Search results for: genetic testing
2902 A Machine Learning Approach for the Leakage Classification in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The widespread use of machine learning applications in production is significantly accelerated by improved computing power and increasing data availability. Predictive quality enables the assurance of product quality by using machine learning models as a basis for decisions on test results. The use of real Bosch production data based on geometric gauge blocks from machining, mating data from assembly and hydraulic measurement data from final testing of directional valves is a promising approach to classifying the quality characteristics of workpieces.Keywords: machine learning, classification, predictive quality, hydraulics, supervised learning
Procedia PDF Downloads 2132901 Prerequisites for the Acquisition of Mammalian Pathogenicity by Influenza A Virus with a Prototypic Avian PB2 Gene
Authors: Chung-Young Lee, Se-Hee Ahn, Ilhwan Kim, Du-Min Go, Dae-Yong Kim, Jun-Gu Choi, Youn-Jeong Lee, Jae-Hong Kim, Hyuk-Joon Kwon
Abstract:
The polymerase of avian influenza A virus (AIV) is a heterotrimer composed of PB2, PB1 and PA. PB2 plays a role in overcoming the host barrier; however, the genetic prerequisites for avian PB2 to acquire mammalian pathogenic mutations have not been well elucidated. Here, we demonstrated that key amino acid mutations (I66M, I109V and I133V, collectively referred to as MVV) of prototypic avian PB2 increase the replication efficiency of recombinant PR8 virus carrying the mutated PB2 in both avian and mammalian hosts. The MVV mutations caused no weight loss in mice, but they did allow replication in infected lungs, and the viruses acquired fatal mammalian pathogenic mutations such as Q591R/K, E627K, or D701N in the infected lungs. The MVV mutations are located at the interfaces of the trimer and are predicted to increase the strength of this structure. Thus, gaining MVV mutations might be the first step for AIV to acquire mammalian pathogenicity. These results provide new insights into the evolution of AIV in birds and mammals.Keywords: avian influenza A virus, prototypic PB2, polymerase activity, mammalian pathogenicity, first-step mutations
Procedia PDF Downloads 3452900 Combination of Plantar Pressure and Star Excursion Balance Test for Evaluation of Dynamic Posture Control on High-Heeled Shoes
Authors: Yan Zhang, Jan Awrejcewicz, Lin Fu
Abstract:
High-heeled shoes force the foot into plantar flexion position resulting in foot arch rising and disturbance of the articular congruence between the talus and tibiofibular mortice, all of which may increase the challenge of balance maintenance. Plantar pressure distribution of the stance limb during the star excursion balance test (SEBT) contributes to the understanding of potential sources of reaching excursions in SEBT. The purpose of this study is to evaluate the dynamic posture control while wearing high-heeled shoes using SEBT in a combination of plantar pressure measurement. Twenty healthy young females were recruited. Shoes of three heel heights were used: flat (0.8 cm), low (4.0 cm), high (6.6 cm). The testing grid of SEBT consists of three lines extending out at 120° from each other, which were defined as anterior, posteromedial, and posterolateral directions. Participants were instructed to stand on their dominant limb with the heel in the middle of the testing grid and hands on hips and to reach the non-stance limb as far as possible towards each direction. The distal portion of the reaching limb lightly touched the ground without shifting weight. Then returned the reaching limb to the beginning position. The excursion distances were normalized to leg length. The insole plantar measurement system was used to record peak pressure, contact area, and pressure-time integral of the stance limb. Results showed that normalized excursion distance decreased significantly as heel height increased. The changes of plantar pressure in SEBT as heel height increased were more obvious in the medial forefoot (MF), medial midfoot (MM), rearfoot areas. At MF, the peak pressure and pressure-time integral of low and high shoes increased significantly compared with that of flat shoes, while the contact area decreased significantly as heel height increased. At MM, peak pressure, contact area, and pressure-time integral of high and low shoes were significantly lower than that of flat shoes. To reduce posture instability, the stance limb plantar loading shifted to medial forefoot. Knowledge of this study identified dynamic posture control deficits while wearing high-heeled shoes and the critical role of the medial forefoot in dynamic balance maintenance.Keywords: dynamic posture control, high-heeled shoes, plantar pressure, star excursion balance test.
Procedia PDF Downloads 1342899 The Incidence of Acetylcholine Receptor Antibody Positive Myasthenia Gravis in South Africa
Authors: Mombaur Busisiwe, Lesosky Maia, Liebenberg Lisa, Heckmann Jeannine
Abstract:
Introduction: To assess age- and gender-specific incidence rates (IR) of acetylcholine receptor (AChR)-antibody positive myasthenia gravis (MG) in South Africa, and geographical variation in incidence. Methods: IRs were calculated from positive AChR antibody laboratory data between 2011 and 2012, using 2011 population census data. Results:890 individuals were seropositive, for an annual IR of 8.5 per million. Age-standardized IR for early- (< 50) and late-onset (≥ 50) MG were 4.1 and 24 per million, respectively, and for juveniles, 4.3 per million. The IR between provinces ranged from 1 to 19 per million. Conclusions: In this Southern hemisphere African population, the overall IR and peak IR (in older men) for seropositive MG is comparable to that in Europe and North America, arguing against environmental factors. However, IRs may be higher among children with African genetic ancestry. Geographical variation in incidence underscores the importance of outreach programs for regions with limited resources.Keywords: incidence rates (IR), acetylcholine receptor (AChR), myasthenia gravis (MG), South Africa
Procedia PDF Downloads 4932898 Battery Replacement Strategy for Electric AGVs in an Automated Container Terminal
Authors: Jiheon Park, Taekwang Kim, Kwang Ryel Ryu
Abstract:
Electric automated guided vehicles (AGVs) are becoming popular in many automated container terminals nowadays because they are pollution-free and environmentally friendly vehicles for transporting the containers within the terminal. Since efficient operation of AGVs is critical for the productivity of the container terminal, the replacement of batteries of the AGVs must be conducted in a strategic way to minimize undesirable transportation interruptions. While a too frequent replacement may lead to a loss of terminal productivity by delaying container deliveries, missing the right timing of battery replacement can result in a dead AGV that causes a severer productivity loss due to the extra efforts required to finish post treatment. In this paper, we propose a strategy for battery replacement based on a scoring function of multiple criteria taking into account the current battery level, the distances to different battery stations, and the progress of the terminal job operations. The strategy is optimized using a genetic algorithm with the objectives of minimizing the total time spent for battery replacement as well as maximizing the terminal productivity.Keywords: AGV operation, automated container terminal, battery replacement, electric AGV, strategy optimization
Procedia PDF Downloads 3882897 The Artificial Intelligence Technologies Used in PhotoMath Application
Authors: Tala Toonsi, Marah Alagha, Lina Alnowaiser, Hala Rajab
Abstract:
This report is about the Photomath app, which is an AI application that uses image recognition technology, specifically optical character recognition (OCR) algorithms. The (OCR) algorithm translates the images into a mathematical equation, and the app automatically provides a step-by-step solution. The application supports decimals, basic arithmetic, fractions, linear equations, and multiple functions such as logarithms. Testing was conducted to examine the usage of this app, and results were collected by surveying ten participants. Later, the results were analyzed. This paper seeks to answer the question: To what level the artificial intelligence features are accurate and the speed of process in this app. It is hoped this study will inform about the efficiency of AI in Photomath to the users.Keywords: photomath, image recognition, app, OCR, artificial intelligence, mathematical equations.
Procedia PDF Downloads 1712896 Photovoltaic Cells Characteristics Measurement Systems
Authors: Rekioua T., Rekioua D., Aissou S., Ouhabi A.
Abstract:
Power provided by the photovoltaic array varies with solar radiation and temperature, since these parameters influence the electrical characteristic (Ipv-Vpv) of solar cells. In Scientific research, there are different methods to obtain these characteristics. In this paper, we present three methods. A simulation one using Matlab/Simulink. The second one is the standard experimental voltage method and the third one is by using LabVIEW software. This latter is based on an electronic circuit to test PV modules. All details of this electronic schemes are presented and obtained results of the three methods with a comparison and under different meteorological conditions are presented. The proposed method is simple and very efficiency for testing and measurements of electrical characteristic curves of photovoltaic panels.Keywords: photovoltaic cells, measurement standards, temperature sensors, data acquisition
Procedia PDF Downloads 4612895 New Scheme of Control and Air Supply in a Low-Power Hot Water Boiler
Authors: М. Zh. Khazimov, А. B. Kudasheva
Abstract:
The article presents the state of solid fuel reserves and their share in the world energy sector. The air pollution caused by the operation of heating devices using solid fuels is a significant problem. In order to improve the air quality, heating device producers take constant measures to improve their products. However, the emission results achieved during an initial test of heating devices in the laboratory may be much worse during operation in real operating conditions. The ways of increasing the efficiency of the boiler by improving its design for combustion in full-layer mode are shown. The results of the testing of the improved КВТС-0.2 hot water boiler is presented and the technical and economic indicators are determined, which indicate an increase in the efficiency of the boiler.Keywords: boiler unit, grate, furnace, coal, ash
Procedia PDF Downloads 702894 Camera Model Identification for Mi Pad 4, Oppo A37f, Samsung M20, and Oppo f9
Authors: Ulrich Wake, Eniman Syamsuddin
Abstract:
The model for camera model identificaiton is trained using pretrained model ResNet43 and ResNet50. The dataset consists of 500 photos of each phone. Dataset is divided into 1280 photos for training, 320 photos for validation and 400 photos for testing. The model is trained using One Cycle Policy Method and tested using Test-Time Augmentation. Furthermore, the model is trained for 50 epoch using regularization such as drop out and early stopping. The result is 90% accuracy for validation set and above 85% for Test-Time Augmentation using ResNet50. Every model is also trained by slightly updating the pretrained model’s weightsKeywords: One Cycle Policy, ResNet34, ResNet50, Test-Time Agumentation
Procedia PDF Downloads 2082893 Developing New Algorithm and Its Application on Optimal Control of Pumps in Water Distribution Network
Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi
Abstract:
In recent years, new techniques for solving complex problems in engineering are proposed. One of these techniques is JPSO algorithm. With innovative changes in the nature of the jump algorithm JPSO, it is possible to construct a graph-based solution with a new algorithm called G-JPSO. In this paper, a new algorithm to solve the optimal control problem Fletcher-Powell and optimal control of pumps in water distribution network was evaluated. Optimal control of pumps comprise of optimum timetable operation (status on and off) for each of the pumps at the desired time interval. Maximum number of status on and off for each pumps imposed to the objective function as another constraint. To determine the optimal operation of pumps, a model-based optimization-simulation algorithm was developed based on G-JPSO and JPSO algorithms. The proposed algorithm results were compared well with the ant colony algorithm, genetic and JPSO results. This shows the robustness of proposed algorithm in finding near optimum solutions with reasonable computational cost.Keywords: G-JPSO, operation, optimization, pumping station, water distribution networks
Procedia PDF Downloads 4012892 An Effective Noise Resistant Frequency Modulation Continuous-Wave Radar Vital Sign Signal Detection Method
Authors: Lu Yang, Meiyang Song, Xiang Yu, Wenhao Zhou, Chuntao Feng
Abstract:
To address the problem that the FM continuous-wave radar (FMCW) extracts human vital sign signals which are susceptible to noise interference and low reconstruction accuracy, a new detection scheme for the sign signals is proposed. Firstly, an improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) algorithm is applied to decompose the radar-extracted thoracic signals to obtain several intrinsic modal functions (IMF) with different spatial scales, and then the IMF components are optimized by a BP neural network improved by immune genetic algorithm (IGA). The simulation results show that this scheme can effectively separate the noise and accurately extract the respiratory and heartbeat signals and improve the reconstruction accuracy and signal-to-noise ratio of the sign signals.Keywords: frequency modulated continuous wave radar, ICEEMDAN, BP neural network, vital signs signal
Procedia PDF Downloads 1652891 Resilience-Based Emergency Bridge Inspection Routing and Repair Scheduling under Uncertainty
Authors: Zhenyu Zhang, Hsi-Hsien Wei
Abstract:
Highway network systems play a vital role in disaster response for disaster-damaged areas. Damaged bridges in such network systems can impede disaster response by disrupting transportation of rescue teams or humanitarian supplies. Therefore, emergency inspection and repair of bridges to quickly collect damage information of bridges and recover the functionality of highway networks is of paramount importance to disaster response. A widely used measure of a network’s capability to recover from disasters is resilience. To enhance highway network resilience, plenty of studies have developed various repair scheduling methods for the prioritization of bridge-repair tasks. These methods assume that repair activities are performed after the damage to a highway network is fully understood via inspection, although inspecting all bridges in a regional highway network may take days, leading to the significant delay in repairing bridges. In reality, emergency repair activities can be commenced as soon as the damage data of some bridges that are crucial to emergency response are obtained. Given that emergency bridge inspection and repair (EBIR) activities are executed simultaneously in the response phase, the real-time interactions between these activities can occur – the blockage of highways due to repair activities can affect inspection routes which in turn have an impact on emergency repair scheduling by providing real-time information on bridge damages. However, the impact of such interactions on the optimal emergency inspection routes (EIR) and emergency repair schedules (ERS) has not been discussed in prior studies. To overcome the aforementioned deficiencies, this study develops a routing and scheduling model for EBIR while accounting for real-time inspection-repair interactions to maximize highway network resilience. A stochastic, time-dependent integer program is proposed for the complex and real-time interacting EBIR problem given multiple inspection and repair teams at locations as set post-disaster. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. Computational tests are performed using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that the simultaneous implementation of bridge inspection and repair activities can significantly improve the highway network resilience. Moreover, the deployment of inspection and repair teams should match each other, and the network resilience will not be improved once the unilateral increase in inspection teams or repair teams exceeds a certain level. This study contributes to both knowledge and practice. First, the developed mathematical model makes it possible for capturing the impact of real-time inspection-repair interactions on inspection routing and repair scheduling and efficiently deriving optimal EIR and ERS on a large and complex highway network. Moreover, this study contributes to the organizational dimension of highway network resilience by providing optimal strategies for highway bridge management. With the decision support tool, disaster managers are able to identify the most critical bridges for disaster management and make decisions on proper inspection and repair strategies to improve highway network resilience.Keywords: disaster management, emergency bridge inspection and repair, highway network, resilience, uncertainty
Procedia PDF Downloads 1092890 Tumor Size and Lymph Node Metastasis Detection in Colon Cancer Patients Using MR Images
Authors: Mohammadreza Hedyehzadeh, Mahdi Yousefi
Abstract:
Colon cancer is one of the most common cancer, which predicted to increase its prevalence due to the bad eating habits of peoples. Nowadays, due to the busyness of people, the use of fast foods is increasing, and therefore, diagnosis of this disease and its treatment are of particular importance. To determine the best treatment approach for each specific colon cancer patients, the oncologist should be known the stage of the tumor. The most common method to determine the tumor stage is TNM staging system. In this system, M indicates the presence of metastasis, N indicates the extent of spread to the lymph nodes, and T indicates the size of the tumor. It is clear that in order to determine all three of these parameters, an imaging method must be used, and the gold standard imaging protocols for this purpose are CT and PET/CT. In CT imaging, due to the use of X-rays, the risk of cancer and the absorbed dose of the patient is high, while in the PET/CT method, there is a lack of access to the device due to its high cost. Therefore, in this study, we aimed to estimate the tumor size and the extent of its spread to the lymph nodes using MR images. More than 1300 MR images collected from the TCIA portal, and in the first step (pre-processing), histogram equalization to improve image qualities and resizing to get the same image size was done. Two expert radiologists, which work more than 21 years on colon cancer cases, segmented the images and extracted the tumor region from the images. The next step is feature extraction from segmented images and then classify the data into three classes: T0N0، T3N1 و T3N2. In this article, the VGG-16 convolutional neural network has been used to perform both of the above-mentioned tasks, i.e., feature extraction and classification. This network has 13 convolution layers for feature extraction and three fully connected layers with the softmax activation function for classification. In order to validate the proposed method, the 10-fold cross validation method used in such a way that the data was randomly divided into three parts: training (70% of data), validation (10% of data) and the rest for testing. It is repeated 10 times, each time, the accuracy, sensitivity and specificity of the model are calculated and the average of ten repetitions is reported as the result. The accuracy, specificity and sensitivity of the proposed method for testing dataset was 89/09%, 95/8% and 96/4%. Compared to previous studies, using a safe imaging technique (MRI) and non-use of predefined hand-crafted imaging features to determine the stage of colon cancer patients are some of the study advantages.Keywords: colon cancer, VGG-16, magnetic resonance imaging, tumor size, lymph node metastasis
Procedia PDF Downloads 592889 Genome-Wide Analysis Identifies Locus Associated with Parathyroid Hormone Levels
Authors: Antonela Matana, Dubravka Brdar, Vesela Torlak, Marijana Popovic, Ivana Gunjaca, Ozren Polasek, Vesna Boraska Perica, Maja Barbalic, Ante Punda, Caroline Hayward, Tatijana Zemunik
Abstract:
Parathyroid hormone (PTH) plays a critical role in the regulation of bone mineral metabolism and calcium homeostasis. Higher PTH levels are associated with heart failure, hypertension, coronary artery disease, cardiovascular mortality and poorer bone health. A twin study estimated that 60% of the variation in PTH concentrations is genetically determined. Only one GWAS of PTH concentration has been reported to date. Identified loci explained 4.5% of the variance in circulating PTH, suggesting that additional genetic variants remain undiscovered. Therefore, the aim of this study was to identify novel genetic variants associated with PTH levels in a general population. We have performed a GWAS meta-analysis on 2596 individuals originating from three Croatian cohorts: City of Split and the Islands of Korčula and Vis, within a large-scale project of “10,001 Dalmatians”. A total of 7 411 206 variants, imputed using the 1000 Genomes reference panel, with minor allele frequency ≥ 1% and Rsq ≥ 0.5 were analyzed for the association. GWAS within each data set was performed under an additive model, controlling for age, gender and relatedness. Meta-analysis was conducted using the inverse-variance fixed-effects method. Furthermore, to identify sex-specific effects, we have conducted GWAS meta-analyses analyzing males and females separately. In addition, we have performed biological pathway analysis. Four SNPs, representing one locus, reached genome-wide significance. The most significant SNP was rs11099476 on chromosome 4 (P=1.15x10-8), which explained 1.14 % of the variance in PTH. The SNP is located near the protein-coding gene RASGEF1B. Additionally, we detected suggestive association with SNPs, rs77178854 located on chromosome 2 in the DPP10 gene (P=2.46x10-7) and rs481121 located on chromosome 1 (P=3.58x10-7) near the GRIK1 gene. One of the top hits detected in the main meta-analysis, intron variant rs77178854 located within DPP10 gene, reached genome-wide significance in females (P=2.21x10-9). No single locus was identified in the meta-analysis in males. Fifteen biological pathways were functionally enriched at a P<0.01, including muscle contraction, ion homeostasis and cardiac conduction as the most significant pathways. RASGEF1B is the guanine nucleotide exchange factor, known to be associated with height, bone density, and hip. DPP10 encodes a membrane protein that is a member of the serine proteases family, which binds specific voltage-gated potassium channels and alters their expression and biophysical properties. In conclusion, we identified 2 novel loci associated with PTH levels in a general population, providing us with further insights into the genetics of this complex trait.Keywords: general population, genome-wide association analysis, parathyroid hormone, single nucleotide polymorphisms.
Procedia PDF Downloads 2252888 An Analytical Systematic Design Approach to Evaluate Ballistic Performance of Armour Grade AA7075 Aluminium Alloy Using Friction Stir Processing
Authors: Lahari Ramya Pa, Sudhakar Ib, Madhu Vc, Madhusudhan Reddy Gd, Srinivasa Rao E.
Abstract:
Selection of suitable armor materials for defense applications is very crucial with respect to increasing mobility of the systems as well as maintaining safety. Therefore, determining the material with the lowest possible areal density that resists the predefined threat successfully is required in armor design studies. A number of light metal and alloys are come in to forefront especially to substitute the armour grade steels. AA5083 aluminium alloy which fit in to the military standards imposed by USA army is foremost nonferrous alloy to consider for possible replacement of steel to increase the mobility of armour vehicles and enhance fuel economy. Growing need of AA5083 aluminium alloy paves a way to develop supplement aluminium alloys maintaining the military standards. It has been witnessed that AA 2xxx aluminium alloy, AA6xxx aluminium alloy and AA7xxx aluminium alloy are the potential material to supplement AA5083 aluminium alloy. Among those cited aluminium series alloys AA7xxx aluminium alloy (heat treatable) possesses high strength and can compete with armour grade steels. Earlier investigations revealed that layering of AA7xxx aluminium alloy can prevent spalling of rear portion of armour during ballistic impacts. Hence, present investigation deals with fabrication of hard layer (made of boron carbide) i.e. layer on AA 7075 aluminium alloy using friction stir processing with an intention of blunting the projectile in the initial impact and backing tough portion(AA7xxx aluminium alloy) to dissipate residual kinetic energy. An analytical approach has been adopted to unfold the ballistic performance of projectile. Penetration of projectile inside the armour has been resolved by considering by strain energy model analysis. Perforation shearing areas i.e. interface of projectile and armour is taken in to account for evaluation of penetration inside the armour. Fabricated surface composites (targets) were tested as per the military standard (JIS.0108.01) in a ballistic testing tunnel at Defence Metallurgical Research Laboratory (DMRL), Hyderabad in standardized testing conditions. Analytical results were well validated with experimental obtained one.Keywords: AA7075 aluminium alloy, friction stir processing, boron carbide, ballistic performance, target
Procedia PDF Downloads 3302887 Error Analysis of English Inflection among Thai University Students
Authors: Suwaree Yordchim, Toby J. Gibbs
Abstract:
The linguistic competence of Thai university students majoring in Business English was examined in the context of knowledge of English language inflection, and also various linguistic elements. Errors analysis was applied to the results of the testing. Levels of errors in inflection, tense and linguistic elements were shown to be significantly high for all noun, verb and adjective inflections. Findings suggest that students do not gain linguistic competence in their use of English language inflection, because of interlanguage interference. Implications for curriculum reform and treatment of errors in the classroom are discussed.Keywords: interlanguage, error analysis, inflection, second language acquisition, Thai students
Procedia PDF Downloads 4662886 Applying Sociometer Theory to Different Age Groups and Groups Differences regarding State Self-Esteem Sensitivity
Authors: Yun Yu Stephanie Law
Abstract:
Sociometer Theory is well tested among young adults in western population, however, limited research is found for other age groups, like adolescent and middle-adulthood in Asia population. Thus, one of the main purposes of this study is to verify the validity of Sociometer Theory in different age groups among Asian. To be specific, we hypothesized that an increase in one’s perceived social rejection is associated to a decrease in his/her state self-esteem among all age groups in Asian population. And we expected that this association can be found among all age groups including adolescent, young adults and middle-adults group in our first study. In this way, we can verify the validity of Sociometer Theory across different age groups as well as its significance in Asian population. Furthermore, those participants who received rejection about ‘mate-role’ would also receive some negative feedbacks regarding their current/future capacity of being a good mate. Results suggested that participants’ state self-esteem sensitivity for mating-capacity rejection is higher when comparing to that of friend-capacity rejection, i.e. greater drop in state self-esteem when receiving mating-capacity feedbacks then receiving friend-capacity feedbacks. These results, however, is just applicable on young adults. Thus, the main purpose of study two would be testing the state self-esteem sensitivity towards social rejection in different domains among three age groups. We hypothesized that group differences would be found for three age groups regarding state self-esteem sensitivity. Research question 1: perceived social rejection is associated to decrease in state self-esteem, is applicable among different age groups in Asia population. Research question 2: there are significant group differences for three age groups regarding state self-esteem sensitivity. Methods: 300 subjects are divided into three age groups, adolescents group, young adult group and middle-adult group, with 100 subjects in each group. Two questionnaires were used in testing this fundamental concept. Subjects were then asked to rate themselves on questionnaire in measuring their current state self-esteem in order to obtain the baseline measurements for later comparison. In order to avoid demand characteristics from subjects, other unrelated tasks like word matching were also given after the first test. Results: A positive correlation between scores in questionnaire 1 and questionnaire 2 among all age groups. Conclusion: State self-esteem decrease to both imagined social rejection (study1) and experienced social rejection (study2). Moreover, level of decrease in state self-esteem vary when receiving different domains of social rejection. Implications: a better understanding of self-esteem development for various age group might bring insights for education systems and policies for teaching approaches and learning methods among different age groups.Keywords: state self-esteem, social rejection, stage theory, self-feelings
Procedia PDF Downloads 2302885 The Triple Interpretation of German Historicism and its Theoretical Contribution to Historical Materialism
Authors: Dandan Zhang
Abstract:
Elucidating the original relationship between historical materialism and German historicism from the internal dimension of intellectual history has important theoretical significance for deep understanding and interpretation of the essential characteristics of historical materialism. German historicism contains the triple deduction of scientific historicism, historical relativism, and vitalism. The historicism of science argues for its historical status as science in the name of objective, systematic, and typical research methods, and procedural principles. Historical relativism places history under the specific historical background to study epistemological and methodological issues about the nature of human beings and the value of history. German historicism walks up to natural and cultural relativism on the basis of romanticism. Vitalism emphasizes intuition, will, and experience of life from individuals and places history on the ontology of organic life and vitality. Historical materialism and German historicism have a theoretical relationship in the genetic field. The former criticizes and surpasses the latter. Meanwhile, in the evolution of German historicism, the differences between historical materialism with it are essential features of historical science.Keywords: German historicism, scientific historicism, historical relativism, vitalism, historical materialism
Procedia PDF Downloads 442884 Analysis of Users’ Behavior on Book Loan Log Based on Association Rule Mining
Authors: Kanyarat Bussaban, Kunyanuth Kularbphettong
Abstract:
This research aims to create a model for analysis of student behavior using Library resources based on data mining technique in case of Suan Sunandha Rajabhat University. The model was created under association rules, apriori algorithm. The results were found 14 rules and the rules were tested with testing data set and it showed that the ability of classify data was 79.24 percent and the MSE was 22.91. The results showed that the user’s behavior model by using association rule technique can use to manage the library resources.Keywords: behavior, data mining technique, a priori algorithm, knowledge discovery
Procedia PDF Downloads 4042883 Exploring Teachers’ Beliefs about Diagnostic Language Assessment Practices in a Large-Scale Assessment Program
Authors: Oluwaseun Ijiwade, Chris Davison, Kelvin Gregory
Abstract:
In Australia, like other parts of the world, the debate on how to enhance teachers using assessment data to inform teaching and learning of English as an Additional Language (EAL, Australia) or English as a Foreign Language (EFL, United States) have occupied the centre of academic scholarship. Traditionally, this approach was conceptualised as ‘Formative Assessment’ and, in recent times, ‘Assessment for Learning (AfL)’. The central problem is that teacher-made tests are limited in providing data that can inform teaching and learning due to variability of classroom assessments, which are hindered by teachers’ characteristics and assessment literacy. To address this concern, scholars in language education and testing have proposed a uniformed large-scale computer-based assessment program to meet the needs of teachers and promote AfL in language education. In Australia, for instance, the Victoria state government commissioned a large-scale project called 'Tools to Enhance Assessment Literacy (TEAL) for Teachers of English as an additional language'. As part of the TEAL project, a tool called ‘Reading and Vocabulary assessment for English as an Additional Language (RVEAL)’, as a diagnostic language assessment (DLA), was developed by language experts at the University of New South Wales for teachers in Victorian schools to guide EAL pedagogy in the classroom. Therefore, this study aims to provide qualitative evidence for understanding beliefs about the diagnostic language assessment (DLA) among EAL teachers in primary and secondary schools in Victoria, Australia. To realize this goal, this study raises the following questions: (a) How do teachers use large-scale assessment data for diagnostic purposes? (b) What skills do language teachers think are necessary for using assessment data for instruction in the classroom? and (c) What factors, if any, contribute to teachers’ beliefs about diagnostic assessment in a large-scale assessment? Semi-structured interview method was used to collect data from at least 15 professional teachers who were selected through a purposeful sampling. The findings from the resulting data analysis (thematic analysis) provide an understanding of teachers’ beliefs about DLA in a classroom context and identify how these beliefs are crystallised in language teachers. The discussion shows how the findings can be used to inform professional development processes for language teachers as well as informing important factor of teacher cognition in the pedagogic processes of language assessment. This, hopefully, will help test developers and testing organisations to align the outcome of this study with their test development processes to design assessment that can enhance AfL in language education.Keywords: beliefs, diagnostic language assessment, English as an additional language, teacher cognition
Procedia PDF Downloads 1992882 A Study on Analysis of Magnetic Field in Induction Generator for Small Francis Turbine Generator
Authors: Young-Kwan Choi, Han-Sang Jeong, Yeon-Ho Ok, Jae-Ho Choi
Abstract:
The purpose of this study is to verify validity of design by testing output of induction generator through finite element analysis before manufacture of induction generator designed. Characteristics in the operating domain of induction generator can be understood through analysis of magnetic field according to load (rotational speed) of induction generator. Characteristics of induction generator such as induced voltage, current, torque, magnetic flux density (magnetic flux saturation), and loss can be predicted by analysis of magnetic field.Keywords: electromagnetic analysis, induction generator, small hydro power generator, small francis turbine generator
Procedia PDF Downloads 14752881 A Proposal for Systematic Mapping Study of Software Security Testing, Verification and Validation
Authors: Adriano Bessa Albuquerque, Francisco Jose Barreto Nunes
Abstract:
Software vulnerabilities are increasing and not only impact services and processes availability as well as information confidentiality, integrity and privacy, but also cause changes that interfere in the development process. Security test could be a solution to reduce vulnerabilities. However, the variety of test techniques with the lack of real case studies of applying tests focusing on software development life cycle compromise its effective use. This paper offers an overview of how a Systematic Mapping Study (MS) about security verification, validation and test (VVT) was performed, besides presenting general results about this study.Keywords: software test, software security verification validation and test, security test institutionalization, systematic mapping study
Procedia PDF Downloads 4092880 Corrosion Analysis of a 3-1/2” Production Tubing of an Offshore Oil and Gas Well
Authors: Suraj Makkar, Asis Isor, Jeetendra Gupta, Simran Bareja, Maushumi K. Talukdar
Abstract:
During the exploratory testing phase of an offshore oil and gas well, when the tubing string was pulled out after production testing, it was observed that there was visible corrosion/pitting in a few of the 3-1/2” API 5 CT L-80 Grade tubing. The area of corrosion was at the same location in all the tubing, i.e., just above the pin end. Since the corrosion was observed in the tubing within two months of their installation, it was a matter of concern, as it could lead to premature failures resulting in leakages and production loss and thus affecting the integrity of the asset. Therefore, the tubing was analysed to ascertain the mechanism of the corrosion occurring on its surface. During the visual inspection, it was observed that the corrosion was totally external, which was near the pin end, and no significant internal corrosion was observed. The chemical compositional analysis and mechanical properties (tensile and impact) show that the pipeline material was conforming to API 5 CT L-80 specifications. The metallographic analysis of the tubing revealed tempered martensitic microstructure. The grain size was observed to be different at the pin end as compared to the microstructure at base metal. The microstructures of the corroded area near threads reveal an oriented microstructure. The clearly oriented microstructure of the cold-worked zone near threads and the difference in microstructure represents inappropriate heat treatment after cold work. This was substantiated by hardness test results as well, which show higher hardness at the pin end in comparison to hardness at base metal. Scanning Electron Microscope (SEM) analysis revealed the presence of round and deep pits and cracks on the corroded surface of the tubing. The cracks were stress corrosion cracks in a corrosive environment arising out of the residual stress, which was not relieved after cold working, as mentioned above. Energy Dispersive Spectroscopy (EDS) analysis indicates the presence of mainly Fe₂O₃, Chlorides, Sulphides, and Silica in the corroded part indicating the interaction of the tubing with the well completion fluid and well bore environment. Thus it was concluded that residual stress after the cold working of male pins during threading and the corrosive environment acted in synergy to cause this pitting corrosion attack on the highly stressed zone along the circumference of the tubing just below the threaded area. Accordingly, the following suitable recommendations were given to avoid the recurrence of such corrosion problems in the wells. (i) After any kind of hot work/cold work, tubing should be normalized at full length to achieve uniform microstructure throughout its length. (ii) Heat treatment requirements (as per API 5 CT) should be part of technical specifications while at the procurement stage.Keywords: pin end, microstructure, grain size, stress corrosion cracks
Procedia PDF Downloads 802879 Genetic Diversity and Discovery of Unique SNPs in Five Country Cultivars of Sesamum indicum by Next-Generation Sequencing
Authors: Nam-Kuk Kim, Jin Kim, Soomin Park, Changhee Lee, Mijin Chu, Seong-Hun Lee
Abstract:
In this study, we conducted whole genome re-sequencing of 10 cultivars originated from five countries including Korea, China, India, Pakistan and Ethiopia with Sesamum indicum (Zhongzho No. 13) genome as a reference. Almost 80% of the whole genome sequences of the reference genome could be covered by sequenced reads. Numerous SNP and InDel were detected by bioinformatic analysis. Among these variants, 266,051 SNPs were identified as unique to countries. Pakistan and Ethiopia had high densities of SNPs compared to other countries. Three main clusters (cluster 1: Korea, cluster 2: Pakistan and India, cluster 3: Ethiopia and China) were recovered by neighbor-joining analysis using all variants. Interestingly, some variants were detected in DGAT1 (diacylglycerol O-acyltransferase 1) and FADS (fatty acid desaturase) genes, which are known to be related with fatty acid synthesis and metabolism. These results can provide useful information to understand the regional characteristics and develop DNA markers for origin discrimination of sesame.Keywords: Sesamum indicum, NGS, SNP, DNA marker
Procedia PDF Downloads 3272878 Machine Learning for Feature Selection and Classification of Systemic Lupus Erythematosus
Authors: H. Zidoum, A. AlShareedah, S. Al Sawafi, A. Al-Ansari, B. Al Lawati
Abstract:
Systemic lupus erythematosus (SLE) is an autoimmune disease with genetic and environmental components. SLE is characterized by a wide variability of clinical manifestations and a course frequently subject to unpredictable flares. Despite recent progress in classification tools, the early diagnosis of SLE is still an unmet need for many patients. This study proposes an interpretable disease classification model that combines the high and efficient predictive performance of CatBoost and the model-agnostic interpretation tools of Shapley Additive exPlanations (SHAP). The CatBoost model was trained on a local cohort of 219 Omani patients with SLE as well as other control diseases. Furthermore, the SHAP library was used to generate individual explanations of the model's decisions as well as rank clinical features by contribution. Overall, we achieved an AUC score of 0.945, F1-score of 0.92 and identified four clinical features (alopecia, renal disorders, cutaneous lupus, and hemolytic anemia) along with the patient's age that was shown to have the greatest contribution on the prediction.Keywords: feature selection, classification, systemic lupus erythematosus, model interpretation, SHAP, Catboost
Procedia PDF Downloads 842877 Integration of Rapid Generation Technology in Pulse Crop Breeding
Authors: Saeid H. Mobini, Monika Lulsdorf, Thomas D. Warkentin
Abstract:
The length of the breeding cycle from seed to seed is a limiting factor in the development of improved homozygous lines for breeding or recombinant inbred lines (RILs) for genetic analysis. The objective of this research was to accelerate the production of field pea RILs through application of rapid generation technology (RGT). RGT is based on the principle of growing miniature plants in an artificial medium under controlled conditions, and allowing them to produce a few flowers which develop seeds that are harvested prior to normal seed maturity. We aimed to maintain population size and genetic diversity in regeneration cycles. The effects of flurprimidol (a gibberellin synthesis inhibitor), plant density, hydroponic system, scheduled fertilizer applications, artificial light spectrum, photoperiod, and light/dark temperature were evaluated in the development of RILs from a cross between cultivars CDC Dakota and CDC Amarillo. The main goal was to accelerate flowering while reducing maintenance and space costs. In addition, embryo rescue of immature seeds was tested for shortening the seed fill period. Data collected over seven generations included plant height, the percentage of plant survival, flowering rate, seed setting rate, the number of seeds per plant, and time from seed to seed. Applying 0.6 µM flurprimidol reduced the internode length. Plant height was decreased to approximately 32 cm allowing for higher plant density without a delay in flowering and seed setting rate. The three light systems (T5 fluorescent bulbs, LEDs, and High Pressure Sodium +Metal-halide lamp) evaluated did not differ significantly in terms of flowering time in field pea. Collectively, the combination of 0.6 µM flurprimidol, 217 plant. m-2, 20 h photoperiod, 21/16 oC light/dark temperature in a hydroponic system with vermiculite substrate, applying scheduled fertilizer application based on growth stage, and 500 µmole.m-2.s-1 light intensity using T5 bulbs resulted in 100% of plants flowering within 34 ± 3 days and 96.5% of plants completed seed setting in 68.2 ± 3.6 days, i.e., 30-45 days/generation faster than conventional single seed descent (SSD) methods. These regeneration cycles were reproducible consistently. Hence, RGT could double (5.3) generations per year, using 3% occupying space, compared to SSD (2-3 generation/year). Embryo rescue of immature seeds at 7-8 mm stage, using commercial fertilizer solutions (Holland’s Secret™) showed seed setting rate of 95%, while younger embryos had lower germination rate. Mature embryos had a seed setting rate of 96.5% without either hormones or sugar added. So, considering the higher cost of embryo rescue using a procedure which requires skill, additional materials, and expenses, it could be removed from RGT with a further cost saving, and the process could be stopped between generations if required.Keywords: field pea, flowering, rapid regeneration, recombinant inbred lines, single seed descent
Procedia PDF Downloads 3622876 Key Aroma Compounds as Predictors of Pineapple Sensory Quality
Authors: Jenson George, Thoa Nguyen, Garth Sanewski, Craig Hardner, Heather Eunice Smyth
Abstract:
Pineapple (Ananas comosus), with its unique sweet flavour, is one of the most popular tropical, non-climacteric fruits consumed worldwide. It is also the third most important tropical fruit in world production. In Australia, 99% of the pineapple production is from the Queensland state due to the favourable subtropical climatic conditions. The flavourful fruit is known to contain around 500 volatile organic compounds (VOC) at varying concentrations and greatly contribute to the flavour quality of pineapple fruit by providing distinct aroma sensory properties that are sweet, fruity, tropical, pineapple-like, caramel-like, coconut-like, etc. The aroma of pineapple is one of the important factors attracting consumers and strengthening the marketplace. To better understand the aroma of Australian-grown pineapples, the matrix-matched Gas chromatography–mass spectrometry (GC-MS), Head Space - Solid-phase microextraction (HS-SPME), Stable-isotope dilution analysis (SIDA) method was developed and validated. The developed method represents a significant improvement over current methods with the incorporation of multiple external reference standards, multiple isotopes labeled internal standards, and a matching model system of pineapple fruit matrix. This method was employed to quantify 28 key aroma compounds in more than 200 genetically diverse pineapple varieties from a breeding program. The Australian pineapple cultivars varied in content and composition of free volatile compounds, which were predominantly comprised of esters, followed by terpenes, alcohols, aldehydes, and ketones. Using selected commercial cultivars grown in Australia, and by employing the sensorial analysis, the appearance (colour), aroma (intensity, sweet, vinegar/tang, tropical fruits, floral, coconut, green, metallic, vegetal, fresh, peppery, fermented, eggy/sulphurous) and texture (crunchiness, fibrousness, and juiciness) were obtained. Relationships between sensory descriptors and volatiles were explored by applying multivariate analysis (PCA) to the sensorial and chemical data. The key aroma compounds of pineapple exhibited a positive correlation with corresponding sensory properties. The sensory and volatile data were also used to explore genetic diversity in the breeding population. GWAS was employed to unravel the genetic control of the pineapple volatilome and its interplay with fruit sensory characteristics. This study enhances our understanding of pineapple aroma (flavour) compounds, their biosynthetic pathways and expands breeding option for pineapple cultivars. This research provides foundational knowledge to support breeding programs, post-harvest and target market studies, and efforts to optimise the flavour of commercial pineapple varieties and their parent lines to produce better tasting fruits for consumers.Keywords: Ananas comosus, pineapple, flavour, volatile organic compounds, aroma, Gas chromatography–mass spectrometry (GC-MS), Head Space - Solid-phase microextraction (HS-SPME), Stable-isotope dilution analysis (SIDA).
Procedia PDF Downloads 572875 Systematic Evaluation of Convolutional Neural Network on Land Cover Classification from Remotely Sensed Images
Authors: Eiman Kattan, Hong Wei
Abstract:
In using Convolutional Neural Network (CNN) for classification, there is a set of hyperparameters available for the configuration purpose. This study aims to evaluate the impact of a range of parameters in CNN architecture i.e. AlexNet on land cover classification based on four remotely sensed datasets. The evaluation tests the influence of a set of hyperparameters on the classification performance. The parameters concerned are epoch values, batch size, and convolutional filter size against input image size. Thus, a set of experiments were conducted to specify the effectiveness of the selected parameters using two implementing approaches, named pertained and fine-tuned. We first explore the number of epochs under several selected batch size values (32, 64, 128 and 200). The impact of kernel size of convolutional filters (1, 3, 5, 7, 10, 15, 20, 25 and 30) was evaluated against the image size under testing (64, 96, 128, 180 and 224), which gave us insight of the relationship between the size of convolutional filters and image size. To generalise the validation, four remote sensing datasets, AID, RSD, UCMerced and RSCCN, which have different land covers and are publicly available, were used in the experiments. These datasets have a wide diversity of input data, such as number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in both training and testing. The results have shown that increasing the number of epochs leads to a higher accuracy rate, as expected. However, the convergence state is highly related to datasets. For the batch size evaluation, it has shown that a larger batch size slightly decreases the classification accuracy compared to a small batch size. For example, selecting the value 32 as the batch size on the RSCCN dataset achieves the accuracy rate of 90.34 % at the 11th epoch while decreasing the epoch value to one makes the accuracy rate drop to 74%. On the other extreme, setting an increased value of batch size to 200 decreases the accuracy rate at the 11th epoch is 86.5%, and 63% when using one epoch only. On the other hand, selecting the kernel size is loosely related to data set. From a practical point of view, the filter size 20 produces 70.4286%. The last performed image size experiment shows a dependency in the accuracy improvement. However, an expensive performance gain had been noticed. The represented conclusion opens the opportunities toward a better classification performance in various applications such as planetary remote sensing.Keywords: CNNs, hyperparamters, remote sensing, land cover, land use
Procedia PDF Downloads 1692874 Radiomics: Approach to Enable Early Diagnosis of Non-Specific Breast Nodules in Contrast-Enhanced Magnetic Resonance Imaging
Authors: N. D'Amico, E. Grossi, B. Colombo, F. Rigiroli, M. Buscema, D. Fazzini, G. Cornalba, S. Papa
Abstract:
Purpose: To characterize, through a radiomic approach, the nature of nodules considered non-specific by expert radiologists, recognized in magnetic resonance mammography (MRm) with T1-weighted (T1w) sequences with paramagnetic contrast. Material and Methods: 47 cases out of 1200 undergoing MRm, in which the MRm assessment gave uncertain classification (non-specific nodules), were admitted to the study. The clinical outcome of the non-specific nodules was later found through follow-up or further exams (biopsy), finding 35 benign and 12 malignant. All MR Images were acquired at 1.5T, a first basal T1w sequence and then four T1w acquisitions after the paramagnetic contrast injection. After a manual segmentation of the lesions, done by a radiologist, and the extraction of 150 radiomic features (30 features per 5 subsequent times) a machine learning (ML) approach was used. An evolutionary algorithm (TWIST system based on KNN algorithm) was used to subdivide the dataset into training and validation test and to select features yielding the maximal amount of information. After this pre-processing, different machine learning systems were applied to develop a predictive model based on a training-testing crossover procedure. 10 cases with a benign nodule (follow-up older than 5 years) and 18 with an evident malignant tumor (clear malignant histological exam) were added to the dataset in order to allow the ML system to better learn from data. Results: NaiveBayes algorithm working on 79 features selected by a TWIST system, resulted to be the best performing ML system with a sensitivity of 96% and a specificity of 78% and a global accuracy of 87% (average values of two training-testing procedures ab-ba). The results showed that in the subset of 47 non-specific nodules, the algorithm predicted the outcome of 45 nodules which an expert radiologist could not identify. Conclusion: In this pilot study we identified a radiomic approach allowing ML systems to perform well in the diagnosis of a non-specific nodule at MR mammography. This algorithm could be a great support for the early diagnosis of malignant breast tumor, in the event the radiologist is not able to identify the kind of lesion and reduces the necessity for long follow-up. Clinical Relevance: This machine learning algorithm could be essential to support the radiologist in early diagnosis of non-specific nodules, in order to avoid strenuous follow-up and painful biopsy for the patient.Keywords: breast, machine learning, MRI, radiomics
Procedia PDF Downloads 2672873 Energy Justice and Economic Growth
Authors: Marinko Skare, Malgorzata Porada Rochon
Abstract:
This paper study the link between energy justice and economic growth. The link between energy justice and growth has not been extensively studied. Here we study the impact and importance of energy justice, as a part of the energy transition process, on economic growth. Our study shows energy justice growth is an important determinant of economic growth and development that should be addressed at the industry and economic levels. We use panel data modeling and causality testing to research the empirical link between energy justice and economic growth. Industry and economy-level policies designed to support energy justice initiatives are beneficial to economic growth. Energy justice is a necessary condition for green growth and sustainability targets.Keywords: energy justice, economic growth, panel data, energy transition
Procedia PDF Downloads 113