Search results for: transformative learning theory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9848

Search results for: transformative learning theory

8258 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions

Authors: Oscar E. Cariceo, Claudia V. Casal

Abstract:

Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.

Keywords: cyberbullying, evidence based practice, machine learning, social work research

Procedia PDF Downloads 168
8257 The Impact of Board of Directors on CEO Compensation: Evidence from the UK

Authors: Saleh Alagla, Murya Habbash

Abstract:

The paper investigates whether the board of directors plays a monitoring role or not in CEO compensation for the UK firms during the eve of the recent financial crisis, 2004-2008. The use of heteroscedastic and autocorrelated error consistent estimation of the panel data shows, surprisingly, that four board characteristics variables are found to play a significant role in increasing the level of CEO compensation. This insightful result would suggest evidence of the managerial power theory in general and the cronyism hypothesis in particular. Moreover, the interesting evidence supporting managerial power perspective is that CEO-Chair duality reduces long-term compensation while increasing short-term compensation, thus suggesting that CEOs are risk averse who prefer short-term compensation to long-term compensation. Finally, consistent with the agency perspective board size is found to increase all compensation variables as expected.

Keywords: corporate governance, CEO compensation, board of directors, internal governance mechanisms, agency theory, managerial power theory, cronyism hypothesis

Procedia PDF Downloads 804
8256 Integration of Technology through Instructional Systems Design

Authors: C. Salis, D. Zedda, M. F. Wilson

Abstract:

The IDEA project was conceived for teachers who are interested in enhancing their capacity to effectively implement the use of specific technologies in their teaching practice. Participating teachers are coached and supported as they explore technologies applied to the educational context. They access tools such as the technological platform developed by our team. Among the platform functionalities, teachers access an instructional systems design (ISD) tool (learning designer) that was adapted to the needs of our project. The tool is accessible from computers or mobile devices and used in association with other technologies to create new, meaningful learning environments. The objective of an instructional systems design is to guarantee the quality and effectiveness of education and to enhance learning. This goal involves both teachers who want to become more efficient in transferring knowledge or skills and students as the final recipient of their teaching. The use of Blooms’s taxonomy enables teachers to classify the learning objectives into levels of complexity and specificity, thus making it possible to highlight the kind of knowledge teachers would like their students to reach. The fact that the instructional design features can be visualized through the IDEA platform is a guarantee for those who are looking for specific educational materials to be used in their lessons. Despite the benefits offered, a number of teachers are reluctant to use ISD because the preparatory work of having to thoroughly analyze the teaching/learning objectives, the planning of learning material, assessment activities, etc., is long and felt to be time-consuming. This drawback is minimized using a learning designer, as the tool facilitates to reuse of the didactic contents having a clear view of the processes of analysis, planning, and production of educational or testing materials uploaded on our platform. In this paper, we shall present the feedback of the teachers who used our tool in their didactic.

Keywords: educational benefits, educational quality, educational technology, ISD tool

Procedia PDF Downloads 188
8255 Exploring Solutions in Extended Horava-Lifshitz Gravity

Authors: Aziza Altaibayeva, Ertan Güdekli, Ratbay Myrzakulov

Abstract:

In this letter, we explore exact solutions for the Horava-Lifshitz gravity. We use of an extension of this theory with first order dynamical lapse function. The equations of motion have been derived in a fully consistent scenario. We assume that there are some spherically symmetric families of exact solutions of this extended theory of gravity. We obtain exact solutions and investigate the singularity structures of these solutions. Specially, an exact solution with the regular horizon is found.

Keywords: quantum gravity, Horava-Lifshitz gravity, black hole, spherically symmetric space times

Procedia PDF Downloads 581
8254 Kinaesthetic Method in Apprenticeship Training: Support for Finnish Learning in Vocational Education and Training

Authors: Inkeri Jaaskelainen

Abstract:

The purpose of this study is to shed light on what it is like to study in apprenticeship training using Finnish as a second language. This study examines the stories and experiences of apprenticeship students learning and studying Finnish as part of their vocational studies. Also, this pilot study examines the effects of learning to pronounce Finnish through body motions and gestures. Many foreign students choose apprenticeships and start vocational training too early, while their language skills in Finnish are still very weak. Both duties at work and school assignments require reasonably good general language skills (B1.1), and, especially at work, language skills are also a safety issue. At work, students should be able to simultaneously learn Finnish and do vocational studies in a noisy, demanding, and stressful environment. Learning and understanding new things is very challenging under these circumstances and sometimes students get exhausted and experience a lot of stress - which makes learning even more difficult. Students are different from each other and so are their ways to learn. Thereafter, one of the most important features of apprenticeship training and second language learning is a good understanding of adult learners and their needs. Kinaesthetic methods are an effective way to support adult students’ cognitive skills and make learning more relaxing and fun. Empirical findings show that language learning can indeed be supported in physical ways, by body motions and gestures. The method used here, named TFFL (Touch and Feel Foreign Languages), was designed to support adult language learning, to correct or prevent language fossilization, and to help the student to manage emotions. Finnish is considered as a difficult language to learn, mostly because it is so different from nearly all other languages. Many learners complain that they are lost or confused and there is a need to find a way to simultaneously learn the language and to handle negative emotion that comes from the Finnish language and the learning process itself. Due to the nature of the Finnish language, good pronunciation skills are needed just to understand the way the language work. Movements (body movements etc.) are a natural part of many cultures, but not Finnish. In Finland, students have traditionally been expected to stay still, and that is not a natural way for many foreign students. However, the kinaesthetic TFFL method proved out to be a useful way to help some L2 students to feel phonemes, rhythm, and intonation, to improve their Finnish, and, thereby, also to successfully complete their vocational studies.

Keywords: Finnish, fossilization, interference, kinaesthetic method

Procedia PDF Downloads 140
8253 Learning-by-Heart vs. Learning by Thinking: Fostering Thinking in Foreign Language Learning A Comparison of Two Approaches

Authors: Danijela Vranješ, Nataša Vukajlović

Abstract:

Turning to learner-centered teaching instead of the teacher-centered approach brought a whole new perspective into the process of teaching and learning and set a new goal for improving the educational process itself. However, recently a tremendous decline in students’ performance on various standardized tests can be observed, above all on the PISA-test. The learner-centeredness on its own is not enough anymore: the students’ ability to think is deteriorating. Especially in foreign language learning, one can encounter a lot of learning by heart: whether it is grammar or vocabulary, teachers often seem to judge the students’ success merely on how well they can recall a specific word, phrase, or grammar rule, but they rarely aim to foster their ability to think. Convinced that foreign language teaching can do both, this research aims to discover how two different approaches to teaching foreign language foster the students’ ability to think as well as to what degree they help students get to the state-determined level of foreign language at the end of the semester as defined in the Common European Framework. For this purpose, two different curricula were developed: one is a traditional, learner-centered foreign language curriculum that aims at teaching the four competences as defined in the Common European Framework and serves as a control variable, whereas the second one has been enriched with various thinking routines and aims at teaching the foreign language as a means to communicate ideas and thoughts rather than reducing it to the four competences. Moreover, two types of tests were created for each approach, each based on the content taught during the semester. One aims to test the students’ competences as defined in the CER, and the other aims to test the ability of students to draw on the knowledge gained and come to their own conclusions based on the content taught during the semester. As it is an ongoing study, the results are yet to be interpreted.

Keywords: common european framework of reference, foreign language learning, foreign language teaching, testing and assignment

Procedia PDF Downloads 107
8252 Investigation of Verbal Feedback and Learning Process for Oral Presentation

Authors: Nattawadee Sinpattanawong

Abstract:

Oral presentation has been used mostly in business communication. The business presentation is carrying out through an audio and visual presentation material such as statistical documents, projectors, etc. Common examples of business presentation are intra-organization and sales presentations. The study aims at investigating functions, strategies and contents of assessors’ verbal feedback on presenters’ oral presentations and exploring presenters’ learning process and specific views and expectations concerning assessors’ verbal feedback related to the delivery of the oral presentation. This study is designed as a descriptive qualitative research; four master students and one teacher in English for Business and Industry Presentation Techniques class of public university will be selected. The researcher hopes that any understanding how assessors’ verbal feedback on oral presentations and learning process may illuminate issues for other people. The data from this research may help to expand and facilitate the readers’ understanding of assessors’ verbal feedback on oral presentations and learning process in their own situations. The research instruments include an audio recorder, video recorder and an interview. The students will be interviewing in order to ask for their views and expectations concerning assessors’ verbal feedback related to the delivery of the oral presentation. After finishing data collection, the data will be analyzed and transcribed. The findings of this study are significant because it can provide presenters knowledge to enhance their learning process and provide teachers knowledge about providing verbal feedback on student’s oral presentations on a business context.

Keywords: business context, learning process, oral presentation, verbal feedback

Procedia PDF Downloads 194
8251 Harnessing Artificial Intelligence for Early Detection and Management of Infectious Disease Outbreaks

Authors: Amarachukwu B. Isiaka, Vivian N. Anakwenze, Chinyere C. Ezemba, Chiamaka R. Ilodinso, Chikodili G. Anaukwu, Chukwuebuka M. Ezeokoli, Ugonna H. Uzoka

Abstract:

Infectious diseases continue to pose significant threats to global public health, necessitating advanced and timely detection methods for effective outbreak management. This study explores the integration of artificial intelligence (AI) in the early detection and management of infectious disease outbreaks. Leveraging vast datasets from diverse sources, including electronic health records, social media, and environmental monitoring, AI-driven algorithms are employed to analyze patterns and anomalies indicative of potential outbreaks. Machine learning models, trained on historical data and continuously updated with real-time information, contribute to the identification of emerging threats. The implementation of AI extends beyond detection, encompassing predictive analytics for disease spread and severity assessment. Furthermore, the paper discusses the role of AI in predictive modeling, enabling public health officials to anticipate the spread of infectious diseases and allocate resources proactively. Machine learning algorithms can analyze historical data, climatic conditions, and human mobility patterns to predict potential hotspots and optimize intervention strategies. The study evaluates the current landscape of AI applications in infectious disease surveillance and proposes a comprehensive framework for their integration into existing public health infrastructures. The implementation of an AI-driven early detection system requires collaboration between public health agencies, healthcare providers, and technology experts. Ethical considerations, privacy protection, and data security are paramount in developing a framework that balances the benefits of AI with the protection of individual rights. The synergistic collaboration between AI technologies and traditional epidemiological methods is emphasized, highlighting the potential to enhance a nation's ability to detect, respond to, and manage infectious disease outbreaks in a proactive and data-driven manner. The findings of this research underscore the transformative impact of harnessing AI for early detection and management, offering a promising avenue for strengthening the resilience of public health systems in the face of evolving infectious disease challenges. This paper advocates for the integration of artificial intelligence into the existing public health infrastructure for early detection and management of infectious disease outbreaks. The proposed AI-driven system has the potential to revolutionize the way we approach infectious disease surveillance, providing a more proactive and effective response to safeguard public health.

Keywords: artificial intelligence, early detection, disease surveillance, infectious diseases, outbreak management

Procedia PDF Downloads 66
8250 Classifier for Liver Ultrasound Images

Authors: Soumya Sajjan

Abstract:

Liver cancer is the most common cancer disease worldwide in men and women, and is one of the few cancers still on the rise. Liver disease is the 4th leading cause of death. According to new NHS (National Health Service) figures, deaths from liver diseases have reached record levels, rising by 25% in less than a decade; heavy drinking, obesity, and hepatitis are believed to be behind the rise. In this study, we focus on Development of Diagnostic Classifier for Ultrasound liver lesion. Ultrasound (US) Sonography is an easy-to-use and widely popular imaging modality because of its ability to visualize many human soft tissues/organs without any harmful effect. This paper will provide an overview of underlying concepts, along with algorithms for processing of liver ultrasound images Naturaly, Ultrasound liver lesion images are having more spackle noise. Developing classifier for ultrasound liver lesion image is a challenging task. We approach fully automatic machine learning system for developing this classifier. First, we segment the liver image by calculating the textural features from co-occurrence matrix and run length method. For classification, Support Vector Machine is used based on the risk bounds of statistical learning theory. The textural features for different features methods are given as input to the SVM individually. Performance analysis train and test datasets carried out separately using SVM Model. Whenever an ultrasonic liver lesion image is given to the SVM classifier system, the features are calculated, classified, as normal and diseased liver lesion. We hope the result will be helpful to the physician to identify the liver cancer in non-invasive method.

Keywords: segmentation, Support Vector Machine, ultrasound liver lesion, co-occurance Matrix

Procedia PDF Downloads 411
8249 Web-Based Cognitive Writing Instruction (WeCWI): A Theoretical-and-Pedagogical e-Framework for Language Development

Authors: Boon Yih Mah

Abstract:

Web-based Cognitive Writing Instruction (WeCWI)’s contribution towards language development can be divided into linguistic and non-linguistic perspectives. In linguistic perspective, WeCWI focuses on the literacy and language discoveries, while the cognitive and psychological discoveries are the hubs in non-linguistic perspective. In linguistic perspective, WeCWI draws attention to free reading and enterprises, which are supported by the language acquisition theories. Besides, the adoption of process genre approach as a hybrid guided writing approach fosters literacy development. Literacy and language developments are interconnected in the communication process; hence, WeCWI encourages meaningful discussion based on the interactionist theory that involves input, negotiation, output, and interactional feedback. Rooted in the e-learning interaction-based model, WeCWI promotes online discussion via synchronous and asynchronous communications, which allows interactions happened among the learners, instructor, and digital content. In non-linguistic perspective, WeCWI highlights on the contribution of reading, discussion, and writing towards cognitive development. Based on the inquiry models, learners’ critical thinking is fostered during information exploration process through interaction and questioning. Lastly, to lower writing anxiety, WeCWI develops the instructional tool with supportive features to facilitate the writing process. To bring a positive user experience to the learner, WeCWI aims to create the instructional tool with different interface designs based on two different types of perceptual learning style.

Keywords: WeCWI, literacy discovery, language discovery, cognitive discovery, psychological discovery

Procedia PDF Downloads 561
8248 Evaluation of the Self-Efficacy and Learning Experiences of Final year Students of Computer Science of Southwest Nigerian Universities

Authors: Olabamiji J. Onifade, Peter O. Ajayi, Paul O. Jegede

Abstract:

This study aimed at investigating the preparedness of the undergraduate final year students of Computer Science as the next entrants into the workplace. It assessed their self-efficacy in computational tasks and examined the relationship between their self-efficacy and their learning experiences in Southwest Nigerian universities. The study employed a descriptive survey research design. The population of the study comprises all the final year students of Computer Science. A purposive sampling technique was adopted in selecting a representative sample of interest from the final year students of Computer Science. The Students’ Computational Task Self-Efficacy Questionnaire (SCTSEQ) was used to collect data. Mean, standard deviation, frequency, percentages, and linear regression were used for data analysis. The result obtained revealed that the final year students of Computer Science were averagely confident in performing computational tasks, and there is a significant relationship between the learning experiences of the students and their self-efficacy. The study recommends that the curriculum be improved upon to accommodate industry experts as lecturers in some of the courses, make provision for more practical sessions, and the learning experiences of the student be considered an important component in the undergraduate Computer Science curriculum development process.

Keywords: computer science, learning experiences, self-efficacy, students

Procedia PDF Downloads 144
8247 Critical Pedagogy and Ecoliteracy in the Teaching of Foreign Languages

Authors: Anita De Melo

Abstract:

Today we live in a crucial time of ecological crisis, of environmental catastrophes worldwide, and this scenario is, arrogantly, overlooked by powerful economic forces and their politics. Thus, a critical pedagogy that leads to action and that fosters ecoliteracy, environment education, is now inevitable, and it must become an integral part of the school curriculum across the disciplines, including the social sciences and the humanities. One of the most important contemporary and emerging movement of today is ecopedagogy, a movement that blends theory and ethics towards a curriculum that focus on an environmental education that will promote ecological justice, respect, and care by educating students to become planetary citizens. This paper aims, first, to emphasize the need for discussions and investigations regarding ecoliteracy within our field of teaching foreign languages, which will consider, among others, the of role language in stimulating sustainability, and the role of second language proficiency in fostering positive transnational dialogues conducive to fighting our current planetary crisis. Second, this paper suggests and discusses some critical ecopedagogical practices -- in the form of project-based learning, service-learning and environmental-oriented study abroad programs – apropos to ecoliteracy. These interdisciplinary projects can and should bring students in contact with communities speaking the target language, and such encounter would facilitate cultural exchanges and promote positive language proficiency whilst it would also give students the opportunity to work with finding ideas/projects to fight our current ecological catastrophe.

Keywords: critical pedagogy, ecoliteracy, ecopedagogy, planetary crisis

Procedia PDF Downloads 250
8246 An Application for Risk of Crime Prediction Using Machine Learning

Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento

Abstract:

The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.

Keywords: crime prediction, machine learning, public safety, smart city

Procedia PDF Downloads 112
8245 Using Science, Technology, Engineering, Art and Mathematics (STEAM) Project-Based Learning Programs to Transition towards Whole School Pedagogical Shift

Authors: M. Richichi

Abstract:

Evidencing the learning and developmental needs of students in specific educational institutions is central to determining the type of whole school pedagogical shift required. Initiating this transition by designing and implementing STEAM (Science, technology, engineering, art, and mathematics) project-based learning opportunities, in collaboration with industry, exposes teachers to new pedagogical and assessment practices. This experience instills confidence and a renewed sense of energy, which contributes to greater efficacy. Championing teachers in such learning environments leads to “bleeding” of inventive pedagogical understanding and skills as well as motivation. This contributes positively to collective teacher efficacy and the transition towards more cross-disciplinary initiatives and opportunities, and hence an innovative pedagogical shift. Evidence of skill and knowledge development in students, combined with greater confidence, work ethic and interest in STEAM areas, are further indicators of the success of the transitioning process.

Keywords: efficacy, pedagogy, transition, STEAM

Procedia PDF Downloads 129
8244 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence

Authors: Mohammed Al Sulaimani, Hamad Al Manhi

Abstract:

With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.

Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems

Procedia PDF Downloads 34
8243 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph

Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.

Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction

Procedia PDF Downloads 425
8242 Online Language Learning and Teaching Pedagogy: Constructivism and Beyond

Authors: Zeineb Deymi-Gheriani

Abstract:

In the last two decades, one can clearly observe a boom of interest for e-learning and web-supported programs. However, one can also notice that many of these programs focus on the accumulation and delivery of content generally as a business industry with no much concern for theoretical underpinnings. The existing research, at least in online English language teaching (ELT), has demonstrated a lack of an effective online teaching pedagogy anchored in a well-defined theoretical framework. Hence, this paper comes as an attempt to present constructivism as one of the theoretical bases for the design of an effective online language teaching pedagogy which is at the same time technologically intelligent and theoretically informed to help envision how education can best take advantage of the information and communication technology (ICT) tools. The present paper discusses the key principles underlying constructivism, its implications for online language teaching design, as well as its limitations that should be avoided in the e-learning instructional design. Although the paper is theoretical in nature, essentially based on an extensive literature survey on constructivism, it does have practical illustrations from an action research conducted by the author both as an e-tutor of English using Moodle online educational platform at the Virtual University of Tunis (VUT) from 2007 up to 2010 and as a face-to-face (F2F) English teaching practitioner in the Professional Certificate of English Language Teaching Training (PCELT) at AMIDEAST, Tunisia (April-May, 2013).

Keywords: active learning, constructivism, experiential learning, Piaget, Vygotsky

Procedia PDF Downloads 351
8241 The Place of Open Distance Education in Achieving Sustainable Development Goals (SDGs)

Authors: Morakinyo Akintolu, Moeketsi Letseka

Abstract:

In the year 2015, the United Nation member states, through the representative of all heads of states present, adopted the 17 Global goals known as the Sustainable Development Goals in their capacity to bring about social, economic, and cultural development to the world. Therefore, the need to accommodate equitable development one of the major goals is to achieve equitable and quality education for all to bring about international development. In this light, the study investigates the role of open distance learning in achieving sustainable development goals. Open distance learning comes as a second chance to individuals in disseminating educational content to students who missed the opportunity of attending the traditional school setting. Therefore, this study investigates if the SDGs reflect this type of learning (ODL) in creating Education for all according to the 2030 agenda by the United Nations. It further ascertains the role of ODL in achieving SDGs, the challenges encountered as well as the way forward.

Keywords: open distance learning, sustainable development goals, distance education, achieving, 2030 agenda

Procedia PDF Downloads 138
8240 Australian Teachers and School Leaders’ Use of Differentiated Learning Experiences as Responsive Teaching for Students with ADHD

Authors: Kathy Gibbs

Abstract:

There is a paucity of research in Australia about educators’ use of differentiated instruction (DI) to support the learning of students with ADHD. This study reports on small-scale, qualitative research using interviews with teachers and school leaders to identify how they use DI as an effective teaching instruction for students with ADHD. Findings showed that teachers and school leaders have a good understanding of ADHD; teachers use DI as an effective teaching practice to enhance learning for this student group and ensure the classroom environment is safe and secure. However, they do not adjust assessments for students with ADHD. School leaders are not clear on how teachers differentiate assessments or adapt to the classroom environment. These results highlight the need for further research at the teacher and teacher-educator level teachers to ensure teaching practices are effective in reducing unwanted behaviours that prevent students with ADHD from achieving their full academic potential.

Keywords: teachers, differentiated instruction, ADHD, student learning, educators knowledge

Procedia PDF Downloads 55
8239 A Constructivist and Strategic Approach to School Learning: A Study in a Tunisian Primary School

Authors: Slah Eddine Ben Fadhel

Abstract:

Despite the development of new pedagogic methods, current teaching practices put more emphasis on the learning products than on the processes learners deploy. In school syllabi, for instance, very little time is devoted to both the explanation and analysis of strategies aimed at resolving problems by means of targeting students’ metacognitive procedures. Within a cognitive framework, teaching/learning contexts are conceived of in terms of cognitive, metacognitive and affective activities intended for the treatment of information. During these activities, learners come to develop an array of knowledge and strategies which can be subsumed within an active and constructive process. Through the investigation of strategies and metacognition concepts, the purpose is to reflect upon the modalities at the heart of the learning process and to demonstrate, similarly, the inherent significance of a cognitive approach to learning. The scope of this paper is predicated on a study where the population is a group of 76 primary school pupils who experienced difficulty with learning French. The population was divided into two groups: the first group was submitted during three months to a strategy-based training to learn French. All through this phase, the teachers centred class activities round making learners aware of the strategies the latter deployed and geared them towards appraising the steps these learners had themselves taken by means of a variety of tools, most prominent among which is the logbook. The second group was submitted to the usual learning context with no recourse whatsoever to any strategy-oriented tasks. The results of both groups point out the improvement of linguistic competences in the French language in the case of those pupils who were trained by means of strategic procedures. Furthermore, this improvement was noted in relation with the native language (Arabic), a fact that tends to highlight the importance of the interdisciplinary investigation of (meta-)cognitive strategies. These results show that strategic learning promotes in pupils the development of a better awareness of their own processes, which contributes to improving their general linguistic competences.

Keywords: constructive approach, cognitive strategies, metacognition, learning

Procedia PDF Downloads 212
8238 “To Err Is Human…” Revisiting Oral Error Correction in Class

Authors: David Steven Rosenstein

Abstract:

The widely accepted “Input Theory” of language acquisition proposes that language is basically acquired unconsciously through extensive exposure to all kinds of natural oral and written sources, especially those where the level of the input is slightly above the learner’s competence. As such, it implies that oral error correction by teachers in a classroom is unnecessary, a waste of time, and maybe even counterproductive. And yet, oral error correction by teachers in the classroom continues to be a very common phenomenon. While input theory advocates claim that such correction doesn’t work, interrupts a student’s train of thought, harms fluency, and may cause students embarrassment and fear, many teachers would disagree. They would claim that students know they make mistakes and want to be corrected in order to know they are improving, thereby encouraging students’ desire to keep studying. Moreover, good teachers can create a positive atmosphere where students will not be embarrassed or fearful. Perhaps now is the time to revisit oral error correction in the classroom and consider the results of research carried out long ago by the present speaker. The research indicates that oral error correction may be beneficial in many cases.

Keywords: input theory, language acquisition, teachers' corrections, recurrent errors

Procedia PDF Downloads 32
8237 A Novel Meta-Heuristic Algorithm Based on Cloud Theory for Redundancy Allocation Problem under Realistic Condition

Authors: H. Mousavi, M. Sharifi, H. Pourvaziri

Abstract:

Redundancy Allocation Problem (RAP) is a well-known mathematical problem for modeling series-parallel systems. It is a combinatorial optimization problem which focuses on determining an optimal assignment of components in a system design. In this paper, to be more practical, we have considered the problem of redundancy allocation of series system with interval valued reliability of components. Therefore, during the search process, the reliabilities of the components are considered as a stochastic variable with a lower and upper bounds. In order to optimize the problem, we proposed a simulated annealing based on cloud theory (CBSAA). Also, the Monte Carlo simulation (MCS) is embedded to the CBSAA to handle the random variable components’ reliability. This novel approach has been investigated by numerical examples and the experimental results have shown that the CBSAA combining MCS is an efficient tool to solve the RAP of systems with interval-valued component reliabilities.

Keywords: redundancy allocation problem, simulated annealing, cloud theory, monte carlo simulation

Procedia PDF Downloads 412
8236 Students’ Perceptions of the Use of Social Media in Higher Education in Saudi Arabia

Authors: Omar Alshehri, Vic Lally

Abstract:

This paper examined the attitudes of using social media tools to support learning at a university in Saudi Arabia. Moreover, it investigated the students’ current usage of these tools and examined the barriers they could face during the use of social media tools in the education process. Participants in this study were 42 university students. A web-based survey was used to collect data for this study. The results indicate that all of the students were familiar with social media and had used at least one type of social media for learning. It was found out that all students had very positive attitudes towards the use of social media and welcomed using these tools as a supplementary to the curriculum. However, the results indicated that the major barriers to using these tools in learning were distraction, opposing Islamic religious teachings, privacy issues, and cyberbullying. The study recommended that this study could be replicated at other Saudi universities to investigate factors and barriers that might affect Saudi students’ attitudes toward using social media to support learning.

Keywords: barriers to social media use, benefits of social media use, higher education, Saudi Arabia, social media

Procedia PDF Downloads 168
8235 Advances in Machine Learning and Deep Learning Techniques for Image Classification and Clustering

Authors: R. Nandhini, Gaurab Mudbhari

Abstract:

Ranging from the field of health care to self-driving cars, machine learning and deep learning algorithms have revolutionized the field with the proper utilization of images and visual-oriented data. Segmentation, regression, classification, clustering, dimensionality reduction, etc., are some of the Machine Learning tasks that helped Machine Learning and Deep Learning models to become state-of-the-art models for the field where images are key datasets. Among these tasks, classification and clustering are essential but difficult because of the intricate and high-dimensional characteristics of image data. This finding examines and assesses advanced techniques in supervised classification and unsupervised clustering for image datasets, emphasizing the relative efficiency of Convolutional Neural Networks (CNNs), Vision Transformers (ViTs), Deep Embedded Clustering (DEC), and self-supervised learning approaches. Due to the distinctive structural attributes present in images, conventional methods often fail to effectively capture spatial patterns, resulting in the development of models that utilize more advanced architectures and attention mechanisms. In image classification, we investigated both CNNs and ViTs. One of the most promising models, which is very much known for its ability to detect spatial hierarchies, is CNN, and it serves as a core model in our study. On the other hand, ViT is another model that also serves as a core model, reflecting a modern classification method that uses a self-attention mechanism which makes them more robust as this self-attention mechanism allows them to lean global dependencies in images without relying on convolutional layers. This paper evaluates the performance of these two architectures based on accuracy, precision, recall, and F1-score across different image datasets, analyzing their appropriateness for various categories of images. In the domain of clustering, we assess DEC, Variational Autoencoders (VAEs), and conventional clustering techniques like k-means, which are used on embeddings derived from CNN models. DEC, a prominent model in the field of clustering, has gained the attention of many ML engineers because of its ability to combine feature learning and clustering into a single framework and its main goal is to improve clustering quality through better feature representation. VAEs, on the other hand, are pretty well known for using latent embeddings for grouping similar images without requiring for prior label by utilizing the probabilistic clustering method.

Keywords: machine learning, deep learning, image classification, image clustering

Procedia PDF Downloads 12
8234 Towards Inclusive Learning Society: Learning for Work in the Swedish Context

Authors: Irina Rönnqvist

Abstract:

The world is constantly changing; therefore previous views or cultural patterns and programs formed by the “old world” cannot be suitable for solving actual problems. Indeed, reformation of an education system is unlikely to be effective without understanding of the processes that emerge in the field of employment. There is a problem in overcoming of the negative trends that determine imbalance of needs of the qualified work force and preparation of professionals by an education system. At the contemporary stage of economics the processes occurring in the field of labor and employment reproduce the picture of economic development of the country that cannot be imagined without the factor of labor mobility (e.g. migration). On the one hand, adult education has a significant impact on multifaceted development of economy. On the other hand, Sweden has one of the world's most generous asylum reception systems and the most liberal labor migration policy among the OECD countries. This effect affects the increased productivity. The focus of this essay is on problems of education and employment concerning social inclusion of migrants in working life in Sweden.

Keywords: migration, adaptation, formal learning, informal learning, Sweden

Procedia PDF Downloads 326
8233 Uncertainty Estimation in Neural Networks through Transfer Learning

Authors: Ashish James, Anusha James

Abstract:

The impressive predictive performance of deep learning techniques on a wide range of tasks has led to its widespread use. Estimating the confidence of these predictions is paramount for improving the safety and reliability of such systems. However, the uncertainty estimates provided by neural networks (NNs) tend to be overconfident and unreasonable. Ensemble of NNs typically produce good predictions but uncertainty estimates tend to be inconsistent. Inspired by these, this paper presents a framework that can quantitatively estimate the uncertainties by leveraging the advances in transfer learning through slight modification to the existing training pipelines. This promising algorithm is developed with an intention of deployment in real world problems which already boast a good predictive performance by reusing those pretrained models. The idea is to capture the behavior of the trained NNs for the base task by augmenting it with the uncertainty estimates from a supplementary network. A series of experiments with known and unknown distributions show that the proposed approach produces well calibrated uncertainty estimates with high quality predictions.

Keywords: uncertainty estimation, neural networks, transfer learning, regression

Procedia PDF Downloads 136
8232 Efficient Rehearsal Free Zero Forgetting Continual Learning Using Adaptive Weight Modulation

Authors: Yonatan Sverdlov, Shimon Ullman

Abstract:

Artificial neural networks encounter a notable challenge known as continual learning, which involves acquiring knowledge of multiple tasks over an extended period. This challenge arises due to the tendency of previously learned weights to be adjusted to suit the objectives of new tasks, resulting in a phenomenon called catastrophic forgetting. Most approaches to this problem seek a balance between maximizing performance on the new tasks and minimizing the forgetting of previous tasks. In contrast, our approach attempts to maximize the performance of the new task, while ensuring zero forgetting. This is accomplished through the introduction of task-specific modulation parameters for each task, and only these parameters are learned for the new task, after a set of initial tasks have been learned. Through comprehensive experimental evaluations, our model demonstrates superior performance in acquiring and retaining novel tasks that pose difficulties for other multi-task models. This emphasizes the efficacy of our approach in preventing catastrophic forgetting while accommodating the acquisition of new tasks.

Keywords: continual learning, life-long learning, neural analogies, adaptive modulation

Procedia PDF Downloads 72
8231 A Game Theory Analysis of the Effectiveness of Passenger Profiling for Transportation Security

Authors: Yael Deutsch, Arieh Gavious

Abstract:

The threat of aviation terrorism and its potential damage became significant after the 9/11 terror attacks. These attacks have led authorities and leaders to suggest that security personnel should overcome politically correct scruples about profiling and use it openly. However, there is a lack of knowledge about the smart usage of profiling and its advantages. We analyze game models that are suitable to specific real-world scenarios, focusing on profiling as a tool to detect potential violators, such as terrorists and smugglers. We provide analytical and clear answers to difficult questions, and by that help fighting against harmful violation acts.

Keywords: game theory, profiling, security, nash equilibrium

Procedia PDF Downloads 109
8230 Enhancing Robustness in Federated Learning through Decentralized Oracle Consensus and Adaptive Evaluation

Authors: Peiming Li

Abstract:

This paper presents an innovative blockchain-based approach to enhance the reliability and efficiency of federated learning systems. By integrating a decentralized oracle consensus mechanism into the federated learning framework, we address key challenges of data and model integrity. Our approach utilizes a network of redundant oracles, functioning as independent validators within an epoch-based training system in the federated learning model. In federated learning, data is decentralized, residing on various participants' devices. This scenario often leads to concerns about data integrity and model quality. Our solution employs blockchain technology to establish a transparent and tamper-proof environment, ensuring secure data sharing and aggregation. The decentralized oracles, a concept borrowed from blockchain systems, act as unbiased validators. They assess the contributions of each participant using a Hidden Markov Model (HMM), which is crucial for evaluating the consistency of participant inputs and safeguarding against model poisoning and malicious activities. Our methodology's distinct feature is its epoch-based training. An epoch here refers to a specific training phase where data is updated and assessed for quality and relevance. The redundant oracles work in concert to validate data updates during these epochs, enhancing the system's resilience to security threats and data corruption. The effectiveness of this system was tested using the Mnist dataset, a standard in machine learning for benchmarking. Results demonstrate that our blockchain-oriented federated learning approach significantly boosts system resilience, addressing the common challenges of federated environments. This paper aims to make these advanced concepts accessible, even to those with a limited background in blockchain or federated learning. We provide a foundational understanding of how blockchain technology can revolutionize data integrity in decentralized systems and explain the role of oracles in maintaining model accuracy and reliability.

Keywords: federated learning system, block chain, decentralized oracles, hidden markov model

Procedia PDF Downloads 63
8229 Architectural Design Studio (ADS) as an Operational Synthesis in Architectural Education

Authors: Francisco A. Ribeiro Da Costa

Abstract:

Who is responsible for teaching architecture; consider various ways to participate in learning, manipulating various pedagogical tools to streamline the creative process. The Architectural Design Studio (ADS) should become a holistic, systemic process responding to the complexity of our world. This essay corresponds to a deep reflection developed by the author on the teaching of architecture. The outcomes achieved are the corollary of experimentation; discussion and application of pedagogical methods that allowed consolidate the creativity applied by students. The purpose is to show the conjectures that have been considered effective in creating an intellectual environment that nurtures the subject of Architectural Design Studio (ADS), as an operational synthesis in the final stage of the degree. These assumptions, which are part of the proposed model, displaying theories and teaching methodologies that try to respect the learning process based on student learning styles Kolb, ensuring their latent specificities and formulating the structure of the ASD discipline. In addition, the assessing methods are proposed, which consider the architectural Design Studio as an operational synthesis in the teaching of architecture.

Keywords: teaching-learning, architectural design studio, architecture, education

Procedia PDF Downloads 391