Search results for: phase measurement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6928

Search results for: phase measurement

5308 A Case Study on the Condition Monitoring of a Critical Machine in a Tyre Manufacturing Plant

Authors: Ramachandra C. G., Amarnath. M., Prashanth Pai M., Nagesh S. N.

Abstract:

The machine's performance level drops down over a period of time due to the wear and tear of its components. The early detection of an emergent fault becomes very vital in order to obtain uninterrupted production in a plant. Maintenance is an activity that helps to keep the machine's performance at an anticipated level, thereby ensuring the availability of the machine to perform its intended function. At present, a number of modern maintenance techniques are available, such as preventive maintenance, predictive maintenance, condition-based maintenance, total productive maintenance, etc. Condition-based maintenance or condition monitoring is one such modern maintenance technique in which the machine's condition or health is checked by the measurement of certain parameters such as sound level, temperature, velocity, displacement, vibration, etc. It can recognize most of the factors restraining the usefulness and efficacy of the total manufacturing unit. This research work is conducted on a Batch Mill in a tire production unit located in the Southern Karnataka region. The health of the mill is assessed using amplitude of vibration as a parameter of measurement. Most commonly, the vibration level is assessed using various points on the machine bearing. The normal or standard level is fixed using reference materials such as manuals or catalogs supplied by the manufacturers and also by referring vibration standards. The Rio-Vibro meter is placed in different locations on the batch-off mill to record the vibration data. The data collected are analyzed to identify the malfunctioning components in the batch off the mill, and corrective measures are suggested.

Keywords: availability, displacement, vibration, rio-vibro, condition monitoring

Procedia PDF Downloads 96
5307 Time and Wavelength Division Multiplexing Passive Optical Network Comparative Analysis: Modulation Formats and Channel Spacings

Authors: A. Fayad, Q. Alqhazaly, T. Cinkler

Abstract:

In light of the substantial increase in end-user requirements and the incessant need of network operators to upgrade the capabilities of access networks, in this paper, the performance of the different modulation formats on eight-channels Time and Wavelength Division Multiplexing Passive Optical Network (TWDM-PON) transmission system has been examined and compared. Limitations and features of modulation formats have been determined to outline the most suitable design to enhance the data rate and transmission reach to obtain the best performance of the network. The considered modulation formats are On-Off Keying Non-Return-to-Zero (NRZ-OOK), Carrier Suppressed Return to Zero (CSRZ), Duo Binary (DB), Modified Duo Binary (MODB), Quadrature Phase Shift Keying (QPSK), and Differential Quadrature Phase Shift Keying (DQPSK). The performance has been analyzed by varying transmission distances and bit rates under different channel spacing. Furthermore, the system is evaluated in terms of minimum Bit Error Rate (BER) and Quality factor (Qf) without applying any dispersion compensation technique, or any optical amplifier. Optisystem software was used for simulation purposes.

Keywords: BER, DuoBinary, NRZ-OOK, TWDM-PON

Procedia PDF Downloads 155
5306 A Collaborative Problem Driven Approach to Design an HR Analytics Application

Authors: L. Atif, C. Rosenthal-Sabroux, M. Grundstein

Abstract:

The requirements engineering process is a crucial phase in the design of complex systems. The purpose of our research is to present a collaborative problem-driven requirements engineering approach that aims at improving the design of a Decision Support System as an Analytics application. This approach has been adopted to design a Human Resource management DSS. The Requirements Engineering process is presented as a series of guidelines for activities that must be implemented to assure that the final product satisfies end-users requirements and takes into account the limitations identified. For this, we know that a well-posed statement of the problem is “a problem whose crucial character arises from collectively produced estimation and a formulation found to be acceptable by all the parties”. Moreover, we know that DSSs were developed to help decision-makers solve their unstructured problems. So, we thus base our research off of the assumption that developing DSS, particularly for helping poorly structured or unstructured decisions, cannot be done without considering end-user decision problems, how to represent them collectively, decisions content, their meaning, and the decision-making process; thus, arise the field issues in a multidisciplinary perspective. Our approach addresses a problem-driven and collaborative approach to designing DSS technologies: It will reflect common end-user problems in the upstream design phase and in the downstream phase these problems will determine the design choices and potential technical solution. We will thus rely on a categorization of HR’s problems for a development mirroring the Analytics solution. This brings out a new data-driven DSS typology: Descriptive Analytics, Explicative or Diagnostic Analytics, Predictive Analytics, Prescriptive Analytics. In our research, identifying the problem takes place with design of the solution, so, we would have to resort a significant transformations of representations associated with the HR Analytics application to build an increasingly detailed representation of the goal to be achieved. Here, the collective cognition is reflected in the establishment of transfer functions of representations during the whole of the design process.

Keywords: DSS, collaborative design, problem-driven requirements, analytics application, HR decision making

Procedia PDF Downloads 298
5305 Constructability Driven Engineering in Oil and Gas Projects

Authors: Srikanth Nagarajan, P. Parthasarathy, Frits Lagers

Abstract:

Lower crude oil prices increased the pressure on oil and gas projects. Being competitive becomes very important and critical for the success in any industry. Increase in size of the project multiplies the magnitude of the issue. Timely completion of projects within the budget and schedule is very important for any project to succeed. A simple idea makes a larger impact on the total cost of the plant. In this robust world, the phases of engineering right from licensing technology, feed, different phases of detail engineering, procurement and construction has been so much compressed that they overlap with each other. Hence constructability techniques have become very important. Here in this paper, the focus will be on how these techniques can be implemented and reduce cost with the help of a case study. Constructability is a process driven by the need to impact project’s construction phase resulting in improved project delivery, costs and schedule. In construction phase of one of our fast-track mega project, it was noticed that there was an opportunity to reduce significant amount of cost and schedule by implementing Constructability study processes. In this case study, the actual methodology adopted during engineering and construction and the way for doing it better by implementing Constructability techniques with collaborative engineering efforts will be explained.

Keywords: being competitive, collaborative engineering, constructability, cost reduction

Procedia PDF Downloads 427
5304 All-In-One Universal Cartridge Based Truly Modular Electrolyte Analyzer

Authors: S. Dalvi, N. Sane, V. Patil, D. Bansode, A. Tharakan, V. Mathur

Abstract:

Measurement of routine clinical electrolyte tests is common in labs worldwide for screening of illness or diseases. All the analyzers for the measurement of electrolyte parameters have sensors, reagents, sampler, pump tubing, valve, other tubing’s separate that are either expensive, require heavy maintenance and have a short shelf-life. Moreover, the costs required to maintain such Lab instrumentation is high and this limits the use of the device to only highly specialized personnel and sophisticated labs. In order to provide Healthcare Diagnostics to ALL at affordable costs, there is a need for an All-in-one Universal Modular Cartridge that contains sensors, reagents, sampler, valve, pump tubing, and other tubing’s in one single integrated module-in-module cartridge that is affordable, reliable, easy-to-use, requires very low sample volume and is truly modular and maintenance-free. DiaSys India has developed a World’s first, Patent Pending, Versatile All-in-one Universal Module-in-Module Cartridge based Electrolyte Analyzer (QDx InstaLyte) that can perform sodium, potassium, chloride, calcium, pH, lithium tests. QDx InstaLyte incorporates High Performance, Inexpensive All-in-one Universal Cartridge for rapid quantitative measurement of electrolytes in body fluids. Our proposed methodology utilizes Advanced & Improved long life ISE sensors to provide a sensitive and accurate result in 120 sec with just 100 µl of sample volume. The All-in-One Universal Cartridge has a very low reagent consumption capable of maximum of 1000 tests with a Use-life of 3-4 months and a long Shelf life of 12-18 months at 4-25°C making it very cost-effective. Methods: QDx InstaLyte analyzers with All-in-one Universal Modular Cartridges were independently evaluated with three R&D lots for Method Performance (Linearity, Precision, Method Comparison, Cartridge Stability) to measure Sodium, Potassium, Chloride. Method Comparison was done against Medica EasyLyte Plus Na/K/Cl Electrolyte Analyzer, a mid-size lab based clinical chemistry analyzer with N = 100 samples run over 10 days. Within-run precision study was done using modified CLSI guidelines with N = 20 samples and day-to-day precision study was done for 7 consecutive days using Trulab N & P Quality Control Samples. Accelerated stability testing was done at 45oC for 4 weeks with Production Lots. Results: Data analysis indicates that the CV for within-run precision for Na is ≤ 1%, for K is ≤2%, and for Cl is ≤2% and with R2 ≥ 0.95 for Method Comparison. Further, the All-in-One Universal Cartridge is stable up to 12-18 months at 4-25oC storage temperature based on preliminary extrapolated data. Conclusion: The Developed Technology Platform of All-in-One Universal Module-in-Module Cartridge based QDx InstaLyte is Reliable and meets all the performance specifications of the lab and is Truly Modular and Maintenance-Free. Hence, it can be easily adapted for low cost, sensitive and rapid measurement of electrolyte tests in low resource settings such as in urban, semi-urban and rural areas in the developing countries and can be used as a Point-of-care testing system for worldwide applications.

Keywords: all-in-one modular catridge, electrolytes, maintenance free, QDx instalyte

Procedia PDF Downloads 42
5303 Knowledge of Strategies to Teach Reading Components Among Teachers of Hard of Hearing Students

Authors: Khalid Alasim

Abstract:

This study investigated Saudi Arabian elementary school teachers’ knowledge of strategies to teach reading components to hard-of-hearing students. The study focused on four of the five reading components the National Reading Panel (NPR, 2000) identified: phonemic awareness; phonics; vocabulary, and reading comprehension, and explored the relationship between teachers’ demographic characteristics and their knowledge of the strategies as well. An explanatory sequential mixed methods design was used that included two phases. The quantitative phase examined the knowledge of these Arabic reading components among 89 elementary school teachers of hard-of-hearing students, and the qualitative phase consisted of interviews with 10 teachers. The results indicated that the teachers have a great deal of knowledge (above the mean score) of strategies to teach reading components. Specifically, teachers’ knowledge of strategies to teach the vocabulary component was the highest. The results also showed no significant association between teachers’ demographic characteristics and their knowledge of strategies to teach reading components. The qualitative analysis revealed two themes: 1) teachers’ lack of basic knowledge of strategies to teach reading components, and 2) the absence of in-service courses and training programs in reading for teachers.

Keywords: knowledge, reading, components, hard-of-hearing, phonology, vocabulary

Procedia PDF Downloads 85
5302 A Proposal of Advanced Key Performance Indicators for Assessing Six Performances of Construction Projects

Authors: Wi Sung Yoo, Seung Woo Lee, Youn Kyoung Hur, Sung Hwan Kim

Abstract:

Large-scale construction projects are continuously increasing, and the need for tools to monitor and evaluate the project success is emphasized. At the construction industry level, there are limitations in deriving performance evaluation factors that reflect the diversity of construction sites and systems that can objectively evaluate and manage performance. Additionally, there are difficulties in integrating structured and unstructured data generated at construction sites and deriving improvements. In this study, we propose the Key Performance Indicators (KPIs) to enable performance evaluation that reflects the increased diversity of construction sites and the unstructured data generated, and present a model for measuring performance by the derived indicators. The comprehensive performance of a unit construction site is assessed based on 6 areas (Time, Cost, Quality, Safety, Environment, Productivity) and 26 indicators. We collect performance indicator information from 30 construction sites that meet legal standards and have been successfully performed. And We apply data augmentation and optimization techniques into establishing measurement standards for each indicator. In other words, the KPI for construction site performance evaluation presented in this study provides standards for evaluating performance in six areas using institutional requirement data and document data. This can be expanded to establish a performance evaluation system considering the scale and type of construction project. Also, they are expected to be used as a comprehensive indicator of the construction industry and used as basic data for tracking competitiveness at the national level and establishing policies.

Keywords: key performance indicator, performance measurement, structured and unstructured data, data augmentation

Procedia PDF Downloads 48
5301 Fused Salt Electrolysis of Rare-Earth Materials from the Domestic Ore and Preparation of Rare-Earth Hydrogen Storage Alloys

Authors: Jeong-Hyun Yoo, Hanjung Kwon, Sung-Wook Cho

Abstract:

Fused salt electrolysis was studied to make the high purity rare-earth metals using domestic rare-earth ore. The target metals of the fused salt electrolysis were Mm (Misch metal), La, Ce, Nd, etc. Fused salt electrolysis was performed with the supporting salt such as chloride and fluoride at the various temperatures and ampere. The metals made by fused salt electrolysis were analyzed to identify the phase and composition using the methods of XRD and ICP. As a result, the acquired rare-earth metals were the high purity ones which had more than 99% purity. Also, VIM (vacuum induction melting) was studied to make the kg level rare-earth alloy for the use of secondary battery and hydrogen storage. In order to indentify the physicochemical properties such as phase, impurity gas, alloy composition and hydrogen storage, the alloys were investigated. The battery characteristics were also analyzed through the various tests in the real production line of a battery company.

Keywords: domestic rare-earth ore, fused salt electrolysis, rare-earth materials, hydrogen storage alloy, secondary battery

Procedia PDF Downloads 539
5300 The Touch Sensation: Ageing and Gender Influences

Authors: A. Abdouni, C. Thieulin, M. Djaghloul, R. Vargiolu, H. Zahouani

Abstract:

A decline in the main sensory modalities (vision, hearing, taste, and smell) is well reported to occur with advancing age, it is expected a similar change to occur with touch sensation and perception. In this study, we have focused on the touch sensations highlighting ageing and gender influences with in vivo systems. The touch process can be divided into two main phases: The first phase is the first contact between the finger and the object, during this contact, an adhesive force has been created which is the needed force to permit an initial movement of the finger. In the second phase, the finger mechanical properties with their surface topography play an important role in the obtained sensation. In order to understand the age and gender effects on the touch sense, we develop different ideas and systems for each phase. To better characterize the contact, the mechanical properties and the surface topography of human finger, in vivo studies on the pulp of 40 subjects (20 of each gender) of four age groups of 26±3, 35+-3, 45+-2 and 58±6 have been performed. To understand the first touch phase a classical indentation system has been adapted to measure the finger contact properties. The normal force load, the indentation speed, the contact time, the penetration depth and the indenter geometry have been optimized. The penetration depth of a glass indenter is recorded as a function of the applied normal force. Main assessed parameter is the adhesive force F_ad. For the second phase, first, an innovative approach is proposed to characterize the dynamic finger mechanical properties. A contactless indentation test inspired from the techniques used in ophthalmology has been used. The test principle is to blow an air blast to the finger and measure the caused deformation by a linear laser. The advantage of this test is the real observation of the skin free return without any outside influence. Main obtained parameters are the wave propagation speed and the Young's modulus E. Second, negative silicon replicas of subject’s fingerprint have been analyzed by a probe laser defocusing. A laser diode transmits a light beam on the surface to be measured, and the reflected signal is returned to a set of four photodiodes. This technology allows reconstructing three-dimensional images. In order to study the age and gender effects on the roughness properties, a multi-scale characterization of roughness has been realized by applying continuous wavelet transform. After determining the decomposition of the surface, the method consists of quantifying the arithmetic mean of surface topographic at each scale SMA. Significant differences of the main parameters are shown with ageing and gender. The comparison between men and women groups reveals that the adhesive force is higher for women. The results of mechanical properties show a Young’s modulus higher for women and also increasing with age. The roughness analysis shows a significant difference in function of age and gender.

Keywords: ageing, finger, gender, touch

Procedia PDF Downloads 266
5299 W-WING: Aeroelastic Demonstrator for Experimental Investigation into Whirl Flutter

Authors: Jiri Cecrdle

Abstract:

This paper describes the concept of the W-WING whirl flutter aeroelastic demonstrator. Whirl flutter is the specific case of flutter that accounts for the additional dynamic and aerodynamic influences of the engine rotating parts. The instability is driven by motion-induced unsteady aerodynamic propeller forces and moments acting in the propeller plane. Whirl flutter instability is a serious problem that may cause the unstable vibration of a propeller mounting, leading to the failure of an engine installation or an entire wing. The complicated physical principle of whirl flutter required the experimental validation of the analytically gained results. W-WING aeroelastic demonstrator has been designed and developed at Czech Aerospace Research Centre (VZLU) Prague, Czechia. The demonstrator represents the wing and engine of the twin turboprop commuter aircraft. Contrary to the most of past demonstrators, it includes a powered motor and thrusting propeller. It allows the changes of the main structural parameters influencing the whirl flutter stability characteristics. Propeller blades are adjustable at standstill. The demonstrator is instrumented by strain gauges, accelerometers, revolution-counting impulse sensor, sensor of airflow velocity, and the thrust measurement unit. Measurement is supported by the in house program providing the data storage and real-time depiction in the time domain as well as pre-processing into the form of the power spectral densities. The engine is linked with a servo-drive unit, which enables maintaining of the propeller revolutions (constant or controlled rate ramp) and monitoring of immediate revolutions and power. Furthermore, the program manages the aerodynamic excitation of the demonstrator by the aileron flapping (constant, sweep, impulse). Finally, it provides the safety guard to prevent any structural failure of the demonstrator hardware. In addition, LMS TestLab system is used for the measurement of the structure response and for the data assessment by means of the FFT- and OMA-based methods. The demonstrator is intended for the experimental investigations in the VZLU 3m-diameter low-speed wind tunnel. The measurement variant of the model is defined by the structural parameters: pitch and yaw attachment stiffness, pitch and yaw hinge stations, balance weight station, propeller type (duralumin or steel blades), and finally, angle of attack of the propeller blade 75% section (). The excitation is provided either by the airflow turbulence or by means of the aerodynamic excitation by the aileron flapping using a frequency harmonic sweep. The experimental results are planned to be utilized for validation of analytical methods and software tools in the frame of development of the new complex multi-blade twin-rotor propulsion system for the new generation regional aircraft. Experimental campaigns will include measurements of aerodynamic derivatives and measurements of stability boundaries for various configurations of the demonstrator.

Keywords: aeroelasticity, flutter, whirl flutter, W WING demonstrator

Procedia PDF Downloads 99
5298 Rauvolfine B Isolated from the Bark of Rauvolfia reflexa (Apocynaceae) Induces Apoptosis through Activation of Caspase-9 Coupled with S Phase Cell Cycle Arrest

Authors: Mehran Fadaeinasab, Hamed Karimian, Najihah Mohd Hashim, Hapipah Mohd Ali

Abstract:

In this study, three indole alkaloids namely; rauvolfine B, macusine B, and isoreserpiline have been isolated from the dichloromethane crude extract of Rauvolfia reflexa bark (Apocynaceae). The structural elucidation of the isolated compounds has been performed using spectral methods such as UV, IR, MS, 1D, and 2D NMR. Rauvolfine B showed anti proliferation activity on HCT-116 cancer cell line, its cytotoxicity induction was observed using MTT assay in eight different cell lines. Annexin-V is serving as a marker for apoptotic cells and the Annexin-V-FITC assay was carried out to observe the detection of cell-surface Phosphatidylserine (PS). Apoptosis was confirmed by using caspase-8 and -9 assays. Cell cycle arrest was also investigated using flowcytometric analysis. rauvolfine B had exhibited significantly higher cytotoxicity against HCT-116 cell line. The treatment significantly arrested HCT-116 cells in the S phase. Together, the results presented in this study demonstrated that rauvolfine B inhibited the proliferation of HCT-116 cells and programmed cell death followed by cell cycle arrest.

Keywords: apocynacea, indole alkaloid, apoptosis, cell cycle arrest

Procedia PDF Downloads 338
5297 Synthesis, Characterization and Electrical Studies of Solid Polymer Electrolyte (1-x) PANI-KAg₄I₅.xAl₂O₃

Authors: Rafiuddin

Abstract:

Solid polymer electrolytes have emerged as an area of interest in the field of solid state chemistry owing to their facile and cost-effective synthesis and number of applications in different areas of chemistry, extending over a wide range of temperatures. In the present work, polymer composite solid electrolyte comprising of Polyaniline (PANI) as polymer and potassium silver iodide (KAg4I5) using alumina (Al2O3) of different compositions having the formula (1-x) PANI- KAg4I5. x Al2O3 with x ranging from 0.0 to 0.5 was prepared by solid state reaction method. The structural elucidation and characterization was done by X- Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric- Differential Thermal Analysis (TG-DTA) and Impedance Spectroscopy. The thermal analysis shows a phase transition at 147°C attributed to β-α phase transition of AgI due to the disproportionation of KAg4I5 to AgI and KAg2I3 at temperatures higher than 36°C. The X Ray diffraction analysis also confirms the presence of both AgI and KAg2I3 in the samples. The conductivities recorded over a temperature range of 40-250° C lie in the range of 10-1 to 10-3 S cm-1. Maximum conductivity was seen in the compositon x = 0.4 i.e. 1.84 × 10-2 Scm-1 at 313 K and 1.38 × 10-1 Scm-1 at 513 K, with a minimum activation energy of 0.14 eV.

Keywords: polymer solid electrolytes, XRD, DTA, electrical conductivity, impedance spectroscopy

Procedia PDF Downloads 306
5296 Self-Assembling Layered Double Hydroxide Nanosheets on β-FeOOH Nanorods for Reducing Fire Hazards of Epoxy Resin

Authors: Wei Wang, Yuan Hu

Abstract:

Epoxy resins (EP), one of the most important thermosetting polymers, is widely applied in various fields due to its desirable properties, such as excellent electrical insulation, low shrinkage, outstanding mechanical stiffness, satisfactory adhesion and solvent resistance. However, like most of the polymeric materials, EP has the fatal drawbacks including inherent flammability and high yield of toxic smoke, which restricts its application in the fields requiring fire safety. So, it is still a challenge and an interesting subject to develop new flame retardants which can not only remarkably improve the flame retardancy, but also render modified resins low toxic gases generation. In recent work, polymer nanocomposites based on nanohybrids that contain two or more kinds of nanofillers have drawn intensive interest, which can realize performance enhancements. The realization of previous hybrids of carbon nanotubes (CNTs) and molybdenum disulfide provides us a novel route to decorate layered double hydroxide (LDH) nanosheets on the surface of β-FeOOH nanorods; the deposited LDH nanosheets can fill the network and promote the work efficiency of β-FeOOH nanorods. Moreover, the synergistic effects between LDH and β-FeOOH can be anticipated to have potential applications in reducing fire hazards of EP composites for the combination of condense-phase and gas-phase mechanism. As reported, β-FeOOH nanorods can act as a core to prepare hybrid nanostructures combining with other nanoparticles through electrostatic attraction through layer-by-layer assembly technique. In this work, LDH nanosheets wrapped β-FeOOH nanorods (LDH-β-FeOOH) hybrids was synthesized by a facile method, with the purpose of combining the characteristics of one dimension (1D) and two dimension (2D), to improve the fire resistance of epoxy resin. The hybrids showed a well dispersion in EP matrix and had no obvious aggregation. Thermogravimetric analysis and cone calorimeter tests confirmed that LDH-β-FeOOH hybrids into EP matrix with a loading of 3% could obviously improve the fire safety of EP composites. The plausible flame retardancy mechanism was explored by thermogravimetric infrared (TG-IR) and X-ray photoelectron spectroscopy. The reasons were concluded: condense-phase and gas-phase. Nanofillers were transferred to the surface of matrix during combustion, which could not only shield EP matrix from external radiation and heat feedback from the fire zone, but also efficiently retard transport of oxygen and flammable pyrolysis.

Keywords: fire hazards, toxic gases, self-assembly, epoxy

Procedia PDF Downloads 175
5295 Evaluating and Prioritizing the Effective Management Factors of Human Resources Empowerment and Efficiency in Manufacturing Companies: A Case Study of Fars’ Livestock and Poultry Manufacturing Companies

Authors: Mohsen Yaghmoor, Sima Radmanesh

Abstract:

Rapid environmental changes have been threaten the life of many organizations .Enabling and productivity of human resource should be considered as the most important issue in order to increase performance and ensure survival of the organizations. In this research, the effectiveness of management factory in productivity & inability of human resource have been identified and reviewed at glance. Afterward there were two questions they are “what are the factors effecting productivity and enabling of human resource” . And ”what are the priority order based on effective management of human resource in Fars Poultry Complex". A specified questionnaire has been designed in order to priorities and effectiveness of the identified factors. Six factors specify to consist of: Individual characteristics, teaching, motivation, partnership management, authority or power submission and job development that have most effect on organization. Then specify a questionnaire for priority and effect measurement of specified factor that reach after collect information and using statistical tests of keronchbakh alpha coefficient r=0.792 that we can say the questionnaire has sufficient reliability. After information analysis of specified six factors by Friedman test categorize their effect. Measurement on organization respectively consists of individual characteristics, job development or enrichment, authority submission, partnership management, teaching and motivation. At last it has been indicated to approaches to increase making power full and productivity of manpower.

Keywords: productivity, empowerment, enrichment, authority submission, partnership management, teaching, motivation

Procedia PDF Downloads 255
5294 Unraveling the Nexus: Character Strengths of Self-Regulation, Humor, and Spirituality in Addressing Psychological Risks Among Vietnamese Parents of Children with Autism

Authors: Dao Hai Nhat Tan

Abstract:

Parents of children with autism are reported to have a higher level of distress than typically developed children's parents. This study is a mixed methods study to exploit the relationship between character strengths of self-regulation, humor, and spirituality with psychological risks of parents of autistic children in the Vietnamese social context. The study conducted a quantitative survey and qualitative interview with the participation of 45 samples (N=45) in the quantitative phase and five samples (N=5) in the qualitative phase. Accordingly, quantitative results have shown a negative correlation of humor with psychological risks in parents of autistic children in Vietnam. Although the relationship between self-regulation and spirituality with psychological risks in parents of autistic children has not been proven, research has also shown notable impacts on the influences of the Vietnamese cultural and social context in the formation of these character strengths and their relationship with psychological risks of parents of autistic children in Vietnam.

Keywords: autism spectrum disorder, parent of autistic child, character strengths, psychological risks

Procedia PDF Downloads 7
5293 Optimized Simultaneous Determination of Theobromine and Caffeine in Fermented and Unfermented Cacao Beans and in Cocoa Products Using Step Gradient Solvent System in Reverse Phase HPLC

Authors: Ian Marc G. Cabugsa, Kim Ryan A. Won

Abstract:

Fast, reliable and simultaneous HPLC analysis of theobromine and caffeine in cacao and cocoa products was optimized in this study. The samples tested were raw, fermented, and roasted cacao beans as well as commercially available cocoa products. The HPLC analysis was carried out using step gradient solvent system with acetonitrile and water buffered with H3PO4 as the mobile phase. The HPLC system was optimized using 273 nm wavelength at 35 °C for the column temperature with a flow rate of 1.0 mL/min. Using this method, the theobromine percent recovery mean, Limit of Detection (LOD) and Limit of Quantification (LOQ) is 118.68(±3.38)%, 0.727 and 1.05 respectively. The percent recovery mean, LOD and LOQ for caffeine is 105.53(±3.25)%, 2.42 and 3.50 respectively. The inter-day and intra-day precision for theobromine is 4.31% and 4.48% respectively, while 7.02% and 7.03% was for caffeine respectively. Compared to the standard method in AOAC using methanol in isocratic solvent system, the results of the study produced lesser chromatogram noise with emphasis on theobromine and caffeine. The method is readily usable for cacao and cocoa substances analyses using HPLC with step gradient capability.

Keywords: cacao, caffeine, HPLC, step gradient solvent system, theobromine

Procedia PDF Downloads 286
5292 3D Numerical Modelling of a Pulsed Pumping Process of a Large Dense Non-Aqueous Phase Liquid Pool: In situ Pilot-Scale Case Study of Hexachlorobutadiene in a Keyed Enclosure

Authors: Q. Giraud, J. Gonçalvès, B. Paris

Abstract:

Remediation of dense non-aqueous phase liquids (DNAPLs) represents a challenging issue because of their persistent behaviour in the environment. This pilot-scale study investigates, by means of in situ experiments and numerical modelling, the feasibility of the pulsed pumping process of a large amount of a DNAPL in an alluvial aquifer. The main compound of the DNAPL is hexachlorobutadiene, an emerging organic pollutant. A low-permeability keyed enclosure was built at the location of the DNAPL source zone in order to isolate a finite undisturbed volume of soil, and a 3-month pulsed pumping process was applied inside the enclosure to exclusively extract the DNAPL. The water/DNAPL interface elevation at both the pumping and observation wells and the cumulated pumped volume of DNAPL were also recorded. A total volume of about 20m³ of purely DNAPL was recovered since no water was extracted during the process. The three-dimensional and multiphase flow simulator TMVOC was used, and a conceptual model was elaborated and generated with the pre/post-processing tool mView. Numerical model consisted of 10 layers of variable thickness and 5060 grid cells. Numerical simulations reproduce the pulsed pumping process and show an excellent match between simulated, and field data of DNAPL cumulated pumped volume and a reasonable agreement between modelled and observed data for the evolution of the water/DNAPL interface elevations at the two wells. This study offers a new perspective in remediation since DNAPL pumping system optimisation may be performed where a large amount of DNAPL is encountered.

Keywords: dense non-aqueous phase liquid (DNAPL), hexachlorobutadiene, in situ pulsed pumping, multiphase flow, numerical modelling, porous media

Procedia PDF Downloads 177
5291 Role of Zinc Adminstration in Improvement of Faltering Growth in Egyption Children at Risk of Environmental Enteric Dysfunction

Authors: Ghada Mahmoud El Kassas, Maged Atta El Wakeel

Abstract:

Background: Environmental enteric dysfunction (EED) is impending trouble that flared up in the last decades to be pervasive in infants and children. EED is asymptomatic villous atrophy of the small bowel that is prevalent in the developing world and is associated with altered intestinal function and integrity. Evidence has suggested that supplementary zinc might ameliorate this damage by reducing gastrointestinal inflammation and may also benefit cognitive development. Objective: We tested whether zinc supplementation improves intestinal integrity, growth, and cognitive function in stunted children predicted to have EED. Methodology: This case–control prospective interventional study was conducted on 120 Egyptian Stunted children aged 1-10 years who recruited from the Nutrition clinic, the National research center, and 100 age and gender-matched healthy children as controls. At the primary phase of the study, Full history taking, clinical examination, and anthropometric measurements were done. Standard deviation score (SDS) for all measurements were calculated. Serum markers as Zonulin, Endotoxin core antibody (EndoCab), highly sensitive C-reactive protein (hsCRP), alpha1-acid glycoprotein (AGP), Tumor necrosis factor (TNF), and fecal markers such as myeloperoxidase (MPO), neopterin (NEO), and alpha-1-anti-trypsin (AAT) (as predictors of EED) were measured. Cognitive development was assessed (Bayley or Wechsler scores). Oral zinc at a dosage of 20 mg/d was supplemented to all cases and followed up for 6 months, after which the 2ry phase of the study included the previous clinical, laboratory, and cognitive assessment. Results: Serum and fecal inflammatory markers were significantly higher in cases compared to controls. Zonulin (P < 0.01), (EndoCab) (P < 0.001) and (AGP) (P < 0.03) markedly decreased in cases at the end of 2ry phase. Also (MPO), (NEO), and (AAT) showed a significant decline in cases at the end of the study (P < 0.001 for all). A significant increase in mid-upper arm circumference (MUAC) (P < 0.01), weight for age z-score, and skinfold thicknesses (P< 0.05 for both) was detected at end of the study, while height was not significantly affected. Cases also showed significant improvement of cognitive function at phase 2 of the study. Conclusion: Intestinal inflammatory state related to EED showed marked recovery after zinc supplementation. As a result, anthropometric and cognitive parameters showed obvious improvement with zinc supplementation.

Keywords: stunting, cognitive function, environmental enteric dysfunction, zinc

Procedia PDF Downloads 193
5290 Efficacy of Music for Improving Language in Children with Special Needs

Authors: Louisa Han Lin Tan, Poh Sim Kang, Wei Ming Loi, Susan Jane Rickard Liow

Abstract:

The efficacy of music for improving speech and language has been shown across ages and diagnoses. Across the world, the wide range of therapy settings and increasing number of children diagnosed with special needs demand more cost and time effective service delivery. However, research exploring co-treatment models on children other than those with Autism Spectrum Disorder remains sparse. The aim of this research was to determine the efficacy of music for improving language in children with special needs, and generalizability of therapy effects. 25 children (7 to 12 years) were split into three groups – A, B and control. A cross-over design with direct therapy (storytelling) with or without music, and indirect therapy was applied with two therapy phases lasting 6 sessions each. Therapy targeted three prepositions in each phase. Baseline language abilities were assessed, with re-assessment after each phase. The introduction of music in therapy led to significantly greater improvement (p=.046, r=.53) in associated language abilities, with case studies showing greater effectiveness in developmentally appropriate target prepositions. However, improvements were not maintained once direct therapy ceased. As such, the incorporation of music could lead to greater efficiency and effectiveness of language therapy in children with special needs, but sustainability and generalizability of therapy effects both require further exploration.

Keywords: music, language therapy, children, special needs

Procedia PDF Downloads 472
5289 Analysis of Evaporation of Liquid Ammonia in a Vertical Cylindrical Storage Tank

Authors: S. Chikh, S. Boulifa

Abstract:

The present study addresses the problem of ammonia evaporation during filling of a vertical cylindrical tank and the influence of various external factors on the stability of storage by determining the conditions for minimum evaporation. Numerical simulation is carried out by solving the governing equations namely, continuity, momentum, energy, and diffusion of species. The effect of temperature of surrounding air, the filling speed of the reservoir and the temperature of the filling liquid ammonia on the evaporation rate is investigated. Results show that the temperature of the filling liquid has little effect on the liquid ammonia for a short period, which, in fact, is function of the filling speed. The evaporation rate along the free surface of the liquid is non-uniform. The inlet temperature affects the vapor ammonia temperature because of pressure increase. The temperature of the surrounding air affects the temperature of the vapor phase rather than the liquid phase. The maximum of evaporation is reached at the final step of filling. In order to minimize loss of ammonia vapors automatically causing losses in quantity of the liquid stored, it is suggested to ensure the proper insulation for the walls and roof of the reservoir and to increase the filling speed.

Keywords: evaporation, liquid ammonia, storage tank, numerical simulation

Procedia PDF Downloads 295
5288 Microstructure and Mechanical Properties of Nb: Si: (a-C) Thin Films Prepared Using Balanced Magnetron Sputtering System

Authors: Sara Khamseh, Elahe Sharifi

Abstract:

321 alloy steel is austenitic stainless steel with high oxidation resistance and is commonly used to fabricate heat exchangers and steam generators. However, the low hardness and weak tribological performance can cause dangerous failures during industrial operations. The well-designed protective coatings on 321 alloy steel surfaces with high hardness and good tribological performance can guarantee their safe applications. The surface protection of metal substrates using protective coatings showed high efficiency in prevailing these problems. Carbon-based multicomponent coatings, such as metal-added amorphous carbon coatings, are crucially necessary because of their remarkable mechanical and tribological performances. In the current study, (Nb: Si: a-C) multicomponent coatings (a-C: amorphous carbon) were coated on 321 alloys using a balanced magnetron (BM) sputtering system at room temperature. The effects of the Si/Nb ratio on microstructure, mechanical and tribological characteristics of (Nb: Si: a-C) composite coatings were investigated. The XRD and Raman analysis results showed that the coatings formed a composite structure of cubic diamond (C-D), NbC, and graphite-like carbon (GLC). The NbC phase's abundance decreased when the C-D phase's affluence increased with an increasing Si/Nb ratio. The coatings' indentation hardness and plasticity index (H³/E² ratio) increased with an increasing Si/Nb ratio. The better mechanical properties of the coatings with higher Si content can be attributed to the higher cubic diamond (C-D) content. The cubic diamond (C-D) is a challenging phase and can positively affect the mechanical performance of the coatings. It is well documented that in hard protective coatings, Si encourages amorphization. In addition, THE studies showed that Nb and Mo can act as a catalyst for nucleation and growth of hard cubic (C-D) and hexagonal (H-D) diamond phases in a-C coatings. In the current study, it seems that fully arranged nanocomposite coatings contain hard C-D and NbC phases that embedded in the amorphous carbon (GLC) phase is formed. This unique structure decreased grain boundary density and defects and resulted in high hardness and H³/E² ratio. Moreover, the COF and wear rate of the coatings decreased with increasing Si/Nb ratio. This can be attributed to the good mechanical properties of the coatings and the formation of graphite-like carbon (GLC) structure with lamellae arrangement in the coatings. The complex and self-lubricant coatings are successfully formed on the surface of 321 alloys. The results of the present study clarified that Si addition to (Nb: a-C) coatings improve the mechanical and tribological performance of the coatings on 321 alloy.

Keywords: COF, mechanical properties, microstructure, (Nb: Si: a-C) coatings, Wear rate

Procedia PDF Downloads 93
5287 Utilization of a Composite of Oil Ash, Scoria, and Expanded Perlite with Polyethylene Glycol for Energy Storage Systems

Authors: Khaled Own Mohaisen, Md. Hasan Zahir, Salah U. Al-Dulaijan, Shamsad Ahmad, Mohammed Maslehuddin

Abstract:

Shape-stabilized phase change materials (ss-PCMs) for energy storage systems were developed using perlite, scoria, and oil ash as a carrier, with polyethylene glycol (PEG) with a molecular weight of 6000 as phase change material (PCM). Physical mixing using simple impregnation of ethanol evaporation technique method was carried out to fabricate the form stabilized PCM. The fabricated PCMs prevent leakage, reduce the supercooling effect and minimize recalescence problems of the PCM. The differential scanning calorimetry (DSC) results show that perlite composite (ExPP) has the highest latent heat of melting and freezing values of (141.6 J/g and 143.7 J/g) respectively, compared with oil ash (OAP) and scoria (SCP) composites. Moreover, ExPP has the highest impregnation ratio, energy storage efficiency, and energy storage capacity compared with OAP and SCP. However, OAP and SCP have higher thermal conductivity values compared to ExPP composites which accelerate the thermal storage response in the composite. These results were confirmed with DSC, and the characteristic of the PCMs was investigated by using XRD and FE-SEM techniques.

Keywords: expanded perlite, oil ash, scoria, energy storage material

Procedia PDF Downloads 97
5286 Anti-Cancerous Activity of Sargassum siliquastrum in Cervical Cancer: Choreographing the Fly's Danse Macabre

Authors: Sana Abbasa, Shahzad Bhattiab, Nadir Khan

Abstract:

Sargassum siliquastrum is brown seaweed with traditional claims for some medicinal properties. This research was done to investigate the methanol extract of S. siliquastrum for antiproliferative activity against human cervical cancer cell line, HeLa and its mode of cell death. From methylene blue assay, S. siliquastrum exhibited antiproliferative activity on HeLa cells with IC50 of 3.87 µg/ml without affecting non-malignant cells. Phase contrast microscopy indicated the confluency reduction in HeLa cells and changes on the cell shape. Nuclear staining with Hoechst 33258 displayed the formation of apoptotic bodies and fragmented nuclei. S. siliquastrum also induced early apoptosis event in HeLa cells as confirmed by FITC-Annexin V/propidium iodide staining by flow cytometry analysis. Cell cycle analysis indicated growth arrest of HeLa cells at G1/S phase. Protein study by flow cytometry indicated the increment of p53, slight increase of Bax and unchanged level of Bcl-2. In conclusion, S. siliquastrum demonstrated an antiproliferative activity in HeLa cell by inducing G1/S cell cycle arrest via p53-mediated pathway.

Keywords: sargassum siliquastrum, cervical cancer, P53, antiproleferation

Procedia PDF Downloads 635
5285 Polypyrrole Integrated MnCo2O4 Nanorods Hybrid as Electrode Material for High Performance Supercapacitor

Authors: Santimoy Khilari, Debabrata Pradhan

Abstract:

Ever−increasing energy demand and growing energy crisis along with environmental issues emphasize the research on sustainable energy conversion and storage systems. Recently, supercapacitors or electrochemical capacitors emerge as a promising energy storage technology for future generation. The activity of supercapacitors generally depends on the efficiency of its electrode materials. So, the development of cost−effective efficient electrode materials for supercapacitors is one of the challenges to the scientific community. Transition metal oxides with spinel crystal structure receive much attention for different electrochemical applications in energy storage/conversion devices because of their improved performance as compared to simple oxides. In the present study, we have synthesized polypyrrole (PPy) supported manganese cobaltite nanorods (MnCo2O4 NRs) hybrid electrode material for supercapacitor application. The MnCo2O4 NRs were synthesized by a simple hydrothermal and calcination approach. The MnCo2O4 NRs/PPy hybrid was prepared by in situ impregnation of MnCo2O4 NRs during polymerization of pyrrole. The surface morphology and microstructure of as−synthesized samples was characterized by scanning electron microscopy and transmission electron microscopy, respectively. The crystallographic phase of MnCo2O4 NRs, PPy and hybrid was determined by X-ray diffraction. Electrochemical charge storage activity of MnCo2O4 NRs, PPy and MnCo2O4 NRs/PPy hybrid was evaluated from cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. Significant improvement of specific capacitance was achieved in MnCo2O4 NRs/PPy hybrid as compared to the individual components. Furthermore, the mechanically mixed MnCo2O4 NRs, and PPy shows lower specific capacitance as compared to MnCo2O4 NRs/PPy hybrid suggesting the importance of in situ hybrid preparation. The stability of as prepared electrode materials was tested by cyclic charge-discharge measurement for 1000 cycles. Maximum 94% capacitance was retained with MnCo2O4 NRs/PPy hybrid electrode. This study suggests that MnCo2O4 NRs/PPy hybrid can be used as a low cost electrode material for charge storage in supercapacitors.

Keywords: supercapacitors, nanorods, spinel, MnCo2O4, polypyrrole

Procedia PDF Downloads 343
5284 Structural and Electrical Properties of VO₂/ZnO Nanostructures

Authors: Sang-Wook Han, Zhenlan Jin, In-Hui Hwang, Chang-In Park

Abstract:

We examined structural and electrical properties of uniformly-oriented VO₂/ZnO nanostructures. VO₂ was deposited on ZnO templates by using a direct current-sputtering deposition. Scanning electron microscope and transmission electron microscope measurements indicated that b-oriented VO₂ were uniformly crystallized on ZnO templates with different lengths. VO₂/ZnO formed nanorods on ZnO nanorods with length longer than 250 nm. X-ray absorption fine structure at V K edge of VO₂/ZnO showed M1 and R phases of VO₂ at 30 and 100 ℃, respectively, suggesting structural phase transition between temperatures. Temperature-dependent resistance measurements of VO₂/ZnO nanostructures revealed metal-to-insulator transition at 65 ℃ and 55 ℃ during heating and cooling, respectively, regardless of ZnO length. The bond lengths of V-O and V-V pairs in VO₂/ZnO nanorods were somewhat distorted, and a substantial amount of structural disorder existed in the atomic pairs, compared to those of VO₂ films without ZnO. Resistance from VO₂/ZnO nanorods revealed a sharp MIT near 65 ℃ during heating and a hysteresis behavior. The resistance results suggest that microchannel for charge carriers exist nearly room temperature during cooling. VO₂/ZnO nanorods are quite stable and reproducible so that they can be widely used for practical applications to electronic devices, gas sensors, and ultra-fast switches, as examples.

Keywords: metal-to-insulator transition, VO₂, ZnO, XAFS, structural-phase transition

Procedia PDF Downloads 484
5283 Hybrid CNN-SAR and Lee Filtering for Enhanced InSAR Phase Unwrapping and Coherence Optimization

Authors: Hadj Sahraoui Omar, Kebir Lahcen Wahib, Bennia Ahmed

Abstract:

Interferometric Synthetic Aperture Radar (InSAR) coherence is a crucial parameter for accurately monitoring ground deformation and environmental changes. However, coherence can be degraded by various factors such as temporal decorrelation, atmospheric disturbances, and geometric misalignments, limiting the reliability of InSAR measurements (Omar Hadj‐Sahraoui and al. 2019). To address this challenge, we propose an innovative hybrid approach that combines artificial intelligence (AI) with advanced filtering techniques to optimize interferometric coherence in InSAR data. Specifically, we introduce a Convolutional Neural Network (CNN) integrated with the Lee filter to enhance the performance of radar interferometry. This hybrid method leverages the strength of CNNs to automatically identify and mitigate the primary sources of decorrelation, while the Lee filter effectively reduces speckle noise, improving the overall quality of interferograms. We develop a deep learning-based model trained on multi-temporal and multi-frequency SAR datasets, enabling it to predict coherence patterns and enhance low-coherence regions. This hybrid CNN-SAR with Lee filtering significantly reduces noise and phase unwrapping errors, leading to more precise deformation maps. Experimental results demonstrate that our approach improves coherence by up to 30% compared to traditional filtering techniques, making it a robust solution for challenging scenarios such as urban environments, vegetated areas, and rapidly changing landscapes. Our method has potential applications in geohazard monitoring, urban planning, and environmental studies, offering a new avenue for enhancing InSAR data reliability through AI-powered optimization combined with robust filtering techniques.

Keywords: CNN-SAR, Lee Filter, hybrid optimization, coherence, InSAR phase unwrapping, speckle noise reduction

Procedia PDF Downloads 16
5282 The Effect of the Structural Arrangement of Binary Bisamide Organogelators on their Self-Assembly Behavior

Authors: Elmira Ghanbari, Jan Van Esch, Stephen J. Picken, Sahil Aggarwal

Abstract:

Low-molecular-weight organogelators form gels by self-assembly into the crystalline network which immobilizes the organic solvent. For single bisamide organogelator systems, the effect of the molecular structure on the molecular interaction and their self-assembly behavior has been explored. The spatial arrangement of bisamide molecules in the gel-state is driven by a combination of hydrogen bonding and Van der Waals interactions. The hydrogen-bonding pattern between the amide groups of bisamide molecules is regulated by the number of methylene spacers; the even number of methylene spacers between two amide groups, in even-spaced bisamides, leads to the antiparallel position of amide groups within a molecule. An even-spaced bisamide molecule with antiparallel amide groups can make two pairs of hydrogen bonding with the molecules on the same plane. The odd-spaced bisamide with a parallel directionality of amide groups can form four independent hydrogen bonds with four other bisamide molecules on different planes. The arrangement of bisamide molecules in the crystalline state and the interaction of these molecules depends on the molecular structure, particularly the parity of the spacer length between the amide groups in the bisamide molecule. In this study, the directionality of amide groups has been exploited as a structural characteristic to affect the arrangement of molecules in the crystalline state and produce different binary bisamide gelators with different degrees of crystallinities. Single odd- and even-spaced single bisamides were synthesized and blended to produce binary bisamide organogelators to be characterized in order to understand the effect of the different directionality of amide groups on the molecular interaction in the crystalline state. The pattern of molecular interactions between these blended molecules, mixing or phase separation, has been monitored via differential scanning calorimetry (DSC) and crystallography techniques; X-ray powder diffraction (XRD) and Small-angle X-ray scattering (SAXS). The formation of lamellar structures for odd- and even-spaced bisamide gelators was confirmed by using SAXS and XRD techniques. DSC results have shown that binary bisamide organogelators with different parity of methylene spacers (odd-even binary blends) have a higher tendency for phase separation compared to the binary bisamides with the same parity (odd-odd or even-even binary blends). Phase separation in binary odd-even bisamides was confirmed by the presence of individual (100) reflections of odd and even lamellar structures. The structural characteristic of bisamide organogelators, the parity of spacer length in binary systems, is a promising tool to control the arrangement of molecules and their crystalline structure.

Keywords: binary bisamide organogelators, crystalline structure, phase separation, self-assembly behavior

Procedia PDF Downloads 188
5281 Exposure to Ionizing Radiation Resulting from the Chernobyl Fallout and Childhood Cardiac Arrhythmia: A Population Based Study

Authors: Geraldine Landon, Enora Clero, Jean-Rene Jourdain

Abstract:

In 2005, the Institut de Radioprotection et de Sûreté Nucléaire (IRSN, France) launched a research program named EPICE (acronym for 'Evaluation of Pathologies potentially Induced by CaEsium') to collect scientific information on non-cancer effects possibly induced by chronic exposures to low doses of ionizing radiation with the view of addressing a question raised by several French NGOs related to health consequences of the Chernobyl nuclear accident in children. The implementation of the program was preceded by a pilot phase to ensure that the project would be feasible and determine the conditions for implementing an epidemiological study on a population of several thousand children. The EPICE program focused on childhood cardiac arrhythmias started in May 2009 for 4 years, in partnership with the Russian Bryansk Diagnostic Center. The purpose of this cross-sectional study was to determine the prevalence of cardiac arrhythmias in the Bryansk oblast (depending on the contamination of the territory and the caesium-137 whole-body burden) and to assess whether caesium-137 was or not a factor associated with the onset of cardiac arrhythmias. To address these questions, a study bringing together 18 152 children aged 2 to 18 years was initiated; each child received three medical examinations (ECG, echocardiography, and caesium-137 whole-body activity measurement) and some of them were given with a 24-hour Holter monitoring and blood tests. The findings of the study, currently submitted to an international journal justifying that no results can be given at this step, allow us to answer clearly to the issue of radiation-induced childhood arrhythmia, a subject that has been debated for many years. Our results will be certainly helpful for health professionals responsible for the monitoring of population exposed to the releases from the Fukushima Dai-ichi nuclear power plant and also useful for future comparative study in children exposed to ionizing radiation in other contexts, such as cancer radiation therapies.

Keywords: Caesium-137, cardiac arrhythmia, Chernobyl, children

Procedia PDF Downloads 247
5280 Organic Geochemical Characteristics of Cenozoic Mudstones, NE Bengal Basin, Bangladesh

Authors: H. M. Zakir Hossain

Abstract:

Cenozoic mudstone samples, obtained from drilled cored and outcrop in northeastern Bengal Basin of Bangladesh were organic geochemically analyzed to identify vertical variations of organic facies, thermal maturity, hydrocarbon potential and depositional environments. Total organic carbon (TOC) content ranges from 0.11 to 1.56 wt% with an average of 0.43 wt%, indicating a good source rock potential. Total sulphur content is variable with values ranging from ~0.001 to 1.75 wt% with an average of 0.065 wt%. Rock-Eval S1 and S2 yields range from 0.03 to 0.14 mg HC/g rock and 0.01 to 0.66 mg HC/g rock, respectively. The hydrogen index values range from 2.71 to 56.09 mg HC/g TOC. These results revealed that the samples are dominated by type III kerogene. Tmax values of 426 to 453 °C and vitrinite reflectance of 0.51 to 0.66% indicate the organic matter is immature to mature. Saturated hydrocarbon ratios such as pristane, phytane, steranes, and hopanes, indicate mostly terrigenous organic matter with small influence of marine organic matter. Organic matter in the succession was accumulated in three different environmental conditions based on the integration of biomarker proxies. First phase (late Eocene to early Miocene): Deposition occurred entirely in seawater-dominated oxic conditions, with high inputs of land plants organic matter including angiosperms. Second phase (middle to late Miocene): Deposition occurred in freshwater-dominated anoxic conditions, with phytoplanktonic organic matter and a small influence of land plants. Third phase (late Miocene to Pleistocene): Deposition occurred in oxygen-poor freshwater conditions, with abundant input of planktonic organic matter and high influx of angiosperms. The lower part (middle Eocene to early Miocene) of the succession with moderate TOC contents and primarily terrestrial organic matter could have generated some condensates and oils in and around the study area.

Keywords: Bangladesh, geochemistry, hydrocarbon potential, mudstone

Procedia PDF Downloads 428
5279 A Grid Synchronization Method Based On Adaptive Notch Filter for SPV System with Modified MPPT

Authors: Priyanka Chaudhary, M. Rizwan

Abstract:

This paper presents a grid synchronization technique based on adaptive notch filter for SPV (Solar Photovoltaic) system along with MPPT (Maximum Power Point Tracking) techniques. An efficient grid synchronization technique offers proficient detection of various components of grid signal like phase and frequency. It also acts as a barrier for harmonics and other disturbances in grid signal. A reference phase signal synchronized with the grid voltage is provided by the grid synchronization technique to standardize the system with grid codes and power quality standards. Hence, grid synchronization unit plays important role for grid connected SPV systems. As the output of the PV array is fluctuating in nature with the meteorological parameters like irradiance, temperature, wind etc. In order to maintain a constant DC voltage at VSC (Voltage Source Converter) input, MPPT control is required to track the maximum power point from PV array. In this work, a variable step size P & O (Perturb and Observe) MPPT technique with DC/DC boost converter has been used at first stage of the system. This algorithm divides the dPpv/dVpv curve of PV panel into three separate zones i.e. zone 0, zone 1 and zone 2. A fine value of tracking step size is used in zone 0 while zone 1 and zone 2 requires a large value of step size in order to obtain a high tracking speed. Further, adaptive notch filter based control technique is proposed for VSC in PV generation system. Adaptive notch filter (ANF) approach is used to synchronize the interfaced PV system with grid to maintain the amplitude, phase and frequency parameters as well as power quality improvement. This technique offers the compensation of harmonics current and reactive power with both linear and nonlinear loads. To maintain constant DC link voltage a PI controller is also implemented and presented in this paper. The complete system has been designed, developed and simulated using SimPower System and Simulink toolbox of MATLAB. The performance analysis of three phase grid connected solar photovoltaic system has been carried out on the basis of various parameters like PV output power, PV voltage, PV current, DC link voltage, PCC (Point of Common Coupling) voltage, grid voltage, grid current, voltage source converter current, power supplied by the voltage source converter etc. The results obtained from the proposed system are found satisfactory.

Keywords: solar photovoltaic systems, MPPT, voltage source converter, grid synchronization technique

Procedia PDF Downloads 596