Search results for: sensor array
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2150

Search results for: sensor array

530 Design and Implementation of the Embedded Control System for the Electrical Motor Based Cargo Vehicle

Authors: Syed M. Rizvi, Yiqing Meng, Simon Iwnicki

Abstract:

With an increased demand in the land cargo industry, it is predicted that the freight trade will rise to a record $1.1 trillion in revenue and volume in the following years to come. This increase is mainly driven by the e-commerce model ever so popular in the consumer market. Many innovative ideas have stemmed from this demand and change in lifestyle likes of which include e-bike cargo and drones. Rural and urban areas are facing air quality challenges to keep pollution levels in city centre to a minimum. For this purpose, this paper presents the design and implementation of a non-linear PID control system, employing a micro-controller and low cost sensing technique, for controlling an electrical motor based cargo vehicle with various loads, to follow a leading vehicle (bike). Within using this system, the cargo vehicle will have no load influence on the bike rider on different gradient conditions, such as hill climbing. The system is being integrated with a microcontroller to continuously measure several parameters such as relative displacement between bike and the cargo vehicle and gradient of the road, and process these measurements to create a portable controller capable of controlling the performance of electrical vehicle without the need of a PC. As a result, in the case of carrying 180kg of parcel weight, the cargo vehicle can maintain a reasonable spacing over a short length of sensor travel between the bike and itself.

Keywords: cargo, e-bike, microcontroller, embedded system, nonlinear pid, self-adaptive, inertial measurement unit (IMU)

Procedia PDF Downloads 212
529 Signal Amplification Using Graphene Oxide in Label Free Biosensor for Pathogen Detection

Authors: Agampodi Promoda Perera, Yong Shin, Mi Kyoung Park

Abstract:

The successful detection of pathogenic bacteria in blood provides important information for early detection, diagnosis and the prevention and treatment of infectious diseases. Silicon microring resonators are refractive-index-based optical biosensors that provide highly sensitive, label-free, real-time multiplexed detection of biomolecules. We demonstrate the technique of using GO (graphene oxide) to enhance the signal output of the silicon microring optical sensor. The activated carboxylic groups in GO molecules bind directly to single stranded DNA with an amino modified 5’ end. This conjugation amplifies the shift in resonant wavelength in a real-time manner. We designed a capture probe for strain Staphylococcus aureus of 21 bp and a longer complementary target sequence of 70 bp. The mismatched target sequence we used was of Streptococcus agalactiae of 70 bp. GO is added after the complementary binding of the probe and target. GO conjugates to the unbound single stranded segment of the target and increase the wavelength shift on the silicon microring resonator. Furthermore, our results show that GO could successfully differentiate between the mismatched DNA sequences from the complementary DNA sequence. Therefore, the proposed concept could effectively enhance sensitivity of pathogen detection sensors.

Keywords: label free biosensor, pathogenic bacteria, graphene oxide, diagnosis

Procedia PDF Downloads 472
528 Is Class Struggle Still Useful for the Street Children Who Are Working and Committing Crimes in the Urban City of Bangladesh?

Authors: Shidratul Moontaha Suha

Abstract:

Violence is organized and utilized differently in various communities across the globe. The capacity to employ violence in numerous societies is largely limited to the apparatus of the state, like law enforcement officers, and in a small share of contexts, it is controlled within the state institutions as per the rule of law. Contrastingly, in many other societies, a broad array of players, mainly organized criminal gangs, are using violence on a substantial scale to agitate against social ills or attain personal interests. The present paper examined the role of social injustice in driving children living off and on the streets of Dhaka, Bangladesh, into joining organized criminal gangs and committing crimes. The study entailed a comprehensive review of existing literature with theoretical analyses based on three theories: the Marxist’s theory of capitalism and class struggle, the Weberian model of social stratification theory, and the social disorganization theory. The analysis revealed that, in Dhaka, Bangladesh, criminal gangs emerged from social disorganization of communities characterized by absolute poverty, residential mobility, and population heterogeneity, which promote deviance among the youth, and subsequently, led to the rise of organized gangs and delinquency. Although the latter was formed as a response to class struggle, they have been employed by the state and police as the tools of exploitation and oppression to rule the working class. The criminal gangs exploit the vulnerability of street children by using them as sources of cheap labor to peddle drugs, extort, or kill specific individuals who are against their ideals. In retrospect, the street children receive individual, group, and social protection. Therefore, social class struggle plays a central role in the proliferation of organized criminal gangs and the engagement of street children in criminal activities in Dhaka, Bangladesh.

Keywords: cheap labor, organized crimes, poverty, social stratification, social children

Procedia PDF Downloads 151
527 Effect of Modulation Factors on Tomotherapy Plans and Their Quality Analysis

Authors: Asawari Alok Pawaskar

Abstract:

This study was aimed at investigating quality assurance (QA) done with IBA matrix, the discrepan­cies observed for helical tomotherapy plans. A selection of tomotherapy plans that initially failed the with Matrix process was chosen for this investigation. These plans failed the fluence analysis as assessed using gamma criteria (3%, 3 mm). Each of these plans was modified (keeping the planning constraints the same), beamlets rebatched and reoptimized. By increasing and decreasing the modula­tion factor, the fluence in a circumferential plane as measured with a diode array was assessed. A subset of these plans was investigated using varied pitch values. Factors for each plan that were examined were point doses, fluences, leaf opening times, planned leaf sinograms, and uniformity indices. In order to ensure that the treatment constraints remained the same, the dose-volume histograms (DVHs) of all the modulated plans were compared to the original plan. It was observed that a large increase in the modulation factor did not significantly improve DVH unifor­mity, but reduced the gamma analysis pass rate. This also increased the treatment delivery time by slowing down the gantry rotation speed which then increases the maximum to mean non-zero leaf open time ratio. Increasing and decreasing the pitch value did not substantially change treatment time, but the delivery accuracy was adversely affected. This may be due to many other factors, such as the complexity of the treatment plan and site. Patient sites included in this study were head and neck, breast, abdomen. The impact of leaf tim­ing inaccuracies on plans was greater with higher modulation factors. Point-dose measurements were seen to be less susceptible to changes in pitch and modulation factors. The initial modulation factor used by the optimizer, such that the TPS generated ‘actual’ modulation factor within the range of 1.4 to 2.5, resulted in an improved deliverable plan.

Keywords: dose volume histogram, modulation factor, IBA matrix, tomotherapy

Procedia PDF Downloads 183
526 Evidence of Natural Selection Footprints among Some African Chicken Breeds and Village Ecotypes

Authors: Ahmed Elbeltagy, Francesca Bertolini, Damarius Fleming, Angelica Van Goor, Chris Ashwell, Carl Schmidt, Donald Kugonza, Susan Lamont, Max Rothschild

Abstract:

The major factor in shaping genomic variation of the African indigenous rural chicken is likely natural selection drives the development genetic footprints in the chicken genomes. To investigate such a hypothesis of a selection footprint, a total of 292 birds were randomly sampled from three indigenous ecotypes from East Africa (Uganda, Rwanda) and North Africa (Egypt) and two registered Egyptian breeds (Fayoumi and Dandarawi), and from the synthetic Kuroiler breed. Samples were genotyped using the Affymetrix 600K Axiom® Array. A total of 526,652 SNPs were utilized in the downstream analysis after quality control measures. The intra-population runs of homozygosity (ROH) that were consensuses in > 50% of individuals of an ecotype or > 75% of a breed were studied. To identify inter-population differentiation due to genetic structure, FST was calculated for North- vs. East- African populations in addition to population-pairwise combinations for overlapping windows (500Kb with an overlap of 250Kb). A total of 28,563 ROH were determined and were classified into three length categories. ROH and Fst detected sweeps were identified on several autosomes. Several genes in these regions are likely to be related to adaptation to local environmental stresses that include high altitude, diseases resistance, poor nutrition, oxidative and heat stresses and were linked to gene ontology terms (GO) related to immune response, oxygen consumption and heme binding, carbohydrate metabolism, oxidation-reduction, and behavior. Results indicated a possible effect of natural selection forces on shaping genomic structure for adaptation to local environmental stresses.

Keywords: African Chicken, runs of homozygosity, FST, selection footprints

Procedia PDF Downloads 314
525 Between Reality and Fiction: Self-Representation as an Avatar and Its Effects on Self-Presence

Authors: Leonie Laskowitz

Abstract:

A self-confident appearance is a basic prerequisite for success in the world of work 4.0. Within a few seconds, people convey a first impression that usually lasts. Artificial intelligence is making it increasingly important how our virtual selves appear and communicate (nonverbally) in digital worlds such as the metaverse. In addition to the modified creation of an avatar, the field of photogrammetry is developing fast, creating exact likenesses of ourselves in virtual environments. Given the importance of self-representation in virtual space for future collaborations, it is important to investigate the impact of phenotype in virtual worlds and how an avatar type can profitably be used situationally. We analyzed the effect of self-similar versus desirable self-presentation as an avatar on one's self-awareness, considering various theoretical constructs in the area of self-awareness and stress stimuli. The avatars were arbitrarily created on the one hand and scanned on the other hand with the help of a lidar sensor, the state-of-the-art photogrammetry method. All subjects were exposed to the established Trier Social Stress Test. The results showed that especially insecure people prefer to create rather than be scanned when confronted with a stressful work situation. (1) If they are in a casual work environment and a relaxed situation, they prefer a 3D photorealistic avatar that reflects them in detail. (2) Confident people will give their avatar their true appearance in any situation, while insecure people would only do so for honesty and authenticity. (3) Thus, the choice of avatar type has considerable impact on self-confidence in different situations.

Keywords: avatar, virtual identity, self-presentation, metaverse, virtual reality, self-awareness

Procedia PDF Downloads 151
524 Global Navigation Satellite System and Precise Point Positioning as Remote Sensing Tools for Monitoring Tropospheric Water Vapor

Authors: Panupong Makvichian

Abstract:

Global Navigation Satellite System (GNSS) is nowadays a common technology that improves navigation functions in our life. Additionally, GNSS is also being employed on behalf of an accurate atmospheric sensor these times. Meteorology is a practical application of GNSS, which is unnoticeable in the background of people’s life. GNSS Precise Point Positioning (PPP) is a positioning method that requires data from a single dual-frequency receiver and precise information about satellite positions and satellite clocks. In addition, careful attention to mitigate various error sources is required. All the above data are combined in a sophisticated mathematical algorithm. At this point, the research is going to demonstrate how GNSS and PPP method is capable to provide high-precision estimates, such as 3D positions or Zenith tropospheric delays (ZTDs). ZTDs combined with pressure and temperature information allows us to estimate the water vapor in the atmosphere as precipitable water vapor (PWV). If the process is replicated for a network of GNSS sensors, we can create thematic maps that allow extract water content information in any location within the network area. All of the above are possible thanks to the advances in GNSS data processing. Therefore, we are able to use GNSS data for climatic trend analysis and acquisition of the further knowledge about the atmospheric water content.

Keywords: GNSS, precise point positioning, Zenith tropospheric delays, precipitable water vapor

Procedia PDF Downloads 202
523 Occupational Health Programs for Artisanal and Small-Scale Gold Mining: A Systematic Review for the WHO Global Plan of Action for Workers' Health

Authors: Vivian W. L. Tsang, Karen Lockhart, Samuel Spiegel, Annalee Yassi

Abstract:

Background: Workers in the informal economy often incur exposure to well-documented occupational health hazards. Insufficient attention has been afforded to rigorously evaluating intervention programs to reduce the risks, especially in artisanal and small-scale gold mining (ASGM). Objectives: This systematic review, conducted as part of the World Health Organization’s Global Plan of Action for Workers’ Health, sought to assess the state of knowledge on occupational health programs and interventions for the informal artisanal and small-scale gold mining (ASGM) sector, an occupation which directly employs at least 50 million people. Methods: We used a comprehensive search strategy for four well-known databases relevant to health outcomes: PubMed, Engineering Village, OVID Medline, and Web of Science, and employed the PRISMA framework for our analysis. Findings: Ten studies met the inclusion criteria of a primary study focused on assessing the impact of interventions addressing occupational health concerns in ASGM. There were no studies evaluating or even identifying comprehensive occupational health and safety programs for this sector, although target interventions addressing specific hazards exist. Major areas of intervention –education and introduction of mercury-reducing/eliminating technology were identified, and the challenges and limitations of each intervention taken into the assessment. Even for these, however, there was a lack of standardization for measuring outcome or impact, let alone long-term health outcomes for miners and mining communities. Conclusion: There is an urgent need for research on comprehensive occupational health programs addressing the array of hazards faced by artisanal and small-scale miners.

Keywords: informal economy, artisanal and small-scale gold mining, occupational health, health and safety, workplace safety

Procedia PDF Downloads 156
522 Vision-Based Daily Routine Recognition for Healthcare with Transfer Learning

Authors: Bruce X. B. Yu, Yan Liu, Keith C. C. Chan

Abstract:

We propose to record Activities of Daily Living (ADLs) of elderly people using a vision-based system so as to provide better assistive and personalization technologies. Current ADL-related research is based on data collected with help from non-elderly subjects in laboratory environments and the activities performed are predetermined for the sole purpose of data collection. To obtain more realistic datasets for the application, we recorded ADLs for the elderly with data collected from real-world environment involving real elderly subjects. Motivated by the need to collect data for more effective research related to elderly care, we chose to collect data in the room of an elderly person. Specifically, we installed Kinect, a vision-based sensor on the ceiling, to capture the activities that the elderly subject performs in the morning every day. Based on the data, we identified 12 morning activities that the elderly person performs daily. To recognize these activities, we created a HARELCARE framework to investigate into the effectiveness of existing Human Activity Recognition (HAR) algorithms and propose the use of a transfer learning algorithm for HAR. We compared the performance, in terms of accuracy, and training progress. Although the collected dataset is relatively small, the proposed algorithm has a good potential to be applied to all daily routine activities for healthcare purposes such as evidence-based diagnosis and treatment.

Keywords: daily activity recognition, healthcare, IoT sensors, transfer learning

Procedia PDF Downloads 135
521 Graphene-Intercalated P4Se3@CNF Hybrid Electrode for Sustainable Energy Storage Solution: Enabling High Energy Density and Ultra-long Cyclic Stability

Authors: Daya Rani

Abstract:

Non-metal-based compounds have emerged as promising electrodes in recent years to replace scarce and expensive transition-metals for energy storage applications. Herein, a simple electro-spinning technique followed by carbonization is used to create tetraphosphorus triselenide(P4Se3)nano-flakes encapsulated in carbon nanofiber (P4Se3@CNF) to obtain a binder-free, metal-free and flexible hybrid electrode with high electrical conductivity and cyclic stability. A remarkable capacitive performance (5.5-folds@P4Se3) of 810Fg-1/[email protected] has been obtained using P4Se3@CNF electrode with an excellent rate capability compared to pristine(P4Se3) which is further supported by theoretical calculations via intercalating graphene within bare P4Se3 flakes inducing partial charge redistribution in hetero-structure. A flexible pouch-type hybrid-supercapacitor followed by coin-cell has been manufactured offering exceptional energy-density without sacrificing power density and ultra-long durability over 35000 and 100000-cycles with capacitance-retention of 99.77% and 100%, respectively. It has been demonstrated that as-fabricated device has practical usefulness towards renewable energy harvesting and storage via integrating commercial solar cell module with supercapattery array that can enlighten the blue LED approximately for 31minutes, rotate the homemade windmill device, power Arduino and glow “INST” against 2minutes of charging. This work demonstrates a facile route towards the development of metal-free electrochemical renewable energy storage/transfer devices offering an inevitable adoption in industrial platforms.

Keywords: metal free, carbon nano-fiber, pouch-type hybrid super-capacitor, nano-flakes

Procedia PDF Downloads 32
520 Structural, Vibrational, Magnetic, and Electronic Properties of La₂MMnO₆ Double Perovskites with M = Ni, Co, and Zn

Authors: Hamza Ouachtouk, Amine Harbi, Said Azerblou, Youssef Naimi, El Mostafa Tace

Abstract:

This study delves into the structural, vibrational, magnetic, and electronic properties of La₂MMnO₆ double perovskites, where M denotes Ni, Co, and Zn. Recognized for their versatile ionic configurations within the A and B sub-lattices, double perovskite oxides have attracted considerable interest due to their extensive array of physical properties, which include multiferroic behavior, colossal magnetoresistance, and ferroelectric/piezoelectric functionalities. These materials are pivotal for energy-related technologies like solid oxide fuel cells and water-splitting catalysis, attributed to their superior oxygen ion transport and storage capabilities. This research places particular emphasis on La₂NiMnO₆ and La₂CoMnO₆, known for their distinct magnetic, electric, and multiferroic properties, and extends the investigation to La₂ZnMnO₆, synthesized via high-temperature solid-state chemistry. This addition aims to ascertain the impact of zinc substitution on these properties. Structural analysis through X-ray diffraction has confirmed a monoclinic structure within the P2₁/n space group. Comprehensive vibrational studies utilizing infrared and Raman spectroscopy, alongside additional XRD assessments, provide a detailed examination of the dynamic and electronic behaviors of these compounds. The results underscore the significant role of chemical composition in modulating their functional properties. Comparatively, this study highlights that zinc substitution notably alters the electronic and magnetic responses, which could enhance the applicability of these materials in advanced energy technologies. This expanded analysis not only reinforces our understanding of La₂MMnO₆'s physical characteristics but also highlights its potential applications in the next generation of energy solutions.

Keywords: double perovskites, structural analysis, vibrational spectroscopy, magnetic properties, electronic properties, high-temperature solid-state chemistry, La₂MMnO₆, monoclinic structure, x-ray diffraction

Procedia PDF Downloads 62
519 Evaluating Cognition and Movement Coordination of Adolescents with Intellectual Disabilities through Ball Games

Authors: Wann-Yun Shieh, Hsin-Yi Kathy Cheng, Yan-Ying Ju, Yu-Chun Yu, Ya-Cheng Shieh

Abstract:

Adolescents who have intellectual disabilities often demonstrate maladaptive behaviors in their daily activities due to either physical abnormalities or neurological disorders. These adolescents commonly struggle with their cognition and movement coordination when it comes to executing tasks such as throwing or catching objects smoothly, quickly, and gracefully, in contrast to their typically developing peers. Simply measuring movement time and distance doesn't provide a comprehensive view of their performance challenges. In this study, a ball-playing approach was proposed to assess the cognition and movement coordination of adolescents with intellectual disabilities using a smart ball equipped with an embedded inertial sensor. Four distinct ball games were specifically designed for this smart ball: two focusing on lower limb activities (dribbling along a straight line and navigating a zigzag path) and two centered around upper limb tasks (picking up and throwing and catching the ball). The cognition and movement coordination of 25 adolescents with intellectual disabilities (average age 18.36 ± 2.46 years) with that of 25 typically developing adolescents (average age 18.36 ± 0.49 years) were compared in these four tests. The results clearly revealed significant differences in the cognition and movement coordination between the adolescents with intellectual disabilities and the typically developing adolescents. These differences encompassed aspects such as movement speed, hand-eye coordination, and control over objects across all the tests conducted.

Keywords: cognition, intellectual disabilities, movement coordination, smart ball

Procedia PDF Downloads 78
518 Microstructural and Optical Characterization of Heterostructures of ZnS/CdS and CdS/ZnS Synthesized by Chemical Bath Deposition Method

Authors: Temesgen Geremew

Abstract:

ZnS/glass and CdS/glass single layers and ZnS/CdS and CdS/ZnS heterojunction thin films were deposited by the chemical bath deposition method using zinc acetate and cadmium acetate as the metal ion sources and thioacetamide as a nonmetallic ion source in acidic medium. Na2EDTA was used as a complexing agent to control the free cation concentration. +e single layer and heterojunction thin films were characterized with X-ray diffraction (XRD), a scanning electron microscope (SEM), energy dispersive X-ray (EDX), and a UV-VIS spectrometer. +e XRD patterns of the CdS/glass thin film deposited on the soda lime glass substrate crystalized in the cubic structure with a single peak along the (111) plane. +e ZnS/CdS heterojunction and ZnS/glass single layer thin films were crystalized in the hexagonal ZnS structure. +e CdS/ZnS heterojunction thin film is nearly amorphous.The optical analysis results confirmed single band gap values of 2.75 eV and 2.5 eV for ZnS/CdS and CdS/ZnS heterojunction thin films, respectively. +e CdS/glass and CdS/ZnS thin films have more imaginary dielectric components than the real part. The optical conductivity of the single layer and heterojunction films is in the order of 1015 1/s. +e optical study also confirmed refractive index values between 2 and 2.7 for ZnS/glass, ZnS/CdS, and CdS/ZnS thin films for incident photon energies between 1.2 eV and 3.8 eV. +e surface morphology studies revealed compacted spherical grains covering the substrate surfaces with few cracks on ZnS/glass, ZnS/CdS, and CdS/glass and voids on CdS/ZnS thin films. +e EDX result confirmed nearly 1 :1 metallic to nonmetallic ion ratio in the single-layered thin films and the dominance of Zn ion over Cd ion in both ZnS/CdS and CdS/ZnS heterojunction thin films.

Keywords: SERS, sensor, Hg2+, water detection, polythiophene

Procedia PDF Downloads 69
517 Improving Efficiencies of Planting Configurations on Draft Environment of Town Square: The Case Study of Taichung City Hall in Taichung, Taiwan

Authors: Yu-Wen Huang, Yi-Cheng Chiang

Abstract:

With urban development, lots of buildings are built around the city. The buildings always affect the urban wind environment. The accelerative situation of wind caused of buildings often makes pedestrians uncomfortable, even causes the accidents and dangers. Factors influencing pedestrian level wind including atmospheric boundary layer, wind direction, wind velocity, planting, building volume, geometric shape of the buildings and adjacent interference effects, etc. Planting has many functions including scraping and slowing urban heat island effect, creating a good visual landscape, increasing urban green area and improve pedestrian level wind. On the other hand, urban square is an important space element supporting the entrance to buildings, city landmarks, and activity collections, etc. The appropriateness of urban square environment usually dominates its success. This research focuses on the effect of tree-planting on the wind environment of urban square. This research studied the square belt of Taichung City Hall. Taichung City Hall is a cuboid building with a large mass opening. The square belt connects the front square, the central opening and the back square. There is often wind draft on the square belt. This phenomenon decreases the activities on the squares. This research applies tree-planting to improve the wind environment and evaluate the effects of two types of planting configuration. The Computational Fluid Dynamics (CFD) simulation analysis and extensive field measurements are applied to explore the improve efficiency of planting configuration on wind environment. This research compares efficiencies of different kinds of planting configuration, including the clustering array configuration and the dispersion, and evaluates the efficiencies by the SET*.

Keywords: micro-climate, wind environment, planting configuration, comfortableness, computational fluid dynamics (CFD)

Procedia PDF Downloads 313
516 Embedding the Dimensions of Sustainability into City Information Modelling

Authors: Ali M. Al-Shaery

Abstract:

The purpose of this paper is to address the functions of sustainability dimensions in city information modelling and to present the required sustainability criteria that support establishing a sustainable planning framework for enhancing existing cities and developing future smart cities. The paper is divided into two sections. The first section is based on the examination of a wide and extensive array of cross-disciplinary literature in the last decade and a half to conceptualize the terms ‘sustainable’ and ‘smart city,' and map their associated criteria to city information modelling. The second section is based on analyzing two approaches relating to city information modelling, namely statistical and dynamic approaches, and their suitability in the development of cities’ action plans. The paper argues that the use of statistical approaches to embedding sustainability dimensions in city information modelling have limited value. Despite the popularity of such approaches in addressing other dimensions like utility and service management in development and action plans of the world cities, these approaches are unable to address the dynamics across various city sectors with regards to economic, environmental and social criteria. The paper suggests an integrative dynamic and cross-disciplinary planning approach to embedding sustainability dimensions in city information modelling frameworks. Such an approach will pave the way towards optimal planning and implementation of priority actions of projects and investments. The approach can be used to achieve three main goals: (1) better development and action plans for world cities (2) serve the development of an integrative dynamic and cross-disciplinary framework that incorporates economic, environmental and social sustainability criteria and (3) address areas that require further attention in the development of future sustainable and smart cities. The paper presents an innovative approach for city information modelling and a well-argued, balanced hierarchy of sustainability criteria that can contribute to an area of research which is still in its infancy in terms of development and management.

Keywords: information modelling, smart city, sustainable city, sustainability dimensions, sustainability criteria, city development planning

Procedia PDF Downloads 330
515 A Study on the Performance of 2-PC-D Classification Model

Authors: Nurul Aini Abdul Wahab, Nor Syamim Halidin, Sayidatina Aisah Masnan, Nur Izzati Romli

Abstract:

There are many applications of principle component method for reducing the large set of variables in various fields. Fisher’s Discriminant function is also a popular tool for classification. In this research, the researcher focuses on studying the performance of Principle Component-Fisher’s Discriminant function in helping to classify rice kernels to their defined classes. The data were collected on the smells or odour of the rice kernel using odour-detection sensor, Cyranose. 32 variables were captured by this electronic nose (e-nose). The objective of this research is to measure how well a combination model, between principle component and linear discriminant, to be as a classification model. Principle component method was used to reduce all 32 variables to a smaller and manageable set of components. Then, the reduced components were used to develop the Fisher’s Discriminant function. In this research, there are 4 defined classes of rice kernel which are Aromatic, Brown, Ordinary and Others. Based on the output from principle component method, the 32 variables were reduced to only 2 components. Based on the output of classification table from the discriminant analysis, 40.76% from the total observations were correctly classified into their classes by the PC-Discriminant function. Indirectly, it gives an idea that the classification model developed has committed to more than 50% of misclassifying the observations. As a conclusion, the Fisher’s Discriminant function that was built on a 2-component from PCA (2-PC-D) is not satisfying to classify the rice kernels into its defined classes.

Keywords: classification model, discriminant function, principle component analysis, variable reduction

Procedia PDF Downloads 336
514 Sign Language Recognition of Static Gestures Using Kinect™ and Convolutional Neural Networks

Authors: Rohit Semwal, Shivam Arora, Saurav, Sangita Roy

Abstract:

This work proposes a supervised framework with deep convolutional neural networks (CNNs) for vision-based sign language recognition of static gestures. Our approach addresses the acquisition and segmentation of correct inputs for the CNN-based classifier. Microsoft Kinect™ sensor, despite complex environmental conditions, can track hands efficiently. Skin Colour based segmentation is applied on cropped images of hands in different poses, used to depict different sign language gestures. The segmented hand images are used as an input for our classifier. The CNN classifier proposed in the paper is able to classify the input images with a high degree of accuracy. The system was trained and tested on 39 static sign language gestures, including 26 letters of the alphabet and 13 commonly used words. This paper includes a problem definition for building the proposed system, which acts as a sign language translator between deaf/mute and the rest of the society. It is then followed by a focus on reviewing existing knowledge in the area and work done by other researchers. It also describes the working principles behind different components of CNNs in brief. The architecture and system design specifications of the proposed system are discussed in the subsequent sections of the paper to give the reader a clear picture of the system in terms of the capability required. The design then gives the top-level details of how the proposed system meets the requirements.

Keywords: sign language, CNN, HCI, segmentation

Procedia PDF Downloads 160
513 Taguchi-Based Surface Roughness Optimization for Slotted and Tapered Cylindrical Products in Milling and Turning Operations

Authors: Vineeth G. Kuriakose, Joseph C. Chen, Ye Li

Abstract:

The research follows a systematic approach to optimize the parameters for parts machined by turning and milling processes. The quality characteristic chosen is surface roughness since the surface finish plays an important role for parts that require surface contact. A tapered cylindrical surface is designed as a test specimen for the research. The material chosen for machining is aluminum alloy 6061 due to its wide variety of industrial and engineering applications. HAAS VF-2 TR computer numerical control (CNC) vertical machining center is used for milling and HAAS ST-20 CNC machine is used for turning in this research. Taguchi analysis is used to optimize the surface roughness of the machined parts. The L9 Orthogonal Array is designed for four controllable factors with three different levels each, resulting in 18 experimental runs. Signal to Noise (S/N) Ratio is calculated for achieving the specific target value of 75 ± 15 µin. The controllable parameters chosen for turning process are feed rate, depth of cut, coolant flow and finish cut and for milling process are feed rate, spindle speed, step over and coolant flow. The uncontrollable factors are tool geometry for turning process and tool material for milling process. Hypothesis testing is conducted to study the significance of different uncontrollable factors on the surface roughnesses. The optimal parameter settings were identified from the Taguchi analysis and the process capability Cp and the process capability index Cpk were improved from 1.76 and 0.02 to 3.70 and 2.10 respectively for turning process and from 0.87 and 0.19 to 3.85 and 2.70 respectively for the milling process. The surface roughnesses were improved from 60.17 µin to 68.50 µin, reducing the defect rate from 52.39% to 0% for the turning process and from 93.18 µin to 79.49 µin, reducing the defect rate from 71.23% to 0% for the milling process. The purpose of this study is to efficiently utilize the Taguchi design analysis to improve the surface roughness.

Keywords: surface roughness, Taguchi parameter design, CNC turning, CNC milling

Procedia PDF Downloads 160
512 Analysis of the Effects of Vibrations on Tractor Drivers by Measurements With Wearable Sensors

Authors: Gubiani Rino, Nicola Zucchiatti, Da Broi Ugo, Bietresato Marco

Abstract:

The problem of vibrations in agriculture is very important due to the different types of machinery used for the different types of soil in which work is carried out. One of the most commonly used machines is the tractor, where the phenomenon has been studied for a long time by measuring the whole body and placing the sensor on the seat. However, this measurement system does not take into account the characteristics of the drivers, such as their body index (BMI), their gender (male, female) or the muscle fatigue they are subjected to, which is highly dependent on their age for example. The aim of the research was therefore to place sensors not only on the seat but along the spinal column to check the transmission of vibration on drivers with different BMI on different tractors and at different travel speeds and of different genders. The test was also done using wearable sensors such as a dynamometer applied to the muscles, the data of which was correlated with the vibrations produced by the tractor. Initial data show that even on new tractors with pneumatic seats, the vibrations attenuate little and are still correlated with the roughness of the track travelled and the forward speed. Another important piece of data are the root-mean square values referred to 8 hours (A(8)x,y,z) and the maximum transient vibration values (MTVVx,y,z) and, the latter, the MTVVz values were problematic (limiting factor in most cases) and always aggravated by the speed. The MTVVx values can be lowered by having a tyre-pressure adjustment system, able to properly adjust the tire pressure according to the specific situation (ground, speed) in which a tractor is operating.

Keywords: fatigue, effect vibration on health, tractor driver vibrations, vibration, muscle skeleton disorders

Procedia PDF Downloads 76
511 Construction and Performance of Nanocomposite-Based Electrochemical Biosensor

Authors: Jianfang Wang, Xianzhe Chen, Zhuoliang Liu, Cheng-An Tao, Yujiao Li

Abstract:

Organophosphorus (OPs) pesticide used as insecticides are widely used in agricultural pest control, household and storage deworming. The detection of pesticides needs more simple and efficient methods. One of the best ways is to make electrochemical biosensors. In this paper, an electrochemical enzyme biosensor based on acetylcholine esterase (AChE) was constructed, and its sensing properties and sensing mechanisms were studied. Reduced graphene oxide-polydopamine complexes (RGO-PDA), gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) were prepared firstly and composited with AChE and chitosan (CS), then fixed on the glassy carbon electrode (GCE) surface to construct the biosensor GCE/RGO-PDA-AuNPs-AgNPs-AChE-CS by one-pot method. The results show that graphene oxide (GO) can be reduced by dopamine (DA) and dispersed well in RGO-PDA complexes. And the composites have a synergistic catalysis effect and can improve the surface resistance of GCE. The biosensor selectively can detect acetylcholine (ACh) and OPs pesticide with good linear range and high sensitivity. The performance of the biosensor is affected by the ratio and adding ways of AChE and the adding of AuNPs and AChE. And the biosensor can achieve a detection limit of 2.4 ng/L for methyl parathion and a wide linear detection range of 0.02 ng/L ~ 80 ng/L, and has excellent stability, good anti-interference ability, and excellent preservation performance, indicating that the sensor has practical value.

Keywords: acetylcholine esterase, electrochemical biosensor, nanoparticles, organophosphates, reduced graphene oxide

Procedia PDF Downloads 117
510 Real-Time Gesture Recognition System Using Microsoft Kinect

Authors: Ankita Wadhawan, Parteek Kumar, Umesh Kumar

Abstract:

Gesture is any body movement that expresses some attitude or any sentiment. Gestures as a sign language are used by deaf people for conveying messages which helps in eliminating the communication barrier between deaf people and normal persons. Nowadays, everybody is using mobile phone and computer as a very important gadget in their life. But there are some physically challenged people who are blind/deaf and the use of mobile phone or computer like device is very difficult for them. So, there is an immense need of a system which works on body gesture or sign language as input. In this research, Microsoft Kinect Sensor, SDK V2 and Hidden Markov Toolkit (HTK) are used to recognize the object, motion of object and human body joints through Touch less NUI (Natural User Interface) in real-time. The depth data collected from Microsoft Kinect has been used to recognize gestures of Indian Sign Language (ISL). The recorded clips are analyzed using depth, IR and skeletal data at different angles and positions. The proposed system has an average accuracy of 85%. The developed Touch less NUI provides an interface to recognize gestures and controls the cursor and click operation in computer just by waving hand gesture. This research will help deaf people to make use of mobile phones, computers and socialize among other persons in the society.

Keywords: gesture recognition, Indian sign language, Microsoft Kinect, natural user interface, sign language

Procedia PDF Downloads 310
509 Disaggregation of Coarser Resolution Radiometer Derived Soil Moisture to Finer Scales

Authors: Gurjeet Singh, Rabindra K. Panda

Abstract:

Soil moisture is a key hydrologic state variable and is intrinsically linked to the Earth's water, climate and carbon cycles. On ecological point of view, the soil moisture is a fundamental natural resource providing the transpirable water for plants. Soil moisture varies both temporally and spatially due to spatiotemporal variation in rainfall, vegetation cover, soil properties and topography. Satellite derived soil moisture provides spatio-temporal extensive data. However, the spatial resolution of a typical satellite (L-band radiometry) is of the order of tens of kilometers, which is not good enough for developing efficient agricultural water management schemes at the field scale. In the present study, the soil moisture from radiometer data has been disaggregated using blending approach to achieve higher resolution soil moisture data. The radiometer estimates of soil moisture at a 40 km resolution have been disaggregated to 10 km, 5 km and 1 km resolutions. The disaggregated soil moisture was compared with the observed data, consisting of continuous sensor based soil moisture profile measurements, at three monitoring sites and extensive spatial near-surface soil moisture measurements, concurrent with satellite monitoring in the 500 km2 study watershed in the Eastern India. The estimated soil moisture status at different spatial scales can help in developing efficient agricultural water management schemes to increase the crop production and water use efficiency.

Keywords: disaggregation, eastern India, radiometers, soil moisture, water use efficiency

Procedia PDF Downloads 278
508 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach

Authors: James Ladzekpo

Abstract:

Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.

Keywords: diabetes, machine learning, prediction, biomarkers

Procedia PDF Downloads 60
507 Exploring Strategies Used by Victims of Intimate Partner Violence to Increase Sense of Safety: A Systematic Review and Quantitative Study

Authors: Thomas Nally, Jane Ireland, Roxanne Khan, Philip Birch

Abstract:

Intimate Partner Violence (IPV), a significant societal problem, affects individuals worldwide. However, the strategies victims use to keep safe are under-researched. IPV is significantly under-reported, and services often are not able to be accessed by all victims. Thus they are likely to use their own strategies to manage their victimization before being able to seek support. Two studies were completed to understand these strategies. A systematic review of the literature and study completed with professionals who work with victims was undertaken to understand this area. In study one, a systematic review of the literature (n=61 papers), were analyzed using Thematic Analysis. The results indicated that victims use a large array of behaviors to increase their sense of safety and coping with emotions but also experience significant barriers to help-seeking. In study 2, sixty-nine professionals completed a measure exploring the likelihood and effectiveness of various victim strategies regarding increasing their sense of safety. Strategies included in the measure were obtained from those identified in study 1. Findings indicated that professionals perceived victims of IPV to be more likely to employ safety strategies and coping behaviors that may be ineffective but not help-seeking behaviors. Further, the responses were analyzed using Cluster Analysis. Safety strategies resulted in five clusters; perpetrator-directed strategies, prevention strategies, cognitive reappraisal, safety planning and avoidance strategies. Help-Seeking resulted in six clusters; information or practical support, abuse-related support, emotional support, secondary support and informal support. Finally, coping resulted in four clusters; emotional coping, self-directed coping, thought recording/change and cognitive coping. Both studies indicate that victims may use a variety of strategies to manage their safety besides seeking help. Professionals working with victims, using a strength-based approach, should understand what is used and is effective for victims who are unable to leave the relationships or access external support.

Keywords: intimate partner violence, help-seeking, professional support, victims, victim coping, victim safety

Procedia PDF Downloads 191
506 Evaluation of Neonicotinoids Against Sucking Insect Pests of Cotton in Laboratory and Field Conditions

Authors: Muhammad Sufyan, Muhammad D. Gogi, Muhammad Arshad, Ahmad Nawaz, Muhammad Usman

Abstract:

Cotton (Gossypium hirsutum) universally known as silver fiber and is one of the most important cash crop of Pakistan. A wide array of pests constraints cotton production among which sucking insect pests cause serious losses. Mostly new chemistry insecticides used to control a wide variety of insect pests including sucking insect pests. In the present study efficacy of different neonicotinoids was evaluated against sucking insect pests of cotton in the field and in laboratory for red and dusky cotton bug. The experiment was conducted at Entomology Research Station, University of Agriculture Faisalabad, in a Randomized Complete Block Design (RCBD). Field trial was conducted to evaluate the efficacy of Confidence Ultra (Imidacloprid) 70% SL, Confidor (Imidacloprid) 20% SL, Kendo (Lambda cyhalothrin) 24.7 SC, Actara (Thiamethoxam) 25% WG, Forcast (Tebufenozide+ Emamectin benzoate) 8.8 EW and Timer (Emamectin benzoate) 1.9 EC at their recommended doses. The data was collected on per leaf basis of thrips, aphid, jassid and whitefly before 24 hours of spray. The post treatment data was recorded after 24, 48 and 72 hours. The fresh, non-infested and untreated cotton leaves was collected from the field and brought to the laboratory to assess the efficacy of neonicotinoids against red and dusky cotton bug. After data analysis all the insecticides were found effective against sucking pests. Confidence Ultra was highly effective against the aphid, jassid, and whitefly and gave maximum mortality, while showed non-significant results against thrips. In case of aphid plot which was treated with Kando 24.7 SC showed significant mortality after 72 hours of pesticide application. Similar trends were found in laboratory conditions with all these treatments by making different concentrations and had significant impact on dusky cotton bug and red cotton bug population after 24, 48 and 72 hours after application.

Keywords: cotton, laboratory and field conditions, neonicotinoids, sucking insect pests

Procedia PDF Downloads 247
505 Chemical Characterization and Time-Kill Effect of Crude Extracts of Propolis

Authors: I.K.Bedaida, A.Reguig

Abstract:

Propolis is a complex resinous hive product, collected by bees from plants sources. Its chemical and constituents composition depends on its floral origin, and varies according to climatic and geographical conditions. Its strong antibacterial activity was correlated to the highest concentration of phenols. Staphylococcus aureus is the most significant human pathogen often carried asymptomatically on the bodies of both humans and animals, and has been implicated as causing severe morbidity and mortality worldwide. S. aureus has the ability to produce several exoenzymes that contribute to virulence such as coagulase, hemolysin, protease, and lipase and enterotoxin. It is considered also as one of the most important food safety concerns for the food industry. The aim of the study was to analyze propolis extracts' phytochemical and to study the cytoplasmic membrane damage of crude ethanol extract of propolis against Staphylococcus aureus ATCC 25923 by observing the changes of cell microstructure using scanning electron microscope and cell permeability damages. Propolis Ethanolic extract was analyzed by ultra-high-performance liquid chromatography coupled with a diode array detector and an electrospray mass spectrometer (UHPLC-DAD-ESI/MS). Additionally, polyphenols and volatile compounds of EEP was analyzed by gas chromatography–mass spectrometry GC-MS. Staphylococcus aureus ATCC 25923 was subjected to agar dilution method to determine the minimum inhibitory concentration (MIC) and potassium and protein leakages were performed to detect permeability damages. The results showed that the minimum inhibitory concentration (MIC) of EEP against Staphylococcus aureus ATCC 25923 was 39 µg/ml. Adding EEP at MIC level, there were obvious changes in the morphology of bacteria cells indicating cell damage. When EEP were added at (2MIC) levels, the cells were destroyed. EEP cause rapid increase the concentration of proteins and potassium in cell suspension.

Keywords: antimicrobial, GC-MS, HPLC, propolis, time kill effect

Procedia PDF Downloads 16
504 NprRX Regulation on Surface Spreading Motility in Bacillus cereus

Authors: Yan-Shiang Chiou, Yi-Huang Hsueh

Abstract:

Bacillus cereus is a foodborne pathogen that causes two types of foodborne illness, the emetic and diarrheal syndromes. B. cereus consistently ranks among the top three among bacterial foodborne outbreaks in the ten years of 2001 to 2010 in Taiwan. Foodborne outbreak caused by B. cereus has been increased, and recently it ranks second foodborne pathogen after Vibrio parahaemolyticus. This pathogen is difficult to control due to its ubiquitousness in the environment, the psychrotrophic nature of many strains, and the heat resistance of their spores. Because complete elimination of biofilms is difficult, a better understanding of the molecular mechanisms of biofilm formation by B. cereus will help to develop better strategies to control this pathogen. Surface translocation can be an important factor in biofilm formation. In B. cereus, NprR is a quorum sensor, and its apo NprR is a dimer and changes to a tetramer in the presence of NprX. The small peptide NprX may induce conformational change allowing the apo dimer to switch to an active tetramer specifically recognizing target DNA sequences. Our result showed that mutation of nprRX causes surface spreading deficiency. Mutation of flagella, pili and surfactant genes (flgAB, bcpAB, krsABC), did not abolish spreading motility. Under nprRX mutant, mutation of spo0A restored the spreading deficiency. This suggests that spreading motility is not related surfactant, pili and flagella but other unknown mechanism and Spo0A, a sporulation initiation protein, inhibits spreading motility.

Keywords: Bacillus cereus, nprRX, spo0A, spreading motility

Procedia PDF Downloads 259
503 Performance Comparison of Resource Allocation without Feedback in Wireless Body Area Networks by Various Pseudo Orthogonal Sequences

Authors: Ojin Kwon, Yong-Jin Yoon, Liu Xin, Zhang Hongbao

Abstract:

Wireless Body Area Network (WBAN) is a short-range wireless communication around human body for various applications such as wearable devices, entertainment, military, and especially medical devices. WBAN attracts the attention of continuous health monitoring system including diagnostic procedure, early detection of abnormal conditions, and prevention of emergency situations. Compared to cellular network, WBAN system is more difficult to control inter- and inner-cell interference due to the limited power, limited calculation capability, mobility of patient, and non-cooperation among WBANs. In this paper, we compare the performance of resource allocation scheme based on several Pseudo Orthogonal Codewords (POCs) to mitigate inter-WBAN interference. Previously, the POCs are widely exploited for a protocol sequence and optical orthogonal code. Each POCs have different properties of auto- and cross-correlation and spectral efficiency according to its construction of POCs. To identify different WBANs, several different pseudo orthogonal patterns based on POCs exploits for resource allocation of WBANs. By simulating these pseudo orthogonal resource allocations of WBANs on MATLAB, we obtain the performance of WBANs according to different POCs and can analyze and evaluate the suitability of POCs for the resource allocation in the WBANs system.

Keywords: wireless body area network, body sensor network, resource allocation without feedback, interference mitigation, pseudo orthogonal pattern

Procedia PDF Downloads 357
502 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications

Authors: Atish Bagchi, Siva Chandrasekaran

Abstract:

Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.

Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning

Procedia PDF Downloads 152
501 Gamma Irradiated Sodium Alginate and Phosphorus Fertilizer Enhances Seed Trigonelline Content, Biochemical Parameters and Yield Attributes of Fenugreek (Trigonella foenum-graecum L.)

Authors: Tariq Ahmad Dar, Moinuddin, M. Masroor A. Khan

Abstract:

There is considerable need in enhancing the content and yield of active constituents of medicinal plants keeping in view their massive demand worldwide. Different strategies have been employed to enhance the active constituents of medicinal plants and the use of phytohormones has been proved effective in this regard. Gamma-irradiated Sodium alginate (ISA) is known to elicit an array of plant defense responses and biological activities in plants. Considering the medicinal importance, a pot experiment was conducted to explore the effect of ISA and phosphorus on growth, yield and quality of fenugreek (Trigonella foenum-graecum L.). ISA spray treatments (0, 40, 80 and 120 mg L-1) were applied alone and in combination with 40 kg P ha-1 (P40). Crop performance was assessed in terms of plant growth characteristics, physiological attributes, seed yield and the content of seed trigonelline. Of the ten-treatments, P40 + 80 mg L−1 of ISA proved the best. The results showed that foliar spray of ISA alone or in combination with P40 augmented the plant vegetative growth, enzymatic activities, trigonelline content, trigonelline yield and economic yield of fenugreek. Application of 80 mg L−1 of ISA applied with P40 gave the best results for almost all the parameters studied compared to control or to 80 mg L−1 of ISA applied alone. This treatment increased the total content of chlorophyll, carotenoids, leaf -N, -P and -K and trigonelline compared to the control by 24.85 and 27.40%, 15 and 23.52%, 18.70 and 16.84%, 15.88 and 18.92%, 12 and 14.44%, at 60 and 90 DAS respectively. The combined application of 80 mg L−1 of ISA along with P40 resulted in the maximum increase in seed yield, trigonelline content and trigonelline yield by146, 34 and 232.41%, respectively, over the control. Gel permeation chromatography revealed the formation of low molecular weight fractions in ISA samples, containing even less than 20,000 molecular weight oligomers, which might be responsible for plant growth promotion in this study. Trigonelline content was determined by reverse phase high performance liquid chromatography (HPLC) with C-18 column.

Keywords: gamma-irradiated sodium alginate, phosphorus, gel permeation chromatography, HPLC, trigonelline content, yield

Procedia PDF Downloads 325