Search results for: wound classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2555

Search results for: wound classification

935 Application of Lean Manufacturing Tools in Hot Asphalt Production

Authors: S. Bayona, J. Nunez, D. Paez, C. Diaz

Abstract:

The application of Lean manufacturing tools continues to be an effective solution for increasing productivity, reducing costs and eliminating waste in the manufacture of goods and services. This article analyzes the production process of a hot asphalt manufacturing company from an administrative and technical perspective. Three main phases were analyzed, the first phase was related to the determination of the risk priority number of the main operations in asphalt mix production process by an FMEA (Failure Mode Effects Analysis), in the second phase the Value Stream Mapping (VSM) of the production line was performed and in the third phase a SWOT (Strengths, Weaknesses Opportunities, Threats) matrix was constructed. Among the most valued failure modes were the lack training of workers in occupational safety and health issues, the lack of signaling and classification of granulated material, and the overweight of vehicles loaded. The analysis of the results in the three phases agree on the importance of training operational workers, improve communication with external actors in order to minimize delays in material orders and strengthen control suppliers.

Keywords: asphalt, lean manufacturing, productivity, process

Procedia PDF Downloads 118
934 Single-Case Experimental Design: Exploratory Pilot Study on the Feasibility and Effect of Virtual Reality for Pain and Anxiety Management During Care

Authors: Corbel Camille, Le Cerf Flora, Corveleyn Xavier

Abstract:

Introduction: Aging is a physiological phenomenon accompanied by anatomical and cognitive changes leading to anxiety and pain. This could have significant impacts on quality of life, life expectancy, and the progression of cognitive disorders. Virtual Reality Intervention (VRI) is increasingly recognized as a non-pharmacological approach to alleviate pain and anxiety in children and young adults. However, while recent studies have explored the feasibility of applying VRI in the older population, confirmation through studies is still required to establish its benefits in various contexts. Objective: This pilot study, following a clinical trial methodology international recommendation for VRI in healthcare, aims to evaluate the feasibility and effects of using VRI with a 101-year-old woman residing in a nursing home undergoing weekly painful and anxious wound dressing changes. Methods: Following the international recommendations, this study focused on feasibility and preliminary results. A Single Case Experimental Design protocol consists of two distinct phases: control (Phase A) and personalized VRI (Phase B), each lasting for 6 sessions. Data were collected before, during and after the care, using measures of pain (Algoplus and numerical scale), anxiety (Hospital anxiety scale and numerical scale), VRI experience (semi-structured interview) and physiological measures. Results: The results suggest that the utilization of VRI is both feasible and well-tolerated by the participant. VRI contributed to a decrease in pain and anxiety during care sessions, with a more significant impact on pain compared to anxiety, which showed a gradual and slight decrease. Physiological data, particularly those related to stress, also indicate a reduction in physiological activity during VRI. Conclusion: This pilot study confirms the feasibility and benefits of using virtual reality in managing pain and anxiety in an older adult in a nursing home. In light of these results, it is essential that future studies focus on setting up randomized controlled trials (RCTs). These studies should involve a representative number of older adults to ensure generalizable data. This rigorous, controlled methodology will enable us to assess the effectiveness of virtual reality more accurately in various care settings, measure its impact on clinical parameters such as pain and anxiety, and explore the long-term implications of this intervention.

Keywords: anxiety reduction, nursing home, older adult, pain management, virtual reality

Procedia PDF Downloads 64
933 Data Security: An Enhancement of E-mail Security Algorithm to Secure Data Across State Owned Agencies

Authors: Lindelwa Mngomezulu, Tonderai Muchenje

Abstract:

Over the decades, E-mails provide easy, fast and timely communication enabling businesses and state owned agencies to communicate with their stakeholders and with their own employees in real-time. Moreover, since the launch of Microsoft office 365 and many other clouds based E-mail services, many businesses have been migrating from the on premises E-mail services to the cloud and more precisely since the beginning of the Covid-19 pandemic, there has been a significant increase of E-mails utilization, which then leads to the increase of cyber-attacks. In that regard, E-mail security has become very important in the E-mail transportation to ensure that the E-mail gets to the recipient without the data integrity being compromised. The classification of the features to enhance E-mail security for further from the enhanced cyber-attacks as we are aware that since the technology is advancing so at the cyber-attacks. Therefore, in order to maximize the data integrity we need to also maximize security of the E-mails such as enhanced E-mail authentication. The successful enhancement of E-mail security in the future may lessen the frequency of information thefts via E-mails, resulting in the data of South African State-owned agencies not being compromised.

Keywords: e-mail security, cyber-attacks, data integrity, authentication

Procedia PDF Downloads 138
932 Numerical Regularization of Ill-Posed Problems via Hybrid Feedback Controls

Authors: Eugene Stepanov, Arkadi Ponossov

Abstract:

Many mathematical models used in biological and other applications are ill-posed. The reason for that is the nature of differential equations, where the nonlinearities are assumed to be step functions, which is done to simplify the analysis. Prominent examples are switched systems arising from gene regulatory networks and neural field equations. This simplification leads, however, to theoretical and numerical complications. In the presentation, it is proposed to apply the theory of hybrid feedback controls to regularize the problem. Roughly speaking, one attaches a finite state control (‘automaton’), which follows the trajectories of the original system and governs its dynamics at the points of ill-posedness. The construction of the automaton is based on the classification of the attractors of the specially designed adjoint dynamical system. This ‘hybridization’ is shown to regularize the original switched system and gives rise to efficient hybrid numerical schemes. Several examples are provided in the presentation, which supports the suggested analysis. The method can be of interest in other applied fields, where differential equations contain step-like nonlinearities.

Keywords: hybrid feedback control, ill-posed problems, singular perturbation analysis, step-like nonlinearities

Procedia PDF Downloads 247
931 Expansive-Restrictive Style: Conceptualizing Knowledge Workers

Authors: Ram Manohar Singh, Meenakshi Gupta

Abstract:

Various terms such as ‘learning style’, ‘cognitive style’, ‘conceptual style’, ‘thinking style’, ‘intellectual style’ are used in literature to refer to an individual’s characteristic and consistent approach to organizing and processing information. However, style concepts are criticized for mutually overlapping definitions and confusing classification. This confusion should be addressed at the conceptual as well as empirical level. This paper is an attempt to bridge this gap in literature by proposing a new concept: expansive-restrictive intellectual style based on phenomenological analysis of an auto-ethnography and interview of 26 information technology (IT) professionals working in knowledge intensive organizations (KIOs) in India. Expansive style is an individual’s preference to expand his/her horizon of knowledge and understanding by gaining real meaning and structure of his/her work. On the contrary restrictive style is characterized by an individual’s preference to take minimalist approach at work reflected in executing a job efficiently without an attempt to understand the real meaning and structure of the work. The analysis suggests that expansive-restrictive style has three dimensions: (1) field dependence-independence (2) cognitive involvement and (3) epistemological beliefs.

Keywords: expansive, knowledge workers, restrictive, style

Procedia PDF Downloads 424
930 Challenges in Experimental Testing of a Stiff, Overconsolidated Clay

Authors: Maria Konstadinou, Etienne Alderlieste, Anderson Peccin da Silva, Ben Arntz, Leonard van der Bijl, Wouter Verschueren

Abstract:

The shear strength and compression properties of stiff Boom clay from Belgium at the depth of about 30 m has been investigated by means of cone penetration and laboratory testing. The latter consisted of index classification, constant rate of strain, direct, simple shear, and unconfined compression tests. The Boom clay samples exhibited strong swelling tendencies. The suction pressure was measured via different procedures and has been compared to the expected in-situ stress. The undrained shear strength and OCR profile determined from CPTs is not compatible with the experimental measurements, which gave significantly lower values. The observed response can be attributed to the presence of pre-existing discontinuities, as shown in microscale CT scans of the samples. The results of this study demonstrate that the microstructure of the clay prior to testing has an impact on the mechanical behaviour and can cause inconsistencies in the comparison of the laboratory test results with in-situ data.

Keywords: boom clay, laboratory testing, overconsolidation ratio, stress-strain response, swelling, undrained shear strength

Procedia PDF Downloads 147
929 Artificial Reproduction System and Imbalanced Dataset: A Mendelian Classification

Authors: Anita Kushwaha

Abstract:

We propose a new evolutionary computational model called Artificial Reproduction System which is based on the complex process of meiotic reproduction occurring between male and female cells of the living organisms. Artificial Reproduction System is an attempt towards a new computational intelligence approach inspired by the theoretical reproduction mechanism, observed reproduction functions, principles and mechanisms. A reproductive organism is programmed by genes and can be viewed as an automaton, mapping and reducing so as to create copies of those genes in its off springs. In Artificial Reproduction System, the binding mechanism between male and female cells is studied, parameters are chosen and a network is constructed also a feedback system for self regularization is established. The model then applies Mendel’s law of inheritance, allele-allele associations and can be used to perform data analysis of imbalanced data, multivariate, multiclass and big data. In the experimental study Artificial Reproduction System is compared with other state of the art classifiers like SVM, Radial Basis Function, neural networks, K-Nearest Neighbor for some benchmark datasets and comparison results indicates a good performance.

Keywords: bio-inspired computation, nature- inspired computation, natural computing, data mining

Procedia PDF Downloads 274
928 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running

Authors: Elnaz Lashgari, Emel Demircan

Abstract:

Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.

Keywords: electromyography, manifold learning, ISOMAP, Laplacian Eigenmaps, locally linear embedding

Procedia PDF Downloads 365
927 Soil Sensibility Characterization of Granular Soils Due to Suffusion

Authors: Abdul Rochim, Didier Marot, Luc Sibille

Abstract:

This paper studies the characterization of soil sensibility due to suffusion process by carrying out a series of one-dimensional downward seepage flow tests realized with an erodimeter. Tests were performed under controlled hydraulic gradient in sandy gravel soils. We propose the analysis based on energy induced by the seepage flow to characterize the hydraulic loading and the cumulative eroded dry mass to characterize the soil response. With this approach, the effect of hydraulic loading histories and initial fines contents to soil sensibility are presented. It is found that for given soils, erosion coefficients are different if tests are performed under different hydraulic loading histories. For given initial fines fraction contents, the sensibility may be grouped in the same classification. The lower fines content soils tend to require larger flow energy to the onset of erosion. These results demonstrate that this approach is effective to characterize suffusion sensibility for granular soils.

Keywords: erodimeter, sandy gravel, suffusion, water seepage energy

Procedia PDF Downloads 447
926 Phage Therapy as a Potential Solution in the Fight against Antimicrobial Resistance

Authors: Sanjay Shukla

Abstract:

Excessive use of antibiotics is a main problem in the treatment of wounds and other chronic infections and antibiotic treatment is frequently non-curative, thus alternative treatment is necessary. Phage therapy is considered one of the most effective approaches to treat multi-drug resistant bacterial pathogens. Infections caused by Staphylococcus aureus are very efficiently controlled with phage cocktails, containing a different individual phages lysate infecting a majority of known pathogenic S. aureus strains. The aim of current study was to investigate the efficiency of a purified phage cocktail for prophylactic as well as therapeutic application in mouse model and in large animals with chronic septic infection of wounds. A total of 150 sewage samples were collected from various livestock farms. These samples were subjected for the isolation of bacteriophage by double agar layer method. A total of 27 sewage samples showed plaque formation by producing lytic activity against S. aureus in double agar overlay method out of 150 sewage samples. In TEM recovered isolates of bacteriophages showed hexagonal structure with tail fiber. In the bacteriophage (ØVS) had an icosahedral symmetry with the head size 52.20 nm in diameter and long tail of 109 nm. Head and tail were held together by connector and can be classified as a member of the Myoviridae family under the order of Caudovirale. Recovered bacteriophage had shown the antibacterial activity against the S. aureus in vitro. Cocktail (ØVS1, ØVS5, ØVS9 and ØVS 27) of phage lysate were tested to know in vivo antibacterial activity as well as the safety profile. Result of mice experiment indicated that the bacteriophage lysate was very safe, did not show any appearance of abscess formation which indicates its safety in living system. The mice were also prophylactically protected against S. aureus when administered with cocktail of bacteriophage lysate just before the administration of S. aureus which indicates that they are good prophylactic agent. The S. aureus inoculated mice were completely recovered by bacteriophage administration with 100% recovery which was very good as compere to conventional therapy. In present study ten chronic cases of wound were treated with phage lysate and follow up of these cases was done regularly up to ten days (at 0, 5 and 10 d). Result indicated that the six cases out of ten showed complete recovery of wounds within 10 d. The efficacy of bacteriophage therapy was found to be 60% which was very good as compared to the conventional antibiotic therapy in chronic septic wounds infections. Thus, the application of lytic phage in single dose proved to be innovative and effective therapy for treatment of septic chronic wounds.

Keywords: phage therapy, phage lysate, antimicrobial resistance, S. aureus

Procedia PDF Downloads 119
925 KSVD-SVM Approach for Spontaneous Facial Expression Recognition

Authors: Dawood Al Chanti, Alice Caplier

Abstract:

Sparse representations of signals have received a great deal of attention in recent years. In this paper, the interest of using sparse representation as a mean for performing sparse discriminative analysis between spontaneous facial expressions is demonstrated. An automatic facial expressions recognition system is presented. It uses a KSVD-SVM approach which is made of three main stages: A pre-processing and feature extraction stage, which solves the problem of shared subspace distribution based on the random projection theory, to obtain low dimensional discriminative and reconstructive features; A dictionary learning and sparse coding stage, which uses the KSVD model to learn discriminative under or over dictionaries for sparse coding; Finally a classification stage, which uses a SVM classifier for facial expressions recognition. Our main concern is to be able to recognize non-basic affective states and non-acted expressions. Extensive experiments on the JAFFE static acted facial expressions database but also on the DynEmo dynamic spontaneous facial expressions database exhibit very good recognition rates.

Keywords: dictionary learning, random projection, pose and spontaneous facial expression, sparse representation

Procedia PDF Downloads 308
924 The Best Prediction Data Mining Model for Breast Cancer Probability in Women Residents in Kabul

Authors: Mina Jafari, Kobra Hamraee, Saied Hossein Hosseini

Abstract:

The prediction of breast cancer disease is one of the challenges in medicine. In this paper we collected 528 records of women’s information who live in Kabul including demographic, life style, diet and pregnancy data. There are many classification algorithm in breast cancer prediction and tried to find the best model with most accurate result and lowest error rate. We evaluated some other common supervised algorithms in data mining to find the best model in prediction of breast cancer disease among afghan women living in Kabul regarding to momography result as target variable. For evaluating these algorithms we used Cross Validation which is an assured method for measuring the performance of models. After comparing error rate and accuracy of three models: Decision Tree, Naive Bays and Rule Induction, Decision Tree with accuracy of 94.06% and error rate of %15 is found the best model to predicting breast cancer disease based on the health care records.

Keywords: decision tree, breast cancer, probability, data mining

Procedia PDF Downloads 140
923 Spare Part Inventory Optimization Policy: A Study Literature

Authors: Zukhrof Romadhon, Nani Kurniati

Abstract:

Availability of Spare parts is critical to support maintenance tasks and the production system. Managing spare part inventory deals with some parameters and objective functions, as well as the tradeoff between inventory costs and spare parts availability. Several mathematical models and methods have been developed to optimize the spare part policy. Many researchers who proposed optimization models need to be considered to identify other potential models. This work presents a review of several pertinent literature on spare part inventory optimization and analyzes the gaps for future research. Initial investigation on scholars and many journal database systems under specific keywords related to spare parts found about 17K papers. Filtering was conducted based on five main aspects, i.e., replenishment policy, objective function, echelon network, lead time, model solving, and additional aspects of part classification. Future topics could be identified based on the number of papers that haven’t addressed specific aspects, including joint optimization of spare part inventory and maintenance.

Keywords: spare part, spare part inventory, inventory model, optimization, maintenance

Procedia PDF Downloads 65
922 Unseen Classes: The Paradigm Shift in Machine Learning

Authors: Vani Singhal, Jitendra Parmar, Satyendra Singh Chouhan

Abstract:

Unseen class discovery has now become an important part of a machine-learning algorithm to judge new classes. Unseen classes are the classes on which the machine learning model is not trained on. With the advancement in technology and AI replacing humans, the amount of data has increased to the next level. So while implementing a model on real-world examples, we come across unseen new classes. Our aim is to find the number of unseen classes by using a hierarchical-based active learning algorithm. The algorithm is based on hierarchical clustering as well as active sampling. The number of clusters that we will get in the end will give the number of unseen classes. The total clusters will also contain some clusters that have unseen classes. Instead of first discovering unseen classes and then finding their number, we directly calculated the number by applying the algorithm. The dataset used is for intent classification. The target data is the intent of the corresponding query. We conclude that when the machine learning model will encounter real-world data, it will automatically find the number of unseen classes. In the future, our next work would be to label these unseen classes correctly.

Keywords: active sampling, hierarchical clustering, open world learning, unseen class discovery

Procedia PDF Downloads 173
921 Using Trip Planners in Developing Proper Transportation Behavior

Authors: Grzegorz Sierpiński, Ireneusz Celiński, Marcin Staniek

Abstract:

The article discusses multi modal mobility in contemporary societies as a main planning and organization issue in the functioning of administrative bodies, a problem which really exists in the space of contemporary cities in terms of shaping modern transport systems. The article presents classification of available resources and initiatives undertaken for developing multi modal mobility. Solutions can be divided into three groups of measures–physical measures in the form of changes of the transport network infrastructure, organizational ones (including transport policy) and information measures. The latter ones include in particular direct support for people travelling in the transport network by providing information about ways of using available means of transport. A special measure contributing to this end is a trip planner. The article compares several selected planners. It includes a short description of the Green Travelling Project, which aims at developing a planner supporting environmentally friendly solutions in terms of transport network operation. The article summarizes preliminary findings of the project.

Keywords: mobility, modal split, multimodal trip, multimodal platforms, sustainable transport

Procedia PDF Downloads 412
920 Machine Learning-Driven Prediction of Cardiovascular Diseases: A Supervised Approach

Authors: Thota Sai Prakash, B. Yaswanth, Jhade Bhuvaneswar, Marreddy Divakar Reddy, Shyam Ji Gupta

Abstract:

Across the globe, there are a lot of chronic diseases, and heart disease stands out as one of the most perilous. Sadly, many lives are lost to this condition, even though early intervention could prevent such tragedies. However, identifying heart disease in its initial stages is not easy. To address this challenge, we propose an automated system aimed at predicting the presence of heart disease using advanced techniques. By doing so, we hope to empower individuals with the knowledge needed to take proactive measures against this potentially fatal illness. Our approach towards this problem involves meticulous data preprocessing and the development of predictive models utilizing classification algorithms such as Support Vector Machines (SVM), Decision Tree, and Random Forest. We assess the efficiency of every model based on metrics like accuracy, ensuring that we select the most reliable option. Additionally, we conduct thorough data analysis to reveal the importance of different attributes. Among the models considered, Random Forest emerges as the standout performer with an accuracy rate of 96.04% in our study.

Keywords: support vector machines, decision tree, random forest

Procedia PDF Downloads 42
919 Characterization of Herberine Hydrochloride Nanoparticles

Authors: Bao-Fang Wen, Meng-Na Dai, Gao-Pei Zhu, Chen-Xi Zhang, Jing Sun, Xun-Bao Yin, Yu-Han Zhao, Hong-Wei Sun, Wei-Fen Zhang

Abstract:

A drug-loaded nanoparticles containing berberine hydrochloride (BH/FA-CTS-NPs) was prepared. The physicochemical characterizations of BH/FA-CTS-NPs and the inhibitory effect on the HeLa cells were investigated. Folic acid-conjugated chitosan (FA-CTS) was prepared by amino reaction of folic acid active ester and chitosan molecules; BH/FA-CTS-NPs were prepared using ionic cross-linking technique with BH as a model drug. The morphology and particle size were determined by Transmission Electron Microscope (TEM). The average diameters and polydispersity index (PDI) were evaluated by Dynamic Light Scattering (DLS). The interaction between various components and the nanocomplex were characterized by Fourier Transform Infrared Spectroscopy (FT-IR). The entrapment efficiency (EE), drug-loading (DL) and in vitro release were studied by UV spectrophotometer. The effect of cell anti-migratory and anti-invasive actions of BH/FA-CTS-NPs were investigated using MTT assays, wound healing assays, Annexin-V-FITC single staining assays, and flow cytometry, respectively. HeLa nude mice subcutaneously transplanted tumor model was established and treated with different drugs to observe the effect of BH/FA-CTS-NPs in vivo on HeLa bearing tumor. The BH/FA-CTS-NPs prepared in this experiment have a regular shape, uniform particle size, and no aggregation phenomenon. The results of DLS showed that mean particle size, PDI and Zeta potential of BH/FA-CTS NPs were (249.2 ± 3.6) nm, 0.129 ± 0.09, 33.6 ± 2.09, respectively, and the average diameter and PDI were stable in 90 days. The results of FT-IR demonstrated that the characteristic peaks of FA-CTS and BH/FA-CTS-NPs confirmed that FA-CTS cross-linked successfully and BH was encapsulated in NPs. The EE and DL amount were (79.3 ± 3.12) % and (7.24 ± 1.41) %, respectively. The results of in vitro release study indicated that the cumulative release of BH/FA-CTS NPs was (89.48±2.81) % in phosphate-buffered saline (PBS, pH 7.4) within 48h; these results by MTT assays and wund healing assays indicated that BH/FA-CTS NPs not only inhibited the proliferation of HeLa cells in a concentration and time-dependent manner but can induce apoptosis as well. The subcutaneous xenograft tumor formation rate of human cervical cancer cell line HeLa in nude mice was 98% after inoculation for 2 weeks. Compared with BH group and BH/CTS-NPs group, the xenograft tumor growth of BH/FA-CTS-NPs group was obviously slower; the result indicated that BH/FA-CTS-NPs could significantly inhibit the growth of HeLa xenograft tumor. BH/FA-CTS NPs with the sustained release effect could be prepared successfully by the ionic crosslinking method. Considering these properties, block proliferation and impairing the migration of the HeLa cell line, BH/FA-CTS NPs could be an important compound for consideration in the treatment of cervical cancer.

Keywords: folic-acid, chitosan, berberine hydrochloride, nanoparticles, cervical cancer

Procedia PDF Downloads 122
918 A Geographical Framework for Studying the Territorial Sustainability Based on Land Use Change

Authors: Miguel Ramirez, Ivan Lizarazo

Abstract:

The emergence of various interpretations of sustainability, including weak and strong paradigms, can be traced back to the definition of sustainable development provided in the 1987 Brundtland report and the subsequent evolution of the sustainability concept. However, there has been limited scholarly attention given to clarifying the concept of sustainability within the theoretical and conceptual framework of geography. The discipline has predominantly been focused on understanding the diverse conceptions of sustainability within its epistemological boundaries, resulting in tensions between sustainability paradigms and their associated dimensions, including the incorporation of political perspectives, with particular emphasis on environmental geography's epistemology. In response to this gap, a conceptual framework for sustainability is proposed, effectively integrating spatial and territorial concepts. This framework aims to enhance geography's role in contributing to sustainability by utilizing the land system theory, which is based on the dynamics of land use change. Such an integrated conceptual framework enables incorporating methodological tools such as remote sensing, encompassing various earth observations and fusion methods, and supervised classification techniques. Additionally, it looks for better integration of socioecological information, thereby capturing essential population-related features.

Keywords: geography, sustainability, land change science, territorial sustainability

Procedia PDF Downloads 86
917 Meta-Instruction Theory in Mathematics Education and Critique of Bloom’s Theory

Authors: Abdollah Aliesmaeili

Abstract:

The purpose of this research is to present a different perspective on the basic math teaching method called meta-instruction, which reverses the learning path. Meta-instruction is a method of teaching in which the teaching trajectory starts from brain education into learning. This research focuses on the behavior of the mind during learning. In this method, students are not instructed in mathematics, but they are educated. Another goal of the research is to "criticize Bloom's classification in the cognitive domain and reverse it", because it cannot meet the educational and instructional needs of the new generation and "substituting math education instead of math teaching". This is an indirect method of teaching. The method of research is longitudinal through four years. Statistical samples included students ages 6 to 11. The research focuses on improving the mental abilities of children to explore mathematical rules and operations by playing only with eight measurements (any years 2 examinations). The results showed that there is a significant difference between groups in remembering, understanding, and applying. Moreover, educating math is more effective than instructing in overall learning abilities.

Keywords: applying, Bloom's taxonomy, brain education, mathematics teaching method, meta-instruction, remembering, starmath method, understanding

Procedia PDF Downloads 24
916 Designing Cultural-Creative Products with the Six Categories of Hanzi (Chinese Character Classification)

Authors: Pei-Jun Xue, Ming-Yu Hsiao

Abstract:

Chinese characters, or hanzi, represent a process of simplifying three-dimensional signs into plane signifiers. From pictograms at the beginning to logograms today, a Han linguist thus classified them into six categories known as the six categories of Chinese characters. Design is a process of signification, and cultural-creative design is a process translating ideas into design with creativity upon culture. Aiming to investigate the process of cultural-creative design transforming cultural text into cultural signs, this study analyzed existing cultural-creative products with the six categories of Chinese characters by treating such products as representations which accurately communicate the designer’s ideas to users through the categorization, simplification, and interpretation of sign features. This is a two-phase pilot study on designing cultural-creative products with the six categories of Chinese characters. Phase I reviews the related literature on the theory of the six categories of Chinese characters investigated and concludes with the process and principles of character evolution. Phase II analyzes the design of existing cultural-creative products with the six categories of Chinese characters and explores the conceptualization of product design.

Keywords: six categories of Chinese characters, cultural-creative product design, cultural signs, cultural product

Procedia PDF Downloads 344
915 Variation in the Morphology of Soft Palate

Authors: Hema Lattupalli

Abstract:

Introduction: The palate forms a partition between the oral cavity and nasal cavity. The palate is made up of two parts hard palate and soft palate. The Hard palate forms the anterior part of the palate, the soft palate forms a movable muscular fold covered by mucous membrane that is suspended from the posterior border of a hard palate. Aim and Objectives: Soft palate morphological variations have a great paucity in the literature. It’s also believed that the soft palate has no such important anatomical variations. There is a variable presentation of the soft palate morphology in the lateral cephalograms. The aim of this study is to identify the velar morphology. Materials and Methods: 100 normal subjects between the age group of 20 – 35 were taken for the study. Method: Lateral Cephalogram (radiologic study). Results: Different shapes of the soft palate were observed in the lateral cephalograms. The morphology of soft palate was classified into six types 1.Leaf like (50 cases) most common type, 2.Straight line (20 cases), 3.S shaped (4 cases) very rare, 4.Butt like (10 cases), 5. Rat tail (6 cases), 6. Hook shaped (10 cases). Conclusion: This classification helps us to understand the better diversity of the velar morphology in mid-sagittal plane. These findings help us to understand the etiology of OSAS.

Keywords: soft palate, cephalometric radiographs, morphology, cleft palate, obstructive sleep apnoea syndrome

Procedia PDF Downloads 363
914 Extraction of Urban Land Features from TM Landsat Image Using the Land Features Index and Tasseled Cap Transformation

Authors: R. Bouhennache, T. Bouden, A. A. Taleb, A. Chaddad

Abstract:

In this paper we propose a method to map the urban areas. The method uses an arithmetic calculation processed from the land features indexes and Tasseled cap transformation TC of multi spectral Thematic Mapper Landsat TM image. For this purpose the derived indexes image from the original image such SAVI the soil adjusted vegetation index, UI the urban Index, and EBBI the enhanced built up and bareness index were staked to form a new image and the bands were uncorrelated, also the Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) supervised classification approaches were first applied on the new image TM data using the reference spectra of the spectral library and subsequently the four urban, vegetation, water and soil land cover categories were extracted with their accuracy assessment.The urban features were represented using a logic calculation applied to the brightness, UI-SAVI, NDBI-greenness and EBBI- brightness data sets. The study applied to Blida and mentioned that the urban features can be mapped with an accuracy ranging from 92 % to 95%.

Keywords: EBBI, SAVI, Tasseled Cap Transformation, UI

Procedia PDF Downloads 484
913 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information

Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung

Abstract:

The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.

Keywords: color moments, visual thing recognition system, SIFT, color SIFT

Procedia PDF Downloads 471
912 Hate Speech Detection in Tunisian Dialect

Authors: Helmi Baazaoui, Mounir Zrigui

Abstract:

This study addresses the challenge of hate speech detection in Tunisian Arabic text, a critical issue for online safety and moderation. Leveraging the strengths of the AraBERT model, we fine-tuned and evaluated its performance against the Bi-LSTM model across four distinct datasets: T-HSAB, TNHS, TUNIZI-Dataset, and a newly compiled dataset with diverse labels such as Offensive Language, Racism, and Religious Intolerance. Our experimental results demonstrate that AraBERT significantly outperforms Bi-LSTM in terms of Recall, Precision, F1-Score, and Accuracy across all datasets. The findings underline the robustness of AraBERT in capturing the nuanced features of Tunisian Arabic and its superior capability in classification tasks. This research not only advances the technology for hate speech detection but also provides practical implications for social media moderation and policy-making in Tunisia. Future work will focus on expanding the datasets and exploring more sophisticated architectures to further enhance detection accuracy, thus promoting safer online interactions.

Keywords: hate speech detection, Tunisian Arabic, AraBERT, Bi-LSTM, Gemini annotation tool, social media moderation

Procedia PDF Downloads 16
911 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation

Authors: Hamed Alqahtani, Manolya Kavakli-Thorne

Abstract:

The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.

Keywords: disentanglement, face detection, generative adversarial networks, video surveillance

Procedia PDF Downloads 130
910 To Determine the Effects of Regulatory Food Safety Inspections on the Grades of Different Categories of Retail Food Establishments across the Dubai Region

Authors: Shugufta Mohammad Zubair

Abstract:

This study explores the Effect of the new food System Inspection system also called the new inspection color card scheme on reduction of critical & major food safety violations in Dubai. Data was collected from all retail food service establishments located in two zones in the city. Each establishment was visited twice, once before the launch of the new system and one after the launch of the system. In each visit, the Inspection checklist was used as the evaluation tool for observation of the critical and major violations. The old format of the inspection checklist was concerned with scores based on the violations; but the new format of the checklist for the new inspection color card scheme is divided into administrative, general major and critical which gives a better classification for the inspectors to identify the critical and major violations of concerned. The study found that there has been a better and clear marking of violations after the launch of new inspection system wherein the inspectors are able to mark and categories the violations effectively. There had been a 10% decrease in the number of food establishment that was previously given A grade. The B & C grading were also considerably dropped by 5%.

Keywords: food inspection, risk assessment, color card scheme, violations

Procedia PDF Downloads 324
909 Global Differences in Job Satisfaction of Healthcare Professionals

Authors: Jonathan H. Westover, Ruthann Cunningham, Jaron Harvey

Abstract:

Purpose: Job satisfaction is one of the most critical attitudes among employees. Understanding whether employees are satisfied with their jobs and what is driving that satisfaction is important for any employer, but particularly for healthcare organizations. This study looks at the question of job satisfaction and drivers of job satisfaction among healthcare professionals at a global scale, looking for trends that generalize across 37 countries. Study: This study analyzed job satisfaction responses to the 2015 Work Orientations IV wave of the International Social Survey Programme (ISSP) to understand differences in antecedents for and levels of job satisfaction among healthcare professionals. A total of 18,716 respondents from 37 countries participated in the annual survey. Findings: Respondents self-identified their occupational category based on corresponding International Standard Classification of Occupations (ISCO-08) codes. Results suggest that mean overall job satisfaction was highest among health service managers and generalist medical practitioners and lowest among environmental hygiene professionals and nursing professionals. Originality: Many studies have addressed the issue of job satisfaction in healthcare, examining small samples of specific healthcare workers. In this study, using a large international dataset, we are able to examine questions of job satisfaction across large groups of healthcare workers in different occupations within the healthcare field.

Keywords: job satisfaction, healthcare industry, global comparisons, workplace

Procedia PDF Downloads 146
908 Review and Classification of the Indicators and Trends Used in Bridge Performance Modeling

Authors: S. Rezaei, Z. Mirzaei, M. Khalighi, J. Bahrami

Abstract:

Bridges, as an essential part of road infrastructures, are affected by various deterioration mechanisms over time due to the changes in their performance. As changes in performance can have many negative impacts on society, it is essential to be able to evaluate and measure the performance of bridges throughout their life. This evaluation includes the development or the choice of the appropriate performance indicators, which, in turn, are measured based on the selection of appropriate models for the existing deterioration mechanism. The purpose of this article is a statistical study of indicators and deterioration mechanisms of bridges in order to discover further research capacities in bridges performance assessment. For this purpose, some of the most common indicators of bridge performance, including reliability, risk, vulnerability, robustness, and resilience, were selected. The researches performed on each index based on the desired deterioration mechanisms and hazards were comprehensively reviewed. In addition, the formulation of the indicators and their relationship with each other were studied. The research conducted on the mentioned indicators were classified from the point of view of deterministic or probabilistic method, the level of study (element level, object level, etc.), and the type of hazard and the deterioration mechanism of interest. For each of the indicators, a number of challenges and recommendations were presented according to the review of previous studies.

Keywords: bridge, deterioration mechanism, lifecycle, performance indicator

Procedia PDF Downloads 105
907 Learning from Small Amount of Medical Data with Noisy Labels: A Meta-Learning Approach

Authors: Gorkem Algan, Ilkay Ulusoy, Saban Gonul, Banu Turgut, Berker Bakbak

Abstract:

Computer vision systems recently made a big leap thanks to deep neural networks. However, these systems require correctly labeled large datasets in order to be trained properly, which is very difficult to obtain for medical applications. Two main reasons for label noise in medical applications are the high complexity of the data and conflicting opinions of experts. Moreover, medical imaging datasets are commonly tiny, which makes each data very important in learning. As a result, if not handled properly, label noise significantly degrades the performance. Therefore, a label-noise-robust learning algorithm that makes use of the meta-learning paradigm is proposed in this article. The proposed solution is tested on retinopathy of prematurity (ROP) dataset with a very high label noise of 68%. Results show that the proposed algorithm significantly improves the classification algorithm's performance in the presence of noisy labels.

Keywords: deep learning, label noise, robust learning, meta-learning, retinopathy of prematurity

Procedia PDF Downloads 162
906 Deep Learning based Image Classifiers for Detection of CSSVD in Cacao Plants

Authors: Atuhurra Jesse, N'guessan Yves-Roland Douha, Pabitra Lenka

Abstract:

The detection of diseases within plants has attracted a lot of attention from computer vision enthusiasts. Despite the progress made to detect diseases in many plants, there remains a research gap to train image classifiers to detect the cacao swollen shoot virus disease or CSSVD for short, pertinent to cacao plants. This gap has mainly been due to the unavailability of high quality labeled training data. Moreover, institutions have been hesitant to share their data related to CSSVD. To fill these gaps, image classifiers to detect CSSVD-infected cacao plants are presented in this study. The classifiers are based on VGG16, ResNet50 and Vision Transformer (ViT). The image classifiers are evaluated on a recently released and publicly accessible KaraAgroAI Cocoa dataset. The best performing image classifier, based on ResNet50, achieves 95.39\% precision, 93.75\% recall, 94.34\% F1-score and 94\% accuracy on only 20 epochs. There is a +9.75\% improvement in recall when compared to previous works. These results indicate that the image classifiers learn to identify cacao plants infected with CSSVD.

Keywords: CSSVD, image classification, ResNet50, vision transformer, KaraAgroAI cocoa dataset

Procedia PDF Downloads 104