Search results for: opposition based learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32267

Search results for: opposition based learning

30647 The Development of a Supplementary Course in the Social Studies, Religion and Culture Learning Area in Support of ASEAN Community and for Use in the Northeastern Border Area of Thailand

Authors: Angkana Tungkasamit, Ladda Silanoi , Teerachai Nethanomsak, Sitthipon Art-in, Siribhong Bhiasiri

Abstract:

As the date for the commencement of the ASEAN Community in Year 2015 is approaching, it has become apparent to all that there is an urgent need to get Thai people ready to meet the challenge of entering into the Community confidently. Our research team has been organized by the Faculty of Education, Khon Kaen University with the task of training administrators and teachers of the schools along the borders with Laos People’s Democratic Republic and the Kingdom of Cambodia to be able to develop supplementary courses on ASEAN Community. The course to be developed is based on the essential elements of the Community, i.e. general backgrounds of the member countries, the education, social and economic life in the Community and social skills needed for a good citizen of the ASEAN Community. The study, based on learning outcome and learning management process as a basis for inquiry, was a research and development in nature using participative action research as a means to achieve the goal of helping school administrators and teachers to learn how to develop supplementary courses to be used in their schools. A post-workshop evaluation of the outcome was made and found that, besides the successfully completed supplementary course, the participants were satisfied with their participation in the workshop because they had participated in every step of the development activity, from the beginning to the end.

Keywords: development of supplementary course, ASEAN community, social studies, northeastern border area of Thailand

Procedia PDF Downloads 354
30646 Affective (And Effective) Teaching and Learning: Higher Education Gets Social Again

Authors: Laura Zizka, Gaby Probst

Abstract:

The Covid-19 pandemic has affected the way Higher Education Institutions (HEIs) have given their courses. From emergency remote where all students and faculty were immediately confined to home teaching and learning, the continuing evolving sanitary situation obliged HEIs to adopt other methods of teaching and learning from blended courses that included both synchronous and asynchronous courses and activities to hy-flex models where some students were on campus while others followed the course simultaneously online. Each semester brought new challenges for HEIs and, subsequently, additional emotional reactions. This paper investigates the affective side of teaching and learning in various online modalities and its toll on students and faculty members over the past three semesters. The findings confirm that students and faculty who have more self-efficacy, flexibility, and resilience reported positive emotions and embraced the opportunities that these past semesters have offered. While HEIs have begun a new semester in an attempt to return to ‘normal’ face-to-face courses, this paper posits that there are lessons to be learned from these past three semesters. The opportunities that arose from the challenge of the pandemic should be considered when moving forward by focusing on a greater emphasis on the affective aspect of teaching and learning in HEIs worldwide.

Keywords: effective teaching and learning, higher education, engagement, interaction, motivation

Procedia PDF Downloads 117
30645 Generic Competences, the Great Forgotten: Teamwork in the Undergraduate Degree in Translation and Interpretation

Authors: María-Dolores Olvera-Lobo, Bryan John Robinson, Juncal Gutierrez-Artacho

Abstract:

Graduates are equipped with a wide range of generic competencies which complement solid curricular competencies and facilitate their access to the labour market in diverse fields and careers. However, some generic competencies such as instrumental, personal and systemic competencies related to teamwork and interpersonal communication skills, decision-making and organization skills are seldom taught explicitly and even less often assessed. In this context, translator training has embraced a broad range of competencies specified in the undergraduate program currently taught at universities and opens up the learning experience to cover areas often ignored due to the difficulties inherent in both teaching and assessment. In practice, translator training combines two well-established approaches to teaching/learning: project-based learning and genuinely cooperative – or merely collaborative – learning. Our professional approach to translator training is a model focused on and adapted to the teleworking context of professional translation and presented through the medium of blended e-learning. Teamwork-related competencies are extremely relevant, and they require explicit and implicit teaching so that graduates can be confident about their capacity to make their way in professional contexts. In order to highlight the importance of teamwork and intra-team relationships beyond the classroom, we aim to raise awareness of teamwork processes so as to empower translation students in managing their interaction and ensure that they gain valuable pre-professional experience. With these objectives, at the University of Granada (Spain) we have developed a range of classroom activities and assessment tools. The results of their application are summarized in this study.

Keywords: blended learning, collaborative teamwork, cross-curricular competencies, higher education, intra-team relationships, students’ perceptions, translator training

Procedia PDF Downloads 169
30644 Major Depressive Disorder: Diagnosis based on Electroencephalogram Analysis

Authors: Wajid Mumtaz, Aamir Saeed Malik, Syed Saad Azhar Ali, Mohd Azhar Mohd Yasin

Abstract:

In this paper, a technique based on electroencephalogram (EEG) analysis is presented, aiming for diagnosing major depressive disorder (MDD) among a potential population of MDD patients and healthy controls. EEG is recognized as a clinical modality during applications such as seizure diagnosis, index for anesthesia, detection of brain death or stroke. However, its usability for psychiatric illnesses such as MDD is less studied. Therefore, in this study, for the sake of diagnosis, 2 groups of study participants were recruited, 1) MDD patients, 2) healthy people as controls. EEG data acquired from both groups were analyzed involving inter-hemispheric asymmetry and composite permutation entropy index (CPEI). To automate the process, derived quantities from EEG were utilized as inputs to classifier such as logistic regression (LR) and support vector machine (SVM). The learning of these classification models was tested with a test dataset. Their learning efficiency is provided as accuracy of classifying MDD patients from controls, their sensitivities and specificities were reported, accordingly (LR =81.7 % and SVM =81.5 %). Based on the results, it is concluded that the derived measures are indicators for diagnosing MDD from a potential population of normal controls. In addition, the results motivate further exploring other measures for the same purpose.

Keywords: major depressive disorder, diagnosis based on EEG, EEG derived features, CPEI, inter-hemispheric asymmetry

Procedia PDF Downloads 546
30643 Development of Computational Approach for Calculation of Hydrogen Solubility in Hydrocarbons for Treatment of Petroleum

Authors: Abdulrahman Sumayli, Saad M. AlShahrani

Abstract:

For the hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of the process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models are optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with an RMSE of 1.38 × 10− 2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions is estimated in different ranges of temperatures and pressures of 150 ◦C–350 ◦C and 1.2 MPa–10.8 MPa, respectively

Keywords: temperature, pressure variations, machine learning, oil treatment

Procedia PDF Downloads 69
30642 Fracking the UK's Shale Gas Regulatory Regime

Authors: Yanal Abul Failat

Abstract:

The production of oil and natural gas from shale formations is becoming a trend, and many countries with technically and economically recoverable unconventional resources are endeavoring to explore how shale formations may benefit the economy and achieve energy security. The trajectory of shale gas development in the UK is highly supported by the government; in the Gas Generation Strategy Paper published by the UK government on 5 December 2013, it is recognized that the shale gas production would decrease reliance on imports and thus enhance the UK’s energy security. Moreover, the UK Institute of Directors report on UK Shale Gas Potential explains that in the UK there is a potential of production peaking at around 1.13 trillion cubic feet (“tcf”) and a sector that could support around 70,000 jobs and secure net benefit to the Treasury in tax revenues. On this basis, there has been a growing interest in the benefits of exploring the UK’s shale gas but a combination of technical challenges faced in shale gas operations, a stern opposition by environmentalists and concerns on the adequacy of the legal framework have slowed the progress of the emerging UK shale industry.

Keywords: shale gas, UK, legal, oil and gas, energy

Procedia PDF Downloads 711
30641 Guidelines for the Development of Community Classroom for Research and Academic Services in Ranong Province

Authors: Jenjira Chinnawong, Phusit Phukamchanoad

Abstract:

The objective of this study is to explore the guidelines for the development of community classroom for research and academic services in Ranong province. By interviewing leaders involved in the development of learning resources, research, and community services, it was found that the leaders' perceptions in the development of learning resources, research, and community services in Ranong, was at the highest level. They perceived at every step on policies of community classroom implementation, research, and community services in Ranong. Leaders' perceptions were at the moderate level in terms of analysis of problems related to procedures of community classroom management, research and community services in Ranong especially in the planning and implementation of the examination, improvement, and development of learning sources to be in good condition and ready to serve the visitors. Their participation in the development of community classroom, research, and community services in Ranong was at a high level, particularly in the participation in monitoring and evaluation of the development of learning resources as well as in reporting on the result of the development of learning resources. The most important thing in the development of community classroom, research and community services in Ranong is the necessity to integrate the three principles of knowledge building in teaching, research and academic services in order to create the identity of the local and community classroom for those who are interested to visit to learn more about the useful knowledge. As a result, community classroom, research, and community services were well-known both inside and outside the university.

Keywords: community classroom, learning resources, development, participation

Procedia PDF Downloads 158
30640 Multimedia Design in Tactical Play Learning and Acquisition for Elite Gaelic Football Practitioners

Authors: Michael McMahon

Abstract:

The use of media (video/animation/graphics) has long been used by athletes, coaches, and sports scientists to analyse and improve performance in technical skills and team tactics. Sports educators are increasingly open to the use of technology to support coach and learner development. However, an overreliance is a concern., This paper is part of a larger Ph.D. study looking into these new challenges for Sports Educators. Most notably, how to exploit the deep-learning potential of Digital Media among expert learners, how to instruct sports educators to create effective media content that fosters deep learning, and finally, how to make the process manageable and cost-effective. Central to the study is Richard Mayers Cognitive Theory of Multimedia Learning. Mayers Multimedia Learning Theory proposes twelve principles that shape the design and organization of multimedia presentations to improve learning and reduce cognitive load. For example, the Prior Knowledge principle suggests and highlights different learning outcomes for Novice and Non-Novice learners, respectively. Little research, however, is available to support this principle in modified domains (e.g., sports tactics and strategy). As a foundation for further research, this paper compares and contrasts a range of contemporary multimedia sports coaching content and assesses how they perform as learning tools for Strategic and Tactical Play Acquisition among elite sports practitioners. The stress tests applied are guided by Mayers's twelve Multimedia Learning Principles. The focus is on the elite athletes and whether current coaching digital media content does foster improved sports learning among this cohort. The sport of Gaelic Football was selected as it has high strategic and tactical play content, a wide range of Practitioner skill levels (Novice to Elite), and also a significant volume of Multimedia Coaching Content available for analysis. It is hoped the resulting data will help identify and inform the future instructional content design and delivery for Sports Practitioners and help promote best design practices optimal for different levels of expertise.

Keywords: multimedia learning, e-learning, design for learning, ICT

Procedia PDF Downloads 104
30639 An Analysis of a Canadian Personalized Learning Curriculum

Authors: Ruthanne Tobin

Abstract:

The shift to a personalized learning (PL) curriculum in Canada represents an innovative approach to teaching and learning that is also evident in various initiatives across the 32-nation OECD. The premise behind PL is that empowering individual learners to have more input into how they access and construct knowledge, and express their understanding of it, will result in more meaningful school experiences and academic success. In this paper presentation, the author reports on a document analysis of the new curriculum in the province of British Columbia. Three theoretical frameworks are used to analyze the new curriculum. Framework 1 focuses on five dominant aspects (FDA) of PL at the classroom level. Framework 2 focuses on conceptualizing and enacting personalized learning (CEPL) within three spheres of influence. Framework 3 focuses on the integration of three types of knowledge (content, technological, and pedagogical). Analysis is ongoing, but preliminary findings suggest that the new curriculum addresses framework 1 quite well, which identifies five areas of personalized learning: 1) assessment for learning; 2) effective teaching and learning; 3) curriculum entitlement (choice); 4) school organization; and 5) “beyond the classroom walls” (learning in the community). Framework 2 appears to be less well developed in the new curriculum. This framework speaks to the dynamics of PL within three spheres of interaction: 1) nested agency, comprised of overarching constraints [and enablers] from policy makers, school administrators and community; 2) relational agency, which refers to a capacity for professionals to develop a network of expertise to serve shared goals; and 3) students’ personalized learning experience, which integrates differentiation with self-regulation strategies. Framework 3 appears to be well executed in the new PL curriculum, as it employs the theoretical model of technological, pedagogical content knowledge (TPACK) in which there are three interdependent bodies of knowledge. Notable within this framework is the emphasis on the pairing of technologies with excellent pedagogies to significantly assist students and teachers. This work will be of high relevance to educators interested in innovative school reform.

Keywords: curriculum reform, K-12 school change, innovations in education, personalized learning

Procedia PDF Downloads 282
30638 Design of an Ensemble Learning Behavior Anomaly Detection Framework

Authors: Abdoulaye Diop, Nahid Emad, Thierry Winter, Mohamed Hilia

Abstract:

Data assets protection is a crucial issue in the cybersecurity field. Companies use logical access control tools to vault their information assets and protect them against external threats, but they lack solutions to counter insider threats. Nowadays, insider threats are the most significant concern of security analysts. They are mainly individuals with legitimate access to companies information systems, which use their rights with malicious intents. In several fields, behavior anomaly detection is the method used by cyber specialists to counter the threats of user malicious activities effectively. In this paper, we present the step toward the construction of a user and entity behavior analysis framework by proposing a behavior anomaly detection model. This model combines machine learning classification techniques and graph-based methods, relying on linear algebra and parallel computing techniques. We show the utility of an ensemble learning approach in this context. We present some detection methods tests results on an representative access control dataset. The use of some explored classifiers gives results up to 99% of accuracy.

Keywords: cybersecurity, data protection, access control, insider threat, user behavior analysis, ensemble learning, high performance computing

Procedia PDF Downloads 128
30637 Impact of Overall Teaching Program of Anatomy in Learning: A Students Perspective

Authors: Mamatha Hosapatna, Anne D. Souza, Antony Sylvan Dsouza, Vrinda Hari Ankolekar

Abstract:

Our study intends to know the effect of the overall teaching program of Anatomy on a students learning. The advancement of various teaching methodologies in the present era has led to progressive changes in education. A student should be able to correlate well between the theory and practical knowledge attained even in the early years of their education in medicine and should be able to implement the same in patient care. The present study therefore aims to assess the impact the current anatomy teaching program has on a students learning and to what extent is it successful in making the learning program effective. Specific objectives of our study to assess the impact of overall teaching program of Anatomy in a students’ learning. Description of process proposed: A questionnaire will be constructed and the students will be asked to put forth their views regarding the Anatomy teaching program and its method of assessment. Suggestions, if any will also be encouraged to be put forth. Type of study is cross sectional observations. Target population is the first year MBBS students and sample size is 250. Assessment plan is to obtaining students responses using questionnaire. Calculating percentages of the responses obtained. Tabulation of the results will be done.

Keywords: anatomy, observational study questionnaire, observational study, M.B.B.S students

Procedia PDF Downloads 499
30636 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network

Authors: Ziying Wu, Danfeng Yan

Abstract:

Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.

Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network

Procedia PDF Downloads 118
30635 Enhancing Sell-In and Sell-Out Forecasting Using Ensemble Machine Learning Method

Authors: Vishal Das, Tianyi Mao, Zhicheng Geng, Carmen Flores, Diego Pelloso, Fang Wang

Abstract:

Accurate sell-in and sell-out forecasting is a ubiquitous problem in the retail industry. It is an important element of any demand planning activity. As a global food and beverage company, Nestlé has hundreds of products in each geographical location that they operate in. Each product has its sell-in and sell-out time series data, which are forecasted on a weekly and monthly scale for demand and financial planning. To address this challenge, Nestlé Chilein collaboration with Amazon Machine Learning Solutions Labhas developed their in-house solution of using machine learning models for forecasting. Similar products are combined together such that there is one model for each product category. In this way, the models learn from a larger set of data, and there are fewer models to maintain. The solution is scalable to all product categories and is developed to be flexible enough to include any new product or eliminate any existing product in a product category based on requirements. We show how we can use the machine learning development environment on Amazon Web Services (AWS) to explore a set of forecasting models and create business intelligence dashboards that can be used with the existing demand planning tools in Nestlé. We explored recent deep learning networks (DNN), which show promising results for a variety of time series forecasting problems. Specifically, we used a DeepAR autoregressive model that can group similar time series together and provide robust predictions. To further enhance the accuracy of the predictions and include domain-specific knowledge, we designed an ensemble approach using DeepAR and XGBoost regression model. As part of the ensemble approach, we interlinked the sell-out and sell-in information to ensure that a future sell-out influences the current sell-in predictions. Our approach outperforms the benchmark statistical models by more than 50%. The machine learning (ML) pipeline implemented in the cloud is currently being extended for other product categories and is getting adopted by other geomarkets.

Keywords: sell-in and sell-out forecasting, demand planning, DeepAR, retail, ensemble machine learning, time-series

Procedia PDF Downloads 274
30634 COVID-19’s Impact on the Use of Media, Educational Performance, and Learning in Children and Adolescents with ADHD Who Engaged in Virtual Learning

Authors: Christina Largent, Tazley Hobbs

Abstract:

Objective: A literature review was performed to examine the existing research on COVID-19 lockdown as it relates to ADHD child/adolescent individuals, media use, and impact on educational performance/learning. It was surmised that with the COVID-19 shut-down and transition to remote learning, a less structured learning environment, increased screen time, in addition to potential difficulty accessing school resources would impair ADHD individuals’ performance and learning. A resulting increase in the number of youths diagnosed and treated for ADHD would be expected. As of yet, there has been little to no published data on the incidence of ADHD as it relates to COVID-19 outside of reports from several nonprofit agencies such as CHADD (Children and Adults with Attention-Deficit/Hyperactivity Disorder ), who reported an increased number of calls to their helpline, The New York based Child Mind Institute, who reported an increased number of appointments to discuss medications, and research released from Athenahealth showing an increase in the number of patients receiving new diagnosis of ADHD and new prescriptions for ADHD medications. Methods: A literature search for articles published between 2020 and 2021 from Pubmed, Google Scholar, PsychInfo, was performed. Search phrases and keywords included “covid, adhd, child, impact, remote learning, media, screen”. Results: Studies primarily utilized parental reports, with very few from the perspective of the ADHD individuals themselves. Most findings thus far show that with the COVID-19 quarantine and transition to online learning, ADHD individuals’ experienced decreased ability to keep focused or adhere to the daily routine, as well as increased inattention-related problems, such as careless mistakes or lack of completion in homework, which in turn translated into overall more difficulty with remote learning. To add further injury, one study showed (just on evaluation of two different sites within the US) that school based services for these individuals decreased with the shift to online-learning. Increased screen time, television, social media, and gaming were noted amongst ADHD individuals. One study further differentiated the degree of digital media, identifying individuals with “problematic “ or “non-problematic” use. ADHD children with problematic digital media use suffered from more severe core symptoms of ADHD, negative emotions, executive function deficits, damage to family environment, pressure from life events, and a lower motivation to learn. Conclusions and Future Considerations: Studies found not only was online learning difficult for ADHD individuals but it, in addition to greater use of digital media, was associated with worsening ADHD symptoms impairing schoolwork, in addition to secondary findings of worsening mood and behavior. Currently, data on the number of new ADHD cases, in addition to data on the prescription and usage of stimulants during COVID-19, has not been well documented or studied; this would be well-warranted out of concern for over diagnosing or over-prescribing our youth. It would also be well-worth studying how reversible or long-lasting these negative impacts may be.

Keywords: COVID-19, remote learning, media use, ADHD, child, adolescent

Procedia PDF Downloads 124
30633 Early Requirement Engineering for Design of Learner Centric Dynamic LMS

Authors: Kausik Halder, Nabendu Chaki, Ranjan Dasgupta

Abstract:

We present a modelling framework that supports the engineering of early requirements specifications for design of learner centric dynamic Learning Management System. The framework is based on i* modelling tool and Means End Analysis, that adopts primitive concepts for modelling early requirements (such as actor, goal, and strategic dependency). We show how pedagogical and computational requirements for designing a learner centric Learning Management system can be adapted for the automatic early requirement engineering specifications. Finally, we presented a model on a Learner Quanta based adaptive Courseware. Our early requirement analysis shows that how means end analysis reveals gaps and inconsistencies in early requirements specifications that are by no means trivial to discover without the help of formal analysis tool.

Keywords: adaptive courseware, early requirement engineering, means end analysis, organizational modelling, requirement modelling

Procedia PDF Downloads 500
30632 The Factors Affecting the Use of Massive Open Online Courses in Blended Learning by Lecturers in Universities

Authors: Taghreed Alghamdi, Wendy Hall, David Millard

Abstract:

Massive Open Online Courses (MOOCs) have recently gained widespread interest in the academic world, starting a wide range of discussion of a number of issues. One of these issues, using MOOCs in teaching and learning in the higher education by integrating MOOCs’ contents with traditional face-to-face activities in blended learning format, is called blended MOOCs (bMOOCs) and is intended not to replace traditional learning but to enhance students learning. Most research on MOOCs has focused on students’ perception and institutional threats whereas there is a lack of published research on academics’ experiences and practices. Thus, the first aim of the study is to develop a classification of blended MOOCs models by conducting a systematic literature review, classifying 19 different case studies, and identifying the broad types of bMOOCs models namely: Supplementary Model and Integrated Model. Thus, the analyses phase will emphasize on these different types of bMOOCs models in terms of adopting MOOCs by lecturers. The second aim of the study is to improve the understanding of lecturers’ acceptance of bMOOCs by investigate the factors that influence academics’ acceptance of using MOOCs in traditional learning by distributing an online survey to lecturers who participate in MOOCs platforms. These factors can help institutions to encourage their lecturers to integrate MOOCs with their traditional courses in universities.

Keywords: acceptance, blended learning, blended MOOCs, higher education, lecturers, MOOCs, professors

Procedia PDF Downloads 131
30631 Investigation of the Jupiter’s Galilean Moons

Authors: Revaz Chigladze

Abstract:

The purpose of the research is to investigate the surfaces of Jupiter's Galilean moons, namely which moon has the most uniform surface among them, what is the difference between the front (in the direction of motion) and the back sides of each moon's surface, as well as the temporal variations of the moons. Since 1981, the E. Kharadze National Astrophysical Observatory of Georgia has been conducting polarimetric (P) and photometric (M) observations of Jupiter's Galilean moons with telescopes of different diameters (40 cm and 125 cm) and the polarimeter ASEP-78 in combination with them and the latest generation photometer with a polarimeter and modern light receiver SBIG. As it turns out from the analysis of the observed material, the parameters P and M depend on α-the phase angle of the moon (satellite), L- the orbital latitude of the moon (satellite), λ- the wavelength, and t - the period of observation, i.e., P = P (α, L, λ , t), and similarly M = M (α, L, λ. , t). Based on the analysis of the observed material, the following was studied: Jupiter's Galilean moons: dependence of the magnitude and phase angle of the degree of linear polarization for different wavelengths; Dependence of the degree of polarization and the orbital longitude; dependence between the magnitude of the degree of polarization and the wavelength; time dependence of the degree of polarization and the dependence between photometric and polarimetric characteristics (including establishing correlation). From the analysis of the obtained results, we get: The magnitude of the degree of polarization of Jupiter's Galilean moons near the opposition significantly differs from zero. Europa appears to have the most uniform surface, and Callisto the least uniform. Time variations are most characteristic of Io, which confirms the presence of volcanic activity on its surface. Based on the observed material, it can be seen that the intensity of light reflected from the front hemisphere of the first three moons: Io, Europa, and Ganymede, is less than the intensity of light reflected from the rear hemisphere, and in the case of the Callisto it is the opposite. The paper provides a convincing (natural, real) explanation of this fact.

Keywords: Galilean moons, polarization, degree of polarization, photometry, front and rear hemispheres

Procedia PDF Downloads 101
30630 Perceptions toward Adopting Virtual Reality as a Learning Aid in Information Technology

Authors: S. Alfalah, J. Falah, T. Alfalah, M. Elfalah, O. Falah

Abstract:

The field of education is an ever-evolving area constantly enriched by newly discovered techniques provided by active research in all areas of technologies. The recent years have witnessed the introduction of a number of promising technologies and applications to enhance the teaching and learning experience. Virtual Reality (VR) applications are considered one of the evolving methods that have contributed to enhancing education in many fields. VR creates an artificial environment, using computer hardware and software, which is similar to the real world. This simulation provides a solution to improve the delivery of materials, which facilitates the teaching process by providing a useful aid to instructors, and enhances the learning experience by providing a beneficial learning aid. In order to assure future utilization of such systems, students’ perceptions were examined toward utilizing VR as an educational tool in the Faculty of Information Technology (IT) in The University of Jordan. A questionnaire was administered to IT undergraduates investigating students’ opinions about the potential opportunities that VR technology could offer and its implications as learning and teaching aid. The results confirmed the end users’ willingness to adopt VR systems as a learning aid. The result of this research forms a solid base for investing in a VR system for IT education.

Keywords: information, technology, virtual reality, education

Procedia PDF Downloads 291
30629 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms

Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang

Abstract:

Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.

Keywords: bioassay, machine learning, preprocessing, virtual screen

Procedia PDF Downloads 274
30628 AutoML: Comprehensive Review and Application to Engineering Datasets

Authors: Parsa Mahdavi, M. Amin Hariri-Ardebili

Abstract:

The development of accurate machine learning and deep learning models traditionally demands hands-on expertise and a solid background to fine-tune hyperparameters. With the continuous expansion of datasets in various scientific and engineering domains, researchers increasingly turn to machine learning methods to unveil hidden insights that may elude classic regression techniques. This surge in adoption raises concerns about the adequacy of the resultant meta-models and, consequently, the interpretation of the findings. In response to these challenges, automated machine learning (AutoML) emerges as a promising solution, aiming to construct machine learning models with minimal intervention or guidance from human experts. AutoML encompasses crucial stages such as data preparation, feature engineering, hyperparameter optimization, and neural architecture search. This paper provides a comprehensive overview of the principles underpinning AutoML, surveying several widely-used AutoML platforms. Additionally, the paper offers a glimpse into the application of AutoML on various engineering datasets. By comparing these results with those obtained through classical machine learning methods, the paper quantifies the uncertainties inherent in the application of a single ML model versus the holistic approach provided by AutoML. These examples showcase the efficacy of AutoML in extracting meaningful patterns and insights, emphasizing its potential to revolutionize the way we approach and analyze complex datasets.

Keywords: automated machine learning, uncertainty, engineering dataset, regression

Procedia PDF Downloads 61
30627 Patient-Specific Modeling Algorithm for Medical Data Based on AUC

Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper

Abstract:

Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.

Keywords: approach instance-based, area under the ROC curve, patient-specific decision path, clinical predictions

Procedia PDF Downloads 479
30626 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification

Procedia PDF Downloads 349
30625 Overall Student Satisfaction at Tabor School of Education: An Examination of Key Factors Based on the AUSSE SEQ

Authors: Francisco Ben, Tracey Price, Chad Morrison, Victoria Warren, Willy Gollan, Robyn Dunbar, Frank Davies, Mark Sorrell

Abstract:

This paper focuses particularly on the educational aspects that contribute to the overall educational satisfaction rated by Tabor School of Education students who participated in the Australasian Survey of Student Engagement (AUSSE) conducted by the Australian Council for Educational Research (ACER) in 2010, 2012 and 2013. In all three years of participation, Tabor ranked first especially in the area of overall student satisfaction. By using a single level path analysis in relation to the AUSSE datasets collected using the Student Engagement Questionnaire (SEQ) for Tabor School of Education, seven aspects that contribute to overall student satisfaction have been identified. There appears to be a direct causal link between aspects of the Supportive Learning Environment, Work Integrated Learning, Career Readiness, Academic Challenge, and overall educational satisfaction levels. A further three aspects, being Student and Staff Interactions, Active Learning, and Enriching Educational Experiences, indirectly influence overall educational satisfaction levels.

Keywords: attrition, retention, educational experience, pre-service teacher education, student satisfaction

Procedia PDF Downloads 352
30624 Evaluating the Learning Outcomes of Physical Therapy Clinical Fieldwork Course

Authors: Hui-Yi Wang, Shu-Mei Chen, Mei-Fang Liu

Abstract:

Background and purpose: Providing clinical experience in medical education is an important discipline method where students can gradually apply their academic knowledge to clinical situations. The purpose of this study was to establish self-assessment questionnaires for students to assess their learning outcomes for two fields of physical therapy, orthopedic physical therapy, and pediatric physical therapy, in a clinical fieldwork course. Methods: The questionnaires were developed based on the core competence dimensions of the course. The content validity of the questionnaires was evaluated and established by expert meetings. Among the third-year undergraduate students who took the clinical fieldwork course, there were 49 students participated in this study. Teachers arranged for the students to study two professional fields, and each professional field conducted a three-week clinical lesson. The students filled out the self-assessment questionnaires before and after each three-week lesson. Results: The self-assessment questionnaires were established by expert meetings that there were six core competency dimensions in each of the two fields, with 20 and 21 item-questions, respectively. After each three-week clinical fieldwork, the self-rating scores in each core competency dimension were higher when compared to those before the course, indicating having better clinical abilities after the lessons. The best self-rating scores were the dimension of attitude and humanistic literacy, and the two lower scores were the dimensions of professional knowledge and skills and problem-solving critical thinking. Conclusions: This study developed questionnaires for clinical fieldwork courses to reflect students' learning outcomes, including the performance of professional knowledge, practice skills, and professional attitudes. The use of self-assessment of learning performance can help students build up their reflective competencies. Teachers can guide students to pay attention to the performance of abilities in each core dimension to enhance the effectiveness of learning through self-reflection and improvement.

Keywords: physical therapy, clinical fieldwork course, learning outcomes assessment, medical education, self-reflection ability

Procedia PDF Downloads 116
30623 Career Guidance System Using Machine Learning

Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan

Abstract:

Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should properly evaluate their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, Neural Networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable to offer an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.

Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills

Procedia PDF Downloads 80
30622 Bridging the Gap between Teaching and Learning: A 3-S (Strength, Stamina, Speed) Model for Medical Education

Authors: Mangala. Sadasivan, Mary Hughes, Bryan Kelly

Abstract:

Medical Education must focus on bridging the gap between teaching and learning when training pre-clinical year students in skills needed to keep up with medical knowledge and to meet the demands of health care in the future. The authors were interested in showing that a 3-S Model (building strength, developing stamina, and increasing speed) using a bridged curriculum design helps connect teaching and learning and improves students’ retention of basic science and clinical knowledge. The authors designed three learning modules using the 3-S Model within a systems course in a pre-clerkship medical curriculum. Each module focused on a bridge (concept map) designed by the instructor for specific content delivered to students in the course. This with-in-subjects design study included 304 registered MSU osteopathic medical students (3 campuses) ranked by quintile based on previous coursework. The instructors used the bridge to create self-directed learning exercises (building strength) to help students master basic science content. Students were video coached on how to complete assignments, and given pre-tests and post-tests designed to give them control to assess and identify gaps in learning and strengthen connections. The instructor who designed the modules also used video lectures to help students master clinical concepts and link them (building stamina) to previously learned material connected to the bridge. Boardstyle practice questions relevant to the modules were used to help students improve access (increasing speed) to stored content. Unit Examinations covering the content within modules and materials covered by other instructors teaching within the units served as outcome measures in this study. This data was then compared to each student’s performance on a final comprehensive exam and their COMLEX medical board examinations taken some time after the course. The authors used mean comparisons to evaluate students’ performances on module items (using 3-S Model) to non-module items on unit exams, final course exam and COMLEX medical board examination. The data shows that on average, students performed significantly better on module items compared to non-module items on exams 1 and 2. The module 3 exam was canceled due to a university shut down. The difference in mean scores (module verses non-module) items disappeared on the final comprehensive exam which was rescheduled once the university resumed session. Based on Quintile designation, the mean scores were higher for module items than non-module items and the difference in scores between items for Quintiles 1 and 2 were significantly better on exam 1 and the gap widened for all Quintile groups on exam 2 and disappeared in exam 3. Based on COMLEX performance, all students on average as a group, whether they Passed or Failed, performed better on Module items than non-module items in all three exams. The gap between scores of module items for students who passed COMLEX to those who failed was greater on Exam 1 (14.3) than on Exam 2 (7.5) and Exam 3 (10.2). Data shows the 3-S Model using a bridge effectively connects teaching and learning

Keywords: bridging gap, medical education, teaching and learning, model of learning

Procedia PDF Downloads 61
30621 The Effect of Visual Access to Greenspace and Urban Space on a False Memory Learning Task

Authors: Bryony Pound

Abstract:

This study investigated how views of green or urban space affect learning performance. It provides evidence of the value of visual access to greenspace in work and learning environments, and builds on the extensive research into the cognitive and learning-related benefits of access to green and natural spaces, particularly in learning environments. It demonstrates that benefits of visual access to natural spaces whilst learning can produce statistically significant faster responses than those facing urban views after only 5 minutes. The primary hypothesis of this research was that a greenspace view would improve short-term learning. Participants were randomly assigned to either a view of parkland or of urban buildings from the same room. They completed a psychological test of two stages. The first stage consisted of a presentation of words from eight different categories (four manmade and four natural). Following this a 2.5 minute break was given; participants were not prompted to look out of the window, but all were observed doing so. The second stage of the test involved a word recognition/false memory test of three types. Type 1 was presented words from each category; Type 2 was non-presented words from those same categories; and Type 3 was non-presented words from different categories. Participants were asked to respond with whether they thought they had seen the words before or not. Accuracy of responses and reaction times were recorded. The key finding was that reaction times for Type 2 words (highest difficulty) were significantly different between urban and green view conditions. Those with an urban view had slower reaction times for these words, so a view of greenspace resulted in better information retrieval for word and false memory recognition. Importantly, this difference was found after only 5 minutes of exposure to either view, during winter, and with a sample size of only 26. Greenspace views improve performance in a learning task. This provides a case for better visual access to greenspace in work and learning environments.

Keywords: benefits, greenspace, learning, restoration

Procedia PDF Downloads 127
30620 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score

Procedia PDF Downloads 134
30619 Analysis of Learning Difficulties among Preservice Students towards Science Education

Authors: Nahla Khatib

Abstract:

This study investigated several learning difficulties that affected the classroom learning experience of preservice students who are studying general science and methods of teaching science students at Faculty of Educational Studies at the Arab Open University (AOU) in Amman, Jordan. The focus questions for this study were to find answers for the following: 1. What are the main areas of learning difficulty among preservice students towards science education? 2. What are the main aspects of reducing obstacles towards success in science education? To achieve this goal, the researcher prepared a questionnaire which included 30 items to point out the learning difficulties among preservice students towards science education. The questionnaire was distributed among students enrolled in the general science courses 1&2 and methods of teaching science courses at the beginning of the spring semester of year (2013-2014). After collecting the filled questionnaire a descriptive statistical analysis was carried out (means and standard deviation) for the items of the questionnaire. After analyzing the data statistically our findings showed that student control–factors as well as course controlled factor, factors related to the nature of science, and factors related to the role of instructor affected student success toward science education. The study was concluded with a number of recommendations.

Keywords: nature of science, preservice teachers, science education, learning difficulties

Procedia PDF Downloads 352
30618 Discussing Embedded versus Central Machine Learning in Wireless Sensor Networks

Authors: Anne-Lena Kampen, Øivind Kure

Abstract:

Machine learning (ML) can be implemented in Wireless Sensor Networks (WSNs) as a central solution or distributed solution where the ML is embedded in the nodes. Embedding improves privacy and may reduce prediction delay. In addition, the number of transmissions is reduced. However, quality factors such as prediction accuracy, fault detection efficiency and coordinated control of the overall system suffer. Here, we discuss and highlight the trade-offs that should be considered when choosing between embedding and centralized ML, especially for multihop networks. In addition, we present estimations that demonstrate the energy trade-offs between embedded and centralized ML. Although the total network energy consumption is lower with central prediction, it makes the network more prone for partitioning due to the high forwarding load on the one-hop nodes. Moreover, the continuous improvements in the number of operations per joule for embedded devices will move the energy balance toward embedded prediction.

Keywords: central machine learning, embedded machine learning, energy consumption, local machine learning, wireless sensor networks, WSN

Procedia PDF Downloads 154