morphology by scanning electron microscopy (SEM). Their cytocompatibility was evaluated according to EN ISO 10993-5:2009 standard for medical device testing. Thus, analyses regarding cell viability (Live/Dead assay), cell proliferation (Neutral Red assay) and cell adhesion to composite hydrogels (SEM) were performed using NCTC clone L929 cell line. The final results showed that both cross-linked composite hydrogel variants enriched with Ica presented optimal physicochemical, structural and biological properties to be used as a natural scaffold able to repair osteochondral defects. The data did not reveal any toxicity of composite hydrogels in NCTC stabilized cell lines within the tested range of concentrations. Moreover, cells were capable of spreading and proliferating on both composite hydrogel surfaces. In conclusion, the designed biodegradable cross-linked composites enriched with Si and Ica are recommended for further testing as natural temporary scaffolds, which can allow cell migration and synthesis of new extracellular matrix within osteochondral defects.

Keywords: composites, gelatin, osteochondral defect, small molecule

Procedia PDF Downloads 174
406 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery

Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong

Abstract:

The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.

Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition

Procedia PDF Downloads 289
405 Effect of the Diverse Standardized Patient Simulation Cultural Competence Education Strategy on Nursing Students' Transcultural Self-Efficacy Perceptions

Authors: Eda Ozkara San

Abstract:

Nurse educators have been charged by several nursing organizations and accrediting bodies to provide innovative and evidence-based educational experiences, both didactic and clinical, to help students to develop the knowledge, skills, and attitudes needed to provide culturally competent nursing care to patients. Clinical simulation, which offers the opportunity for students to practice nursing skills in a risk-free, controlled environment and helps develop self-efficacy (confidence) within the nursing role. As one simulation method, the standardized patients (SPs) simulation helps educators to teach nursing students variety of skills in nursing, medicine, and other health professions. It can be a helpful tool for nurse educators to enhance cultural competence of nursing students. An alarming gap exists within the literature concerning the effectiveness of SP strategy to enhance cultural competence development of diverse student groups, who must work with patients from various backgrounds. This grant-supported, longitudinal, one-group, pretest and post-test educational intervention study aimed to examine the effect of the Diverse Standardized Patient Simulation (DSPS) cultural competence education strategy on students’ (n = 53) transcultural self-efficacy (TSE). The researcher-developed multidimensional DSPS strategy involved careful integration of transcultural nursing skills guided by the Cultural Competence and Confidence (CCC) model. As a carefully orchestrated teaching and learning strategy by specifically utilizing the SP pedagogy, the DSPS also followed international guidelines and standards for the design, implementation, evaluation, and SP training; and had content validity review. The DSPS strategy involved two simulation scenarios targeting underrepresented patient populations (Muslim immigrant woman with limited English proficiency and Irish-Italian American gay man with his partner (Puerto Rican) to be utilized in a second-semester, nine-credit, 15-week medical-surgical nursing course at an urban public US university. Five doctorally prepared content experts reviewed the DSPS strategy for content validity. The item-level content validity index (I-CVI) score was calculated between .80-1.0 on the evaluation forms. Jeffreys’ Transcultural Self-Efficacy Tool (TSET) was administered as a pretest and post-test to assess students’ changes in cognitive, practical, and affective dimensions of TSE. Results gained from this study support that the DSPS cultural competence education strategy assisted students to develop cultural competence and caused statistically significant changes (increase) in students’ TSE perceptions. Results also supported that all students, regardless of their background, benefit (and require) well designed cultural competence education strategies. The multidimensional DSPS strategy is found to be an effective way to foster nursing students’ cultural competence development. Step-by-step description of the DSPS provides an easy adaptation of this strategy with different student populations and settings.

Keywords: cultural competence development, the cultural competence and confidence model, CCC model, educational intervention, transcultural self-efficacy, TSE, transcultural self-efficacy tool, TSET

Procedia PDF Downloads 149