Search results for: learner motivation model
1617 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data
Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz
Abstract:
In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.Keywords: real-time spatial big data, quality of service, vertical partitioning, horizontal partitioning, matching algorithm, hamming distance, stream query
Procedia PDF Downloads 1571616 Factors Associated with Recurrence and Long-Term Survival in Younger and Postmenopausal Women with Breast Cancer
Authors: Sopit Tubtimhin, Chaliya Wamaloon, Anchalee Supattagorn
Abstract:
Background and Significance: Breast cancer is the most frequently diagnosed and leading cause of cancer death among women. This study aims to determine factors potentially predicting recurrence and long-term survival after the first recurrence in surgically treated patients between postmenopausal and younger women. Methods and Analysis: A retrospective cohort study was performed on 498 Thai women with invasive breast cancer, who had undergone mastectomy and been followed-up at Ubon Ratchathani Cancer Hospital, Thailand. We collected based on a systematic chart audit from medical records and pathology reports between January 1, 2002, and December 31, 2011. The last follow-up time point for surviving patients was December 31, 2016. A Cox regression model was used to calculate hazard ratios of recurrence and death. Findings: The median age was 49 (SD ± 9.66) at the time of diagnosis, 47% was post-menopausal women ( ≥ 51years and not experienced any menstrual flow for a minimum of 12 months), and 53 % was younger women ( ˂ 51 years and have menstrual period). Median time from the diagnosis to the last follow-up or death was 10.81 [95% CI = 9.53-12.07] years in younger cases and 8.20 [95% CI = 6.57-9.82] years in postmenopausal cases. The recurrence-free survival (RFS) for younger estimates at 1, 5 and 10 years of 95.0 %, 64.0% and 58.93% respectively, appeared slightly better than the 92.7%, 58.1% and 53.1% for postmenopausal women [HRadj = 1.25, 95% CI = 0.95-1.64]. Regarding overall survival (OS) for younger at 1, 5 and 10 years were 97.7%, 72.7 % and 52.7% respectively, for postmenopausal patients, OS at 1, 5 and 10 years were 95.7%, 70.0% and 44.5 respectively, there were no significant differences in survival [HRadj = 1.23, 95% CI = 0.94 -1.64]. Multivariate analysis identified five risk factors for negatively impacting on survival were triple negative [HR= 2.76, 95% CI = 1.47-5.19], Her2-enriched [HR = 2.59, 95% CI = 1.37-4.91], luminal B [HR = 2.29, 95 % CI=1.35-3.89], not free margin [HR = 1.98, 95%CI=1.00-3.96] and patients who received only adjuvant chemotherapy [HR= 3.75, 95% CI = 2.00-7.04]. Statistically significant risks of overall cancer recurrence were Her2-enriched [HR = 5.20, 95% CI = 2.75-9.80], triple negative [HR = 3.87, 95% CI = 1.98-7.59], luminal B [HR= 2.59, 95% CI = 1.48-4.54,] and patients who received only adjuvant chemotherapy [HR= 2.59, 95% CI = 1.48-5.66]. Discussion and Implications: Outcomes from this studies have shown that postmenopausal women have been associated with increased risk of recurrence and mortality. As the results, it provides useful information for planning the screening and treatment of early-stage breast cancer in the future.Keywords: breast cancer, menopause status, recurrence-free survival, overall survival
Procedia PDF Downloads 1631615 Sexual Health Experiences of Older Men: Health Care Professionals' Perspectives
Authors: Andriana E. Tran, Anna Chur-Hansen
Abstract:
Sexual health is an important aspect of overall wellbeing. This study aimed to explore the sexual health experiences of men aged 50 years and over from the perspective of health care professional participants who were specializing in sexual health care and who consulted with older men. A total of ten interviews were conducted. Eleven themes were identified regarding men’s experiences with sexual health care as reported by participants. 1) Biologically focused: older male clients focus largely on the biological aspect of their sexual health without consideration of other factors which might affect their functioning. 2) Psychological concerns: there is an interaction between mental and sexual health but older male clients do not necessarily see this. 3) Medicalization of sexual functioning: advances in medicine that aid with erectile difficulties which consequently mean that older men tend to favor a medical solution to their sexual concerns. 4) Masculine identity: sexual health concerns are linked to older male clients’ sense of masculinity. 5) Penile functionality: most concerns that older male clients have center on their penile functionality. 6) Relationships: many male clients seek sexual help as they believe it improves relationships. Conversely, having supportive partners may mean older male clients focus less on the physicality of sex. 7) Grief and loss: men experience grief and loss – the loss of their sexual functioning, grief from loss of a long-term partner, and loss of intimacy and privacy when moving from independent living to residential care. 8) Social stigma: older male clients experience stigma around aging sexuality and sex in general. 9) Help-seeking behavior: older male clients will usually seek mechanistic solution for biological sexual concerns, such as medication used for penile dysfunction. 10) Dismissed by health care professionals: many older male clients seek specialist sexual health care without the knowledge of their doctors as they feel dismissed due to lack of expertise, lack of time, and the doctor’s personal attitudes and characteristics. Finally, 11) Lack of resources: there is a distinct lack of resources and training to understand sexuality for healthy older men. These findings may inform future research, professional training, public health campaigns and policies for sexual health in older men.Keywords: ageing, biopsychosocial model, men's health, sexual health
Procedia PDF Downloads 1721614 Krill-Herd Step-Up Approach Based Energy Efficiency Enhancement Opportunities in the Offshore Mixed Refrigerant Natural Gas Liquefaction Process
Authors: Kinza Qadeer, Muhammad Abdul Qyyum, Moonyong Lee
Abstract:
Natural gas has become an attractive energy source in comparison with other fossil fuels because of its lower CO₂ and other air pollutant emissions. Therefore, compared to the demand for coal and oil, that for natural gas is increasing rapidly world-wide. The transportation of natural gas over long distances as a liquid (LNG) preferable for several reasons, including economic, technical, political, and safety factors. However, LNG production is an energy-intensive process due to the tremendous amount of power requirements for compression of refrigerants, which provide sufficient cold energy to liquefy natural gas. Therefore, one of the major issues in the LNG industry is to improve the energy efficiency of existing LNG processes through a cost-effective approach that is 'optimization'. In this context, a bio-inspired Krill-herd (KH) step-up approach was examined to enhance the energy efficiency of a single mixed refrigerant (SMR) natural gas liquefaction (LNG) process, which is considered as a most promising candidate for offshore LNG production (FPSO). The optimal design of a natural gas liquefaction processes involves multivariable non-linear thermodynamic interactions, which lead to exergy destruction and contribute to process irreversibility. As key decision variables, the optimal values of mixed refrigerant flow rates and process operating pressures were determined based on the herding behavior of krill individuals corresponding to the minimum energy consumption for LNG production. To perform the rigorous process analysis, the SMR process was simulated in Aspen Hysys® software and the resulting model was connected with the Krill-herd approach coded in MATLAB. The optimal operating conditions found by the proposed approach significantly reduced the overall energy consumption of the SMR process by ≤ 22.5% and also improved the coefficient of performance in comparison with the base case. The proposed approach was also compared with other well-proven optimization algorithms, such as genetic and particle swarm optimization algorithms, and was found to exhibit a superior performance over these existing approaches.Keywords: energy efficiency, Krill-herd, LNG, optimization, single mixed refrigerant
Procedia PDF Downloads 1551613 Effects of Cold Treatments on Methylation Profiles and Reproduction Mode of Diploid and Tetraploid Plants of Ranunculus kuepferi (Ranunculaceae)
Authors: E. Syngelaki, C. C. F. Schinkel, S. Klatt, E. Hörandl
Abstract:
Environmental influence can alter the conditions for plant development and can trigger changes in epigenetic variation. Thus, the exposure to abiotic environmental stress can lead to different DNA methylation profiles and may have evolutionary consequences for adaptation. Epigenetic control mechanisms may further influence mode of reproduction. The alpine species R. kuepferi has diploid and tetraploid cytotypes, that are mostly sexual and facultative apomicts, respectively. Hence, it is a suitable model system for studying the correlations of mode of reproduction, ploidy, and environmental stress. Diploid and tetraploid individuals were placed in two climate chambers and treated with low (+7°C day/+2°C night, -1°C cold shocks for three nights per week) and warm (control) temperatures (+15°C day/+10°C night). Subsequently, methylation sensitive-Amplified Fragment-Length Polymorphism (AFPL) markers were used to screen genome-wide methylation alterations triggered by stress treatments. The dataset was analyzed for four groups regarding treatment (cold/warm) and ploidy level (diploid/tetraploid), and also separately for full methylated, hemi-methylated and unmethylated sites. Patterns of epigenetic variation suggested that diploids differed significantly in their profiles from tetraploids independent from treatment, while treatments did not differ significantly within cytotypes. Furthermore, diploids are more differentiated than the tetraploids in overall methylation profiles of both treatments. This observation is in accordance with the increased frequency of apomictic seed formation in diploids and maintenance of facultative apomixis in tetraploids during the experiment. Global analysis of molecular variance showed higher epigenetic variation within groups than among them, while locus-by-locus analysis of molecular variance showed a high number (54.7%) of significantly differentiated un-methylated loci. To summarise, epigenetic variation seems to depend on ploidy level, and in diploids may be correlated to changes in mode of reproduction. However, further studies are needed to elucidate the mechanism and possible functional significance of these correlations.Keywords: apomixis, cold stress, DNA methylation, Ranunculus kuepferi
Procedia PDF Downloads 1601612 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 1671611 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach
Authors: Darlington Mapiye, Mpho Mokoatle, James Mashiyane, Stephanie Muller, Gciniwe Dlamini
Abstract:
Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on k-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0 %, 80.5 %, 80.5 %, 63.6 %, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanismsKeywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing
Procedia PDF Downloads 1591610 An Investigative Study into Good Governance in the Non-Profit Sector in South Africa: A Systems Approach Perspective
Authors: Frederick M. Dumisani Xaba, Nokuthula G. Khanyile
Abstract:
There is a growing demand for greater accountability, transparency and ethical conduct based on sound governance principles in the developing world. Funders, donors and sponsors are increasingly demanding more transparency, better value for money and adherence to good governance standards. The drive towards improved governance measures is largely influenced by the need to ‘plug the leaks’, deal with malfeasance, engender greater levels of accountability and good governance and to ultimately attract further funding or investment. This is the case with the Non-Profit Organizations (NPOs) in South Africa in general, and in the province of KwaZulu-Natal in particular. The paper draws from the good governance theory, stakeholder theory and systems thinking to critically examine the requirements for good governance for the NPO sector from a theoretical and legislative point and to systematically looks at the contours of governance currently among the NPOs. The paper did this through the rigorous examination of the vignettes of cases of governance among selected NPOs based in KwaZulu-Natal. The study used qualitative and quantitative research methodologies through document analysis, literature review, semi-structured interviews, focus groups and statistical analysis from the various primary and secondary sources. It found some good cases of good governance but also found frightening levels of poor governance. There was an exponential growth of NPOs registered during the period under review, equally so there was an increase in cases of non-compliance to good governance practices. NPOs operate in an increasingly complex environment. There is contestation for influence and access to resources. Stakeholder management is poorly conceptualized and executed. Recognizing that the NPO sector operates in an environment characterized by complexity, constant changes, unpredictability, contestation, diversity and divergent views of different stakeholders, there is a need to apply legislative and systems thinking approaches to strengthen governance to withstand this turbulence through a capacity development model that recognizes these contextual and environmental challenges.Keywords: good governance, non-profit organizations, stakeholder theory, systems theory
Procedia PDF Downloads 1221609 Study of the Transport of ²²⁶Ra Colloidal in Mining Context Using a Multi-Disciplinary Approach
Authors: Marine Reymond, Michael Descostes, Marie Muguet, Clemence Besancon, Martine Leermakers, Catherine Beaucaire, Sophie Billon, Patricia Patrier
Abstract:
²²⁶Ra is one of the radionuclides resulting from the disintegration of ²³⁸U. Due to its half-life (1600 y) and its high specific activity (3.7 x 1010 Bq/g), ²²⁶Ra is found at the ultra-trace level in the natural environment (usually below 1 Bq/L, i.e. 10-13 mol/L). Because of its decay in ²²²Rn, a radioactive gas with a shorter half-life (3.8 days) which is difficult to control and dangerous for humans when inhaled, ²²⁶Ra is subject to a dedicated monitoring in surface waters especially in the context of uranium mining. In natural waters, radionuclides occur in dissolved, colloidal or particular forms. Due to the size of colloids, generally ranging between 1 nm and 1 µm and their high specific surface areas, the colloidal fraction could be involved in the transport of trace elements, including radionuclides in the environment. The colloidal fraction is not always easy to determine and few existing studies focus on ²²⁶Ra. In the present study, a complete multidisciplinary approach is proposed to assess the colloidal transport of ²²⁶Ra. It includes water sampling by conventional filtration (0.2µm) and the innovative Diffusive Gradient in Thin Films technique to measure the dissolved fraction (<10nm), from which the colloidal fraction could be estimated. Suspended matter in these waters were also sampled and characterized mineralogically by X-Ray Diffraction, infrared spectroscopy and scanning electron microscopy. All of these data, which were acquired on a rehabilitated former uranium mine, allowed to build a geochemical model using the geochemical calculation code PhreeqC to describe, as accurately as possible, the colloidal transport of ²²⁶Ra. Colloidal transport of ²²⁶Ra was found, for some of the sampling points, to account for up to 95% of the total ²²⁶Ra measured in water. Mineralogical characterization and associated geochemical modelling highlight the role of barite, a barium sulfate mineral well known to trap ²²⁶Ra into its structure. Barite was shown to be responsible for the colloidal ²²⁶Ra fraction despite the presence of kaolinite and ferrihydrite, which are also known to retain ²²⁶Ra by sorption.Keywords: colloids, mining context, radium, transport
Procedia PDF Downloads 1561608 Three Issues for Integrating Artificial Intelligence into Legal Reasoning
Authors: Fausto Morais
Abstract:
Artificial intelligence has been widely used in law. Programs are able to classify suits, to identify decision-making patterns, to predict outcomes, and to formalize legal arguments as well. In Brazil, the artificial intelligence victor has been classifying cases to supreme court’s standards. When those programs act doing those tasks, they simulate some kind of legal decision and legal arguments, raising doubts about how artificial intelligence can be integrated into legal reasoning. Taking this into account, the following three issues are identified; the problem of hypernormatization, the argument of legal anthropocentrism, and the artificial legal principles. Hypernormatization can be seen in the Brazilian legal context in the Supreme Court’s usage of the Victor program. This program generated efficiency and consistency. On the other hand, there is a feasible risk of over standardizing factual and normative legal features. Then legal clerks and programmers should work together to develop an adequate way to model legal language into computational code. If this is possible, intelligent programs may enact legal decisions in easy cases automatically cases, and, in this picture, the legal anthropocentrism argument takes place. Such an argument argues that just humans beings should enact legal decisions. This is so because human beings have a conscience, free will, and self unity. In spite of that, it is possible to argue against the anthropocentrism argument and to show how intelligent programs may work overcoming human beings' problems like misleading cognition, emotions, and lack of memory. In this way, intelligent machines could be able to pass legal decisions automatically by classification, as Victor in Brazil does, because they are binding by legal patterns and should not deviate from them. Notwithstanding, artificial intelligent programs can be helpful beyond easy cases. In hard cases, they are able to identify legal standards and legal arguments by using machine learning. For that, a dataset of legal decisions regarding a particular matter must be available, which is a reality in Brazilian Judiciary. Doing such procedure, artificial intelligent programs can support a human decision in hard cases, providing legal standards and arguments based on empirical evidence. Those legal features claim an argumentative weight in legal reasoning and should serve as references for judges when they must decide to maintain or overcome a legal standard.Keywords: artificial intelligence, artificial legal principles, hypernormatization, legal anthropocentrism argument, legal reasoning
Procedia PDF Downloads 1451607 Topographic Characteristics Derived from UAV Images to Detect Ephemeral Gully Channels
Authors: Recep Gundogan, Turgay Dindaroglu, Hikmet Gunal, Mustafa Ulukavak, Ron Bingner
Abstract:
A majority of total soil losses in agricultural areas could be attributed to ephemeral gullies caused by heavy rains in conventionally tilled fields; however, ephemeral gully erosion is often ignored in conventional soil erosion assessments. Ephemeral gullies are often easily filled from normal soil tillage operations, which makes capturing the existing ephemeral gullies in croplands difficult. This study was carried out to determine topographic features, including slope and aspect composite topographic index (CTI) and initiation points of gully channels, using images obtained from unmanned aerial vehicle (UAV) images. The study area was located in Topcu stream watershed in the eastern Mediterranean Region, where intense rainfall events occur over very short time periods. The slope varied between 0.7 and 99.5%, and the average slope was 24.7%. The UAV (multi-propeller hexacopter) was used as the carrier platform, and images were obtained with the RGB camera mounted on the UAV. The digital terrain models (DTM) of Topçu stream micro catchment produced using UAV images and manual field Global Positioning System (GPS) measurements were compared to assess the accuracy of UAV based measurements. Eighty-one gully channels were detected in the study area. The mean slope and CTI values in the micro-catchment obtained from DTMs generated using UAV images were 19.2% and 3.64, respectively, and both slope and CTI values were lower than those obtained using GPS measurements. The total length and volume of the gully channels were 868.2 m and 5.52 m³, respectively. Topographic characteristics and information on ephemeral gully channels (location of initial point, volume, and length) were estimated with high accuracy using the UAV images. The results reveal that UAV-based measuring techniques can be used in lieu of existing GPS and total station techniques by using images obtained with high-resolution UAVs.Keywords: aspect, compound topographic index, digital terrain model, initial gully point, slope, unmanned aerial vehicle
Procedia PDF Downloads 1141606 Matrix-Based Linear Analysis of Switched Reluctance Generator with Optimum Pole Angles Determination
Authors: Walid A. M. Ghoneim, Hamdy A. Ashour, Asmaa E. Abdo
Abstract:
In this paper, linear analysis of a Switched Reluctance Generator (SRG) model is applied on the most common configurations (4/2, 6/4 and 8/6) for both conventional short-pitched and fully-pitched designs, in order to determine the optimum stator/rotor pole angles at which the maximum output voltage is generated per unit excitation current. This study is focused on SRG analysis and design as a proposed solution for renewable energy applications, such as wind energy conversion systems. The world’s potential to develop the renewable energy technologies through dedicated scientific researches was the motive behind this study due to its positive impact on economy and environment. In addition, the problem of rare earth metals (Permanent magnet) caused by mining limitations, banned export by top producers and environment restrictions leads to the unavailability of materials used for rotating machines manufacturing. This challenge gave authors the opportunity to study, analyze and determine the optimum design of the SRG that has the benefit to be free from permanent magnets, rotor windings, with flexible control system and compatible with any application that requires variable-speed operation. In addition, SRG has been proved to be very efficient and reliable in both low-speed or high-speed applications. Linear analysis was performed using MATLAB simulations based on the (Modified generalized matrix approach) of Switched Reluctance Machine (SRM). About 90 different pole angles combinations and excitation patterns were simulated through this study, and the optimum output results for each case were recorded and presented in detail. This procedure has been proved to be applicable for any SRG configuration, dimension and excitation pattern. The delivered results of this study provide evidence for using the 4-phase 8/6 fully pitched SRG as the main optimum configuration for the same machine dimensions at the same angular speed.Keywords: generalized matrix approach, linear analysis, renewable applications, switched reluctance generator
Procedia PDF Downloads 1981605 Factors Impacting Geostatistical Modeling Accuracy and Modeling Strategy of Fluvial Facies Models
Authors: Benbiao Song, Yan Gao, Zhuo Liu
Abstract:
Geostatistical modeling is the key technic for reservoir characterization, the quality of geological models will influence the prediction of reservoir performance greatly, but few studies have been done to quantify the factors impacting geostatistical reservoir modeling accuracy. In this study, 16 fluvial prototype models have been established to represent different geological complexity, 6 cases range from 16 to 361 wells were defined to reproduce all those 16 prototype models by different methodologies including SIS, object-based and MPFS algorithms accompany with different constraint parameters. Modeling accuracy ratio was defined to quantify the influence of each factor, and ten realizations were averaged to represent each accuracy ratio under the same modeling condition and parameters association. Totally 5760 simulations were done to quantify the relative contribution of each factor to the simulation accuracy, and the results can be used as strategy guide for facies modeling in the similar condition. It is founded that data density, geological trend and geological complexity have great impact on modeling accuracy. Modeling accuracy may up to 90% when channel sand width reaches up to 1.5 times of well space under whatever condition by SIS and MPFS methods. When well density is low, the contribution of geological trend may increase the modeling accuracy from 40% to 70%, while the use of proper variogram may have very limited contribution for SIS method. It can be implied that when well data are dense enough to cover simple geobodies, few efforts were needed to construct an acceptable model, when geobodies are complex with insufficient data group, it is better to construct a set of robust geological trend than rely on a reliable variogram function. For object-based method, the modeling accuracy does not increase obviously as SIS method by the increase of data density, but kept rational appearance when data density is low. MPFS methods have the similar trend with SIS method, but the use of proper geological trend accompany with rational variogram may have better modeling accuracy than MPFS method. It implies that the geological modeling strategy for a real reservoir case needs to be optimized by evaluation of dataset, geological complexity, geological constraint information and the modeling objective.Keywords: fluvial facies, geostatistics, geological trend, modeling strategy, modeling accuracy, variogram
Procedia PDF Downloads 2641604 Climate Change Winners and Losers: Contrasting Responses of Two Aphaniops Species in Oman
Authors: Aziza S. Al Adhoobi, Amna Al Ruheili, Saud M. Al Jufaili
Abstract:
This study investigates the potential effects of climate change on the habitat suitability of two Aphaniops species (Teleostei: Aphaniidae) found in the Oman Mountains and the Southwestern Arabian Coast. Aphaniops kruppi, an endemic species, is found in various water bodies such as wadis, springs, aflaj, spring-fed streams, and some coastal backwaters. Aphaniops stoliczkanus, on the other hand, inhabits brackish and freshwater habitats, particularly in the lower parts of wadies and aflaj, and exhibits euryhaline characteristics. Using Maximum Entropy Modeling (MaxEnt) in conjunction with ArcGIS (10.8.2) and CHELSA bioclimatic variables, topographic indices, and other pertinent environmental factors, the study modeled the potential impacts of climate change based on three Representative Concentration Pathways (RCPs 2.6, 7.0, 8.5) for the periods 2011-2040, 2041-2070, and 2071-2100. The model demonstrated exceptional predictive accuracy, achieving AUC values of 0.992 for A. kruppi and 0.983 for A. stoliczkanus. For A. kruppi, the most influential variables were the mean monthly climate moisture index (Cmi_m), the mean diurnal range (Bio2), and the sediment transport index (STI), accounting for 39.9%, 18.3%, and 8.4%, respectively. As for A. stoliczkanus, the key variables were the sediment transport index (STI), stream power index (SPI), and precipitation of the coldest quarter (Bio19), contributing 31%, 20.2%, and 13.3%, respectively. A. kruppi showed an increase in habitat suitability, especially in low and medium suitability areas. By 2071-2100, high suitability areas increased slightly by 0.05% under RCP 2.6, but declined by -0.02% and -0.04% under RCP 7.0 and 8.5, respectively. A. stoliczkanus exhibited a broader range of responses. Under RCP 2.6, all suitability categories increased by 2071-2100, with high suitability areas increasing by 0.01%. However, low and medium suitability areas showed mixed trends under RCP 7.0 and 8.5, with declines of -0.17% and -0.16%, respectively. The study highlights that climatic and topographical factors significantly influence the habitat suitability of Aphaniops species in Oman. Therefore, species-specific conservation strategies are crucial to address the impacts of climate change.Keywords: Aphaniops kruppi, Aphaniops stoliczkanus, Climate change, Habitat suitability, MaxEnt
Procedia PDF Downloads 171603 Identification of the Most Effective Dosage of Clove Oil Solution as an Alternative for Synthetic Anaesthetics on Zebrafish (Danio rerio)
Authors: D. P. N. De Silva, N. P. P. Liyanage
Abstract:
Zebrafish (Danio rerio) in the family Cyprinidae, is a tropical freshwater fish widely used as a model organism in scientific research. Use of effective and economical anaesthetic is very important when handling fish. Clove oil (active ingredient: eugenol) was identified as a natural product which is safer and economical compared to synthetic chemicals like methanesulfonate (MS-222). Therefore, the aim of this study was to identify the most effective dosage of clove oil solution as an anaesthetic on mature Zebrafish. Clove oil solution was prepared by mixing pure clove oil with 94% ethanol at a ratio of 1:9 respectively. From that solution, different volumes were selected as (0.4 ml, 0.6 ml and 0.8 ml) and dissolved in one liter of conditioned water (dosages : 0.4 ml/L, 0.6 ml/L and 0.8 ml/L). Water quality parameters (pH, temperature and conductivity) were measured before and after adding clove oil solution. Mature Zebrafish with similar standard length (2.76 ± 0.1 cm) and weight (0.524 ± 0.1 g) were selected for this experiment. Time taken for loss of equilibrium (initiation phase) and complete loss of movements including opercular movement (anaesthetic phase) were measured. To detect the efficacy on anaesthetic recovery, time taken to begin opercular movements (initiation of recovery phase) until swimming (post anaesthetic phase) were observed. The results obtained were analyzed according to the analysis of variance (ANOVA) and Tukeys’ method using SPSS version 17.0 at 95% confidence interval (p<0.5). According to the results, there was no significant difference at the initiation phase of anaesthesia in all three doses though the time taken was varied from 0.14 to 0.41 minutes. Mean value of the time taken to complete the anaesthetic phase at 0.4 ml/L dosage was significantly different with 0.6 ml/L and 0.8 ml/L dosages independently (p=0.01). There was no significant difference among recovery times at all dosages but 0.8 ml/L dosage took longer time compared to 0.6 ml/L dosage. The water quality parameters (pH and temperature) were stable throughout the experiment except conductivity, which increased with the higher dosage. In conclusion, the best dosage need to anaesthetize Zebrafish using clove oil solution was 0.6 ml/L due to its fast initiation of anaesthesia and quick recovery compared to the other two dosages. Therefore clove oil can be used as a good substitute for synthetic anaesthetics because of its efficacy at a lower dosage with higher safety at a low cost.Keywords: anaesthetics, clove oil, zebrafish, Cyprinidae
Procedia PDF Downloads 7161602 The Effect of Technology on International Marketing Trading Researches and Analysis
Authors: Omil Nady Mahrous Maximous
Abstract:
The article deals with the use of modern information technologies to achieve pro-ecological marketing goals in company-customer relationships. The purpose of the article is to show the possibilities of implementing modern information technologies. In B2C relationships, marketing departments face challenges stemming from the need to quickly segment customers and the current fragmentation of data across many systems, which significantly hinders the achievement of marketing goals. Thus, Article proposes the use of modern IT solutions in the field of marketing activities of companies, taking into account their environmental goals. As a result, its importance for the economic and social development of the emerging countries has increased. While traditional companies emphasize profit maximization as a core business principle, social enterprises must solve social problems at the expense of profit. This rationale gives social enterprises an edge over traditional businesses by meeting the needs of those at the bottom of the pyramid. This also represents a major challenge for social business, since social business acts on the one hand for the benefit of the public and on the other strives for financial stability. Otherwise, the company is unlikely to be fired from the company. Cultures play a role in business communication and research. Using the example of language in international relations, the article presents the problem of the articulation of research cultures in management and linguistics and of cultures as such. After an overview of current research on language in international relations, this article presents the approach to communication in international economy from a linguistic point of view and tries to explain the problems of communication in business starting from linguistic research. A step towards interdisciplinary research that brings together research in the fields of management and linguistics.Keywords: international marketing, marketing mix, marketing research, small and medium-sized enterprises, strategic marketing, B2B digital marketing strategy, digital marketing, digital marketing maturity model, SWOT analysis consumer behavior, experience, experience marketing, marketing employee organizational performance, internal marketing, internal customer, direct marketing, mobile phones mobile marketing, Sms advertising
Procedia PDF Downloads 451601 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs Based on Machine Learning Algorithms
Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios
Abstract:
Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity, and aflatoxinogenic capacity of the strains, topography, soil, and climate parameters of the fig orchards, are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive, and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), the concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P, and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques, i.e., dimensionality reduction on the original dataset (principal component analysis), metric learning (Mahalanobis metric for clustering), and k-nearest neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson correlation coefficient (PCC) between observed and predicted values.Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction
Procedia PDF Downloads 1841600 Impact of Positive Psychology Education and Interventions on Well-Being: A Study of Students Engaged in Pastoral Care
Authors: Inna R. Edara, Haw-Lin Wu
Abstract:
Positive psychology investigates human strengths and virtues and promotes well-being. Relying on this assumption, positive interventions have been continuously designed to build pleasure and happiness, joy and contentment, engagement and meaning, hope and optimism, satisfaction and gratitude, spirituality, and various other positive measures of well-being. In line with this model of positive psychology and interventions, this study investigated certain measures of well-being in a group of 45 students enrolled in an 18-week positive psychology course and simultaneously engaged in service-oriented interventions that they chose for themselves based on the course content and individual interests. Students’ well-being was measured at the beginning and end of the course. The well-being indicators included positive automatic thoughts, optimism and hope, satisfaction with life, and spirituality. A paired-samples t-test conducted to evaluate the impact of class content and service-oriented interventions on students’ scores of well-being indicators indicated statistically significant increase from pre-class to post-class scores. There were also significant gender differences in post-course well-being scores, with females having higher levels of well-being than males. A two-way between groups analysis of variance indicated a significant interaction effect of age by gender on the post-course well-being scores, with females in the age group of 56-65 having the highest scores of well-being in comparison to the males in the same age group. Regression analyses indicated that positive automatic thought significantly predicted hope and satisfaction with life in the pre-course analysis. In the post-course regression analysis, spiritual transcendence made a significant contribution to optimism, and positive automatic thought made a significant contribution to both hope and satisfaction with life. Finally, a significant test between pre-course and post-course regression coefficients indicated that the regression coefficients at pre-course were significantly different from post-course coefficients, suggesting that the positive psychology course and the interventions were helpful in raising the levels of well-being. The overall results suggest a substantial increase in the participants’ well-being scores after engaging in the positive-oriented interventions, implying a need for designing more positive interventions in education to promote well-being.Keywords: hope, optimism, positive automatic thoughts, satisfaction with life, spirituality, well-being
Procedia PDF Downloads 2181599 Creating and Questioning Research-Oriented Digital Outputs to Manuscript Metadata: A Case-Based Methodological Investigation
Authors: Diandra Cristache
Abstract:
The transition of traditional manuscript studies into the digital framework closely affects the methodological premises upon which manuscript descriptions are modeled, created, and questioned for the purpose of research. This paper intends to explore the issue by presenting a methodological investigation into the process of modeling, creating, and questioning manuscript metadata. The investigation is founded on a close observation of the Polonsky Greek Manuscripts Project, a collaboration between the Universities of Cambridge and Heidelberg. More than just providing a realistic ground for methodological exploration, along with a complete metadata set for computational demonstration, the case study also contributes to a broader purpose: outlining general methodological principles for making the most out of manuscript metadata by means of research-oriented digital outputs. The analysis mainly focuses on the scholarly approach to manuscript descriptions, in the specific instance where the act of metadata recording does not have a programmatic research purpose. Close attention is paid to the encounter of 'traditional' practices in manuscript studies with the formal constraints of the digital framework: does the shift in practices (especially from the straight narrative of free writing towards the hierarchical constraints of the TEI encoding model) impact the structure of metadata and its capability to respond specific research questions? It is argued that flexible structure of TEI and traditional approaches to manuscript description lead to a proliferation of markup: does an 'encyclopedic' descriptive approach ensure the epistemological relevance of the digital outputs to metadata? To provide further insight on the computational approach to manuscript metadata, the metadata of the Polonsky project are processed with techniques of distant reading and data networking, thus resulting in a new group of digital outputs (relational graphs, geographic maps). The computational process and the digital outputs are thoroughly illustrated and discussed. Eventually, a retrospective analysis evaluates how the digital outputs respond to the scientific expectations of research, and the other way round, how the requirements of research questions feed back into the creation and enrichment of metadata in an iterative loop.Keywords: digital manuscript studies, digital outputs to manuscripts metadata, metadata interoperability, methodological issues
Procedia PDF Downloads 1401598 Analysis of Socio-Economics of Tuna Fisheries Management (Thunnus Albacares Marcellus Decapterus) in Makassar Waters Strait and Its Effect on Human Health and Policy Implications in Central Sulawesi-Indonesia
Authors: Siti Rahmawati
Abstract:
Indonesia has had long period of monetary economic crisis and it is followed by an upward trend in the price of fuel oil. This situation impacts all aspects of tuna fishermen community. For instance, the basic needs of fishing communities increase and the lower purchasing power then lead to economic and social instability as well as the health of fishermen household. To understand this AHP method is applied to acknowledge the model of tuna fisheries management priorities and cold chain marketing channel and the utilization levels that impact on human health. The study is designed as a development research with the number of 180 respondents. The data were analyzed by Analytical Hierarchy Process (AHP) method. The development of tuna fishery business can improve productivity of production with economic empowerment activities for coastal communities, improving the competitiveness of products, developing fish processing centers and provide internal capital for the development of optimal fishery business. From economic aspects, fishery business is more attracting because the benefit cost ratio of 2.86. This means that for 10 years, the economic life of this project can work well as B/C> 1 and therefore the rate of investment is economically viable. From the health aspects, tuna can reduce the risk of dying from heart disease by 50%, because tuna contain selenium in the human body. The consumption of 100 g of tuna meet 52.9% of the selenium in the body and activating the antioxidant enzyme glutathione peroxidaxe which can protect the body from free radicals and stimulate various cancers. The results of the analytic hierarchy process that the quality of tuna products is the top priority for export quality as well as quality control in order to compete in the global market. The implementation of the policy can increase the income of fishermen and reduce the poverty of fishermen households and have impact on the human health whose has high risk of disease.Keywords: management of tuna, social, economic, health
Procedia PDF Downloads 3161597 Revolutionizing Legal Drafting: Leveraging Artificial Intelligence for Efficient Legal Work
Authors: Shreya Poddar
Abstract:
Legal drafting and revising are recognized as highly demanding tasks for legal professionals. This paper introduces an approach to automate and refine these processes through the use of advanced Artificial Intelligence (AI). The method employs Large Language Models (LLMs), with a specific focus on 'Chain of Thoughts' (CoT) and knowledge injection via prompt engineering. This approach differs from conventional methods that depend on comprehensive training or fine-tuning of models with extensive legal knowledge bases, which are often expensive and time-consuming. The proposed method incorporates knowledge injection directly into prompts, thereby enabling the AI to generate more accurate and contextually appropriate legal texts. This approach substantially decreases the necessity for thorough model training while preserving high accuracy and relevance in drafting. Additionally, the concept of guardrails is introduced. These are predefined parameters or rules established within the AI system to ensure that the generated content adheres to legal standards and ethical guidelines. The practical implications of this method for legal work are considerable. It has the potential to markedly lessen the time lawyers allocate to document drafting and revision, freeing them to concentrate on more intricate and strategic facets of legal work. Furthermore, this method makes high-quality legal drafting more accessible, possibly reducing costs and expanding the availability of legal services. This paper will elucidate the methodology, providing specific examples and case studies to demonstrate the effectiveness of 'Chain of Thoughts' and knowledge injection in legal drafting. The potential challenges and limitations of this approach will also be discussed, along with future prospects and enhancements that could further advance legal work. The impact of this research on the legal industry is substantial. The adoption of AI-driven methods by legal professionals can lead to enhanced efficiency, precision, and consistency in legal drafting, thereby altering the landscape of legal work. This research adds to the expanding field of AI in law, introducing a method that could significantly alter the nature of legal drafting and practice.Keywords: AI-driven legal drafting, legal automation, futureoflegalwork, largelanguagemodels
Procedia PDF Downloads 641596 2106 kA/cm² Peak Tunneling Current Density in GaN-Based Resonant Tunneling Diode with an Intrinsic Oscillation Frequency of ~260GHz at Room Temperature
Authors: Fang Liu, JunShuai Xue, JiaJia Yao, GuanLin Wu, ZuMaoLi, XueYan Yang, HePeng Zhang, ZhiPeng Sun
Abstract:
Terahertz spectra is in great demand since last two decades for many photonic and electronic applications. III-Nitride resonant tunneling diode is one of the promising candidates for portable and compact THz sources. Room temperature microwave oscillator based on GaN/AlN resonant tunneling diode was reported in this work. The devices, grown by plasma-assisted molecular-beam epitaxy on free-standing c-plane GaN substrates, exhibit highly repeatable and robust negative differential resistance (NDR) characteristics at room temperature. To improve the interface quality at the active region in RTD, indium surfactant assisted growth is adopted to enhance the surface mobility of metal atoms on growing film front. Thanks to the lowered valley current associated with the suppression of threading dislocation scattering on low dislocation GaN substrate, a positive peak current density of record-high 2.1 MA/cm2 in conjunction with a peak-to-valley current ratio (PVCR) of 1.2 are obtained, which is the best results reported in nitride-based RTDs up to now considering the peak current density and PVCR values simultaneously. When biased within the NDR region, microwave oscillations are measured with a fundamental frequency of 0.31 GHz, yielding an output power of 5.37 µW. Impedance mismatch results in the limited output power and oscillation frequency described above. The actual measured intrinsic capacitance is only 30fF. Using a small-signal equivalent circuit model, the maximum intrinsic frequency of oscillation for these diodes is estimated to be ~260GHz. This work demonstrates a microwave oscillator based on resonant tunneling effect, which can meet the demands of terahertz spectral devices, more importantly providing guidance for the fabrication of the complex nitride terahertz and quantum effect devices.Keywords: GaN resonant tunneling diode, peak current density, microwave oscillation, intrinsic capacitance
Procedia PDF Downloads 1391595 The Role of Parental Stress and Emotion Regulation in Responding to Children’s Expression of Negative Emotion
Authors: Lizel Bertie, Kim Johnston
Abstract:
Parental emotion regulation plays a central role in the socialisation of emotion, especially when teaching young children to cope with negative emotions. Despite evidence which shows non-supportive parental responses to children’s expression of negative emotions has implications for the social and emotional development of the child, few studies have investigated risk factors which impact parental emotion socialisation processes. The current study aimed to explore the extent to which parental stress contributes to both difficulties in parental emotion regulation and non-supportive parental responses to children’s expression of negative emotions. In addition, the study examined whether parental use of expressive suppression as an emotion regulation strategy facilitates the influence of parental stress on non-supportive responses by testing the relations in a mediation model. A sample of 140 Australian adults, who identified as parents with children aged 5 to 10 years, completed an online questionnaire. The measures explored recent symptoms of depression, anxiety, and stress, the use of expressive suppression as an emotion regulation strategy, and hypothetical parental responses to scenarios related to children’s expression of negative emotions. A mediated regression indicated that parents who reported higher levels of stress also reported higher levels of expressive suppression as an emotion regulation strategy and increased use of non-supportive responses in relation to young children’s expression of negative emotions. These findings suggest that parents who experience heightened symptoms of stress are more likely to both suppress their emotions in parent-child interaction and engage in non-supportive responses. Furthermore, higher use of expressive suppression strongly predicted the use of non-supportive responses, despite the presence of parental stress. Contrary to expectation, no indirect effect of stress on non-supportive responses was observed via expressive suppression. The findings from the study suggest that parental stress may become a more salient manifestation of psychological distress in a sub-clinical population of parents while contributing to impaired parental responses. As such, the study offers support for targeting overarching factors such as difficulties in parental emotion regulation and stress management, not only as an intervention for parental psychological distress, but also the detection and prevention of maladaptive parenting practices.Keywords: emotion regulation, emotion socialisation, expressive suppression, non-supportive responses, parental stress
Procedia PDF Downloads 1601594 The Investigate Relationship between Moral Hazard and Corporate Governance with Earning Forecast Quality in the Tehran Stock Exchange
Authors: Fatemeh Rouhi, Hadi Nassiri
Abstract:
Earning forecast is a key element in economic decisions but there are some situations, such as conflicts of interest in financial reporting, complexity and lack of direct access to information has led to the phenomenon of information asymmetry among individuals within the organization and external investors and creditors that appear. The adverse selection and moral hazard in the investor's decision and allows direct assessment of the difficulties associated with data by users makes. In this regard, the role of trustees in corporate governance disclosure is crystallized that includes controls and procedures to ensure the lack of movement in the interests of the company's management and move in the direction of maximizing shareholder and company value. Therefore, the earning forecast of companies in the capital market and the need to identify factors influencing this study was an attempt to make relationship between moral hazard and corporate governance with earning forecast quality companies operating in the capital market and its impact on Earnings Forecasts quality by the company to be established. Getting inspiring from the theoretical basis of research, two main hypotheses and sub-hypotheses are presented in this study, which have been examined on the basis of available models, and with the use of Panel-Data method, and at the end, the conclusion has been made at the assurance level of 95% according to the meaningfulness of the model and each independent variable. In examining the models, firstly, Chow Test was used to specify either Panel Data method should be used or Pooled method. Following that Housman Test was applied to make use of Random Effects or Fixed Effects. Findings of the study show because most of the variables are positively associated with moral hazard with earnings forecasts quality, with increasing moral hazard, earning forecast quality companies listed on the Tehran Stock Exchange is increasing. Among the variables related to corporate governance, board independence variables have a significant relationship with earnings forecast accuracy and earnings forecast bias but the relationship between board size and earnings forecast quality is not statistically significant.Keywords: corporate governance, earning forecast quality, moral hazard, financial sciences
Procedia PDF Downloads 3221593 Climate Change Adaptation in the U.S. Coastal Zone: Data, Policy, and Moving Away from Moral Hazard
Authors: Thomas Ruppert, Shana Jones, J. Scott Pippin
Abstract:
State and federal government agencies within the United States have recently invested substantial resources into studies of future flood risk conditions associated with climate change and sea-level rise. A review of numerous case studies has uncovered several key themes that speak to an overall incoherence within current flood risk assessment procedures in the U.S. context. First, there are substantial local differences in the quality of available information about basic infrastructure, particularly with regard to local stormwater features and essential facilities that are fundamental components of effective flood hazard planning and mitigation. Second, there can be substantial mismatch between regulatory Flood Insurance Rate Maps (FIRMs) as produced by the National Flood Insurance Program (NFIP) and other 'current condition' flood assessment approaches. This is of particular concern in areas where FIRMs already seem to underestimate extant flood risk, which can only be expected to become a greater concern if future FIRMs do not appropriately account for changing climate conditions. Moreover, while there are incentives within the NFIP’s Community Rating System (CRS) to develop enhanced assessments that include future flood risk projections from climate change, the incentive structures seem to have counterintuitive implications that would tend to promote moral hazard. In particular, a technical finding of higher future risk seems to make it easier for a community to qualify for flood insurance savings, with much of these prospective savings applied to individual properties that have the most physical risk of flooding. However, there is at least some case study evidence to indicate that recognition of these issues is prompting broader discussion about the need to move beyond FIRMs as a standalone local flood planning standard. The paper concludes with approaches for developing climate adaptation and flood resilience strategies in the U.S. that move away from the social welfare model being applied through NFIP and toward more of an informed risk approach that transfers much of the investment responsibility over to individual private property owners.Keywords: climate change adaptation, flood risk, moral hazard, sea-level rise
Procedia PDF Downloads 1081592 Compositional Assessment of Fermented Rice Bran and Rice Bran Oil and Their Effect on High Fat Diet Induced Animal Model
Authors: Muhammad Ali Siddiquee, Md. Alauddin, Md. Omar Faruque, Zakir Hossain Howlader, Mohammad Asaduzzaman
Abstract:
Rice bran (RB) and rice bran oil (RBO) are explored as prominent food components worldwide. In this study, fermented rice bran (FRB) was produced by employing edible gram-positive bacteria (Lactobacillus acidophilus, Lactobacillus bulgaricus, and Bifidobacterium bifidum) at 125 x 10⁵ spore g⁻¹ of rice bran, and investigated to evaluate nutritional quality. The crude rice bran oil (CRBO) was extracted from RB, and its quality was also investigated compared to market-available rice bran oil (MRBO) in Bangladesh. We found that fermentation of rice bran with lactic acid bacteria increased total proteins (29.52%), fat (5.38%), ash (48.47%), crude fiber (38.96%), and moisture (61.04%) and reduced the carbohydrate content (36.61%). We also found that essential amino acids (methionine, tryptophan, threonine, valine, leucine, lysine, histidine, and phenylalanine) and non-essential amino acids (alanine, aspartate, glycine, glutamine, proline, serine, and tyrosine) were increased in FRB except methionine and proline. Moreover, total phenolic content, tannin content, flavonoid content, and antioxidant activity were increased in FRB. The RBO analysis showed that γ-oryzanol content (10.00mg/g) was found in CRBO compared to MRBO (ranging from 7.40 to 12.70 mg/g) and Vitamin-E content 0.20% was found higher in CRBO compared to MRBO (ranging 0.097 to 0.12%). The total saturated (25.16%) and total unsaturated fatty acids (74.44%) were found in CRBO, whereas MRBO contained total saturated (22.08 to 24.13%) and total unsaturated fatty acids (71.91 to 83.29%), respectively. The physiochemical parameters were found satisfactory in all samples except acid value and peroxide value higher in CRBO. Finally, animal experiments showed that FRB and CRBO reduce the body weight, glucose, and lipid profile in high-fat diet-induced animal models. Thus, FRB and RBO could be value-added food supplements for human health.Keywords: fermented rice bran, crude rice bran oil, amino acids, proximate composition, gamma-oryzanol, fatty acids, heavy metals, physiochemical parameters
Procedia PDF Downloads 661591 The Effect of Acute Rejection and Delayed Graft Function on Renal Transplant Fibrosis in Live Donor Renal Transplantation
Authors: Wisam Ismail, Sarah Hosgood, Michael Nicholson
Abstract:
The research hypothesis is that early post-transplant allograft fibrosis will be linked to donor factors and that acute rejection and/or delayed graft function in the recipient will be independent risk factors for the development of fibrosis. This research hypothesis is to explore whether acute rejection/delay graft function has an effect on the renal transplant fibrosis within the first year post live donor kidney transplant between 1998 and 2009. Methods: The study has been designed to identify five time points of the renal transplant biopsies [0 (pre-transplant), 1 month, 3 months, 6 months and 12 months] for 300 live donor renal transplant patients over 12 years period between March 1997 – August 2009. Paraffin fixed slides were collected from Leicester General Hospital and Leicester Royal Infirmary. These were routinely sectioned at a thickness of 4 Micro millimetres for standardization. Conclusions: Fibrosis at 1 month after the transplant was found significantly associated with baseline fibrosis (p<0.001) and HTN in the transplant recipient (p<0.001). Dialysis after the transplant showed a weak association with fibrosis at 1 month (p=0.07). The negative coefficient for HTN (-0.05) suggests a reduction in fibrosis in the absence of HTN. Fibrosis at 1 month was significantly associated with fibrosis at baseline (p 0.01 and 95%CI 0.11 to 0.67). Fibrosis at 3, 6 or 12 months was not found to be associated with fibrosis at baseline (p=0.70. 0.65 and 0.50 respectively). The amount of fibrosis at 1 month is significantly associated with graft survival (p=0.01 and 95%CI 0.02 to 0.14). Rejection and severity of rejection were not found to be associated with fibrosis at 1 month. The amount of fibrosis at 1 month was significantly associated with graft survival (p=0.02) after adjusting for baseline fibrosis (p=0.01). Both baseline fibrosis and graft survival were significant predictive factors. The amount of fibrosis at 1 month was not found to be significantly associated with rejection (p=0.64) after adjusting for baseline fibrosis (p=0.01). The amount of fibrosis at 1 month was not found to be significantly associated with rejection severity (p=0.29) after adjusting for baseline fibrosis (p=0.04). Fibrosis at baseline and HTN in the recipient were found to be predictive factors of fibrosis at 1 month. (p 0.02, p <0.001 respectively). Age of the donor, their relation to the patient, the pre-op Creatinine, artery, kidney weight and warm time were not found to be significantly associated with fibrosis at 1 month. In this complex model baseline fibrosis, HTN in the recipient and cold time were found to be predictive factors of fibrosis at 1 month (p=0.01,<0.001 and 0.03 respectively). Donor age was found to be a predictive factor of fibrosis at 6 months. The above analysis was repeated for 3, 6 and 12 months. No associations were detected between fibrosis and any of the explanatory variables with the exception of the donor age which was found to be a predictive factor of fibrosis at 6 months.Keywords: fibrosis, transplant, renal, rejection
Procedia PDF Downloads 2301590 Comparison of Power Generation Status of Photovoltaic Systems under Different Weather Conditions
Authors: Zhaojun Wang, Zongdi Sun, Qinqin Cui, Xingwan Ren
Abstract:
Based on multivariate statistical analysis theory, this paper uses the principal component analysis method, Mahalanobis distance analysis method and fitting method to establish the photovoltaic health model to evaluate the health of photovoltaic panels. First of all, according to weather conditions, the photovoltaic panel variable data are classified into five categories: sunny, cloudy, rainy, foggy, overcast. The health of photovoltaic panels in these five types of weather is studied. Secondly, a scatterplot of the relationship between the amount of electricity produced by each kind of weather and other variables was plotted. It was found that the amount of electricity generated by photovoltaic panels has a significant nonlinear relationship with time. The fitting method was used to fit the relationship between the amount of weather generated and the time, and the nonlinear equation was obtained. Then, using the principal component analysis method to analyze the independent variables under five kinds of weather conditions, according to the Kaiser-Meyer-Olkin test, it was found that three types of weather such as overcast, foggy, and sunny meet the conditions for factor analysis, while cloudy and rainy weather do not satisfy the conditions for factor analysis. Therefore, through the principal component analysis method, the main components of overcast weather are temperature, AQI, and pm2.5. The main component of foggy weather is temperature, and the main components of sunny weather are temperature, AQI, and pm2.5. Cloudy and rainy weather require analysis of all of their variables, namely temperature, AQI, pm2.5, solar radiation intensity and time. Finally, taking the variable values in sunny weather as observed values, taking the main components of cloudy, foggy, overcast and rainy weather as sample data, the Mahalanobis distances between observed value and these sample values are obtained. A comparative analysis was carried out to compare the degree of deviation of the Mahalanobis distance to determine the health of the photovoltaic panels under different weather conditions. It was found that the weather conditions in which the Mahalanobis distance fluctuations ranged from small to large were: foggy, cloudy, overcast and rainy.Keywords: fitting, principal component analysis, Mahalanobis distance, SPSS, MATLAB
Procedia PDF Downloads 1441589 The Reality of Teaching Arabic for Specific Purposes in Educational Institutions
Authors: Mohammad Anwarul Kabir, Fayezul Islam
Abstract:
Language invariably is learned / taught to be used primarily as means of communications. Teaching a language for its native audience differs from teaching it to non-native audience. Moreover, teaching a language for communication only is different from teaching it for specific purposes. Arabic language is primarily regarded as the language of the Quran and the Sunnah (Prophetic tradition). Arabic is, therefore, learnt and spread all over the globe. However, Arabic is also a cultural heritage shared by all Islamic nations which has used Arabic for a long period to record the contributions of Muslim thinkers made in the field of wide spectrum of knowledge and scholarship. That is why the phenomenon of teaching Arabic by different educational institutes became quite rife, and the idea of teaching Arabic for specific purposes is heavily discussed in the academic sphere. Although the number of learners of Arabic is increasing consistently, yet their purposes vary. These include religious purpose, international trade, diplomatic purpose, better livelihood in the Arab world extra. By virtue of this high demand for learning Arabic, numerous institutes have been established all over the world including Bangladesh. This paper aims at focusing on the current status of the language institutes which has been established for learning Arabic for specific purposes in Bangladesh including teaching methodology, curriculum, and teachers’ quality. Such curricula and using its materials resulted in a lot of problems. The least, it confused teachers and students as well. Islamic educationalists have been working hard to professionally meet the need. They are following a systematic approach of stating clear and achievable goals, building suitable content, and applying new technology to present these learning experiences and evaluate them. It also suggests a model for designing instructional systems that responds to the need of non-Arabic speaking Islamic communities and provide the knowledge needed in both linguistic and cultural aspects. It also puts forward a number of suggestions for the improvement of the teaching / learning Arabic for specific purposes in Bangladesh after a detailed investigation in the following areas: curriculum, teachers’ skills, method of teaching and assessment policy.Keywords: communication, Quran, sunnah, educational institutes, specific purposes, curriculum, method of teaching
Procedia PDF Downloads 2811588 Airborne Particulate Matter Passive Samplers for Indoor and Outdoor Exposure Monitoring: Development and Evaluation
Authors: Kholoud Abdulaziz, Kholoud Al-Najdi, Abdullah Kadri, Konstantinos E. Kakosimos
Abstract:
The Middle East area is highly affected by air pollution induced by anthropogenic and natural phenomena. There is evidence that air pollution, especially particulates, greatly affects the population health. Many studies have raised a warning of the high concentration of particulates and their affect not just around industrial and construction areas but also in the immediate working and living environment. One of the methods to study air quality is continuous and periodic monitoring using active or passive samplers. Active monitoring and sampling are the default procedures per the European and US standards. However, in many cases they have been inefficient to accurately capture the spatial variability of air pollution due to the small number of installations; which eventually is attributed to the high cost of the equipment and the limited availability of users with expertise and scientific background. Another alternative has been found to account for the limitations of the active methods that is the passive sampling. It is inexpensive, requires no continuous power supply, and easy to assemble which makes it a more flexible option, though less accurate. This study aims to investigate and evaluate the use of passive sampling for particulate matter pollution monitoring in dry tropical climates, like in the Middle East. More specifically, a number of field measurements have be conducted, both indoors and outdoors, at Qatar and the results have been compared with active sampling equipment and the reference methods. The samples have been analyzed, that is to obtain particle size distribution, by applying existing laboratory techniques (optical microscopy) and by exploring new approaches like the white light interferometry to. Then the new parameters of the well-established model have been calculated in order to estimate the atmospheric concentration of particulates. Additionally, an extended literature review will investigate for new and better models. The outcome of this project is expected to have an impact on the public, as well, as it will raise awareness among people about the quality of life and about the importance of implementing research culture in the community.Keywords: air pollution, passive samplers, interferometry, indoor, outdoor
Procedia PDF Downloads 398