Search results for: mean mixture pressure
3740 Understanding the Nature of Blood Pressure as Metabolic Syndrome Component in Children
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Pediatric overweight and obesity need attention because they may cause morbid obesity, which may develop metabolic syndrome (MetS). Criteria used for the definition of adult MetS cannot be applied for pediatric MetS. Dynamic physiological changes that occur during childhood and adolescence require the evaluation of each parameter based upon age intervals. The aim of this study is to investigate the distribution of blood pressure (BP) values within diverse pediatric age intervals and the possible use and clinical utility of a recently introduced Diagnostic Obesity Notation Model Assessment Tension (DONMA tense) Index derived from systolic BP (SBP) and diastolic BP (DBP) [SBP+DBP/200]. Such a formula may enable a more integrative picture for the assessment of pediatric obesity and MetS due to the use of both SBP and DBP. 554 children, whose ages were between 6-16 years participated in the study; the study population was divided into two groups based upon their ages. The first group comprises 280 cases aged 6-10 years (72-120 months), while those aged 10-16 years (121-192 months) constituted the second group. The values of SBP, DBP and the formula (SBP+DBP/200) covering both were evaluated. Each group was divided into seven subgroups with varying degrees of obesity and MetS criteria. Two clinical definitions of MetS have been described. These groups were MetS3 (children with three major components), and MetS2 (children with two major components). The other groups were morbid obese (MO), obese (OB), overweight (OW), normal (N) and underweight (UW). The children were included into the groups according to the age- and sex-based body mass index (BMI) percentile values tabulated by WHO. Data were evaluated by SPSS version 16 with p < 0.05 as the statistical significance degree. Tension index was evaluated in the groups above and below 10 years of age. This index differed significantly between N and MetS as well as OW and MetS groups (p = 0.001) above 120 months. However, below 120 months, significant differences existed between MetS3 and MetS2 (p = 0.003) as well as MetS3 and MO (p = 0.001). In comparison with the SBP and DBP values, tension index values have enabled more clear-cut separation between the groups. It has been detected that the tension index was capable of discriminating MetS3 from MetS2 in the group, which was composed of children aged 6-10 years. This was not possible in the older group of children. This index was more informative for the first group. This study also confirmed that 130 mm Hg and 85 mm Hg cut-off points for SBP and DBP, respectively, are too high for serving as MetS criteria in children because the mean value for tension index was calculated as 1.00 among MetS children. This finding has shown that much lower cut-off points must be set for SBP and DBP for the diagnosis of pediatric MetS, especially for children under-10 years of age. This index may be recommended to discriminate MO, MetS2 and MetS3 among the 6-10 years of age group, whose MetS diagnosis is problematic.Keywords: blood pressure, children, index, metabolic syndrome, obesity
Procedia PDF Downloads 1213739 An Efficient and Low Cost Protocol for Rapid and Mass in vitro Propagation of Hyssopus officinalis L.
Authors: Ira V. Stancheva, Ely G. Zayova, Maria P. Geneva, Marieta G. Hristozkova, Lyudmila I. Dimitrova, Maria I. Petrova
Abstract:
The study describes a highly efficient and low-cost protocol for rapid and mass in vitro propagation of medicinal and aromatic plant species (Hyssopus officinalis L., Lamiaceae). Hyssop is an important aromatic herb used for its medicinal values because of its antioxidant, anti-inflammatory and antimicrobial properties. The protocol for large-scale multiplication of this aromatic plant was developed using young stem tips explants. The explants were sterilized with 0.04% mercuric chloride (HgCl₂) solution for 20 minutes and washing three times with sterile distilled water in 15 minutes. The cultural media was full and half strength Murashige and Skoog medium containing indole-3-butyric acid. Full and ½ Murashige and Skoog media without auxin were used as controls. For each variant 20 glass tubes with two plants were used. In each tube two tip and nodal explants were inoculated. Maximum shoot and root number were obtained on ½ Murashige and Skoog medium supplemented with 0.1 mg L-1 indole-3-butyric acid at the same time after four weeks of culture. The number of shoots per explant and shoot height were considered. The data on rooting percentage, the number of roots per plant and root length were collected after the same cultural period. The highest percentage of survival 85% for this medicinal plant was recorded in mixture of soil, sand and perlite (2:1:1 v/v/v). This mixture was most suitable for acclimatization of all propagated plants. Ex vitro acclimatization was carried out at 24±1 °C and 70% relative humidity under 16 h illuminations (50 μmol m⁻²s⁻¹). After adaptation period, the all plants were transferred to the field. The plants flowered within three months after transplantation. Phenotypic variations in the acclimatized plants were not observed. An average of 90% of the acclimatized plants survived after transferring into the field. All the in vitro propagated plants displayed normal development under the field conditions. Developed in vitro techniques could provide a promising alternative tool for large-scale propagation that increases the number of homologous plants for field cultivation. Acknowledgments: This study was conducted with financial support from National Science Fund at the Bulgarian Ministry of Education and Science, Project DN06/7 17.12.16.Keywords: Hyssopus officinalis L., in vitro culture, micro propagation, acclimatization
Procedia PDF Downloads 3133738 Humanising the Employment Environment for Emergency Medical Personnel: A Case Study of Capricorn District in Limpopo Province: South Africa
Authors: Manganyi Patricia Siphiwe
Abstract:
Work environments are characterised by performance pressure and mechanisation, which lead to job stress and the dehumanisation of work spaces. The personnel’s competence to accomplish job responsibilities and high job demands lead to a substantial load of health. Therefore, providing employees with conducive working environments is essential. In order to attain it, the employer should ensure that responsive and institutional safe systems are in place. The employer’s responses to employees’ needs are of significance to a healthy and developmental work environment. Denying employees a developmental and flourishing workplace is to deprive a workplace of being humane. Stressors coming from various aspects in the workplace can yield undue pressure and undesired responses for the workforces. Against the profiled background, this paper examines the causes and consequences of workplace stress within the Emergency Medical sector. The paper utilised a qualitative methodology and in-depth interviews for data collection with the purposively sampled emergency medical personnel. The findings showed that workplace stress has been associated with high demands and lack of support which has an adverse effect on biopsychosocial wellbeing of employees. This paper, therefore, recommends an engaged involvement of social workers through work organisational initiatives, such as Employee Assistance Programmes (EAP) and related labour relations policy activities to promote positive and developmental working environments.Keywords: stress, employee, workplace, wellbeing
Procedia PDF Downloads 993737 Shrinkage Evaluation in a Stepped Wax Pattern – a Simulation Approach
Authors: Alok S Chauhan, Sridhar S., Pradyumna R.
Abstract:
In the process of precision investment casting of turbine hollow blade/vane components, a part of the dimensional deviations observed in the castings can be attributed to the wax pattern. In the process of injection moulding of wax to produce patterns, heated wax shrinks in size during cooling in the die, leading to a reduction in the dimensions of the pattern. Also, flow and thermal induced residual stresses result in shrinkage & warpage of the component after removal from the die, further adding to the deviations. Injection moulding parameters such as wax temperature, flow rate, packing pressure, etc. affect the flow and thermal behavior of the component and hence are directly responsible for the dimensional deviations. There is a need to precisely determine and control these deviations in order to achieve stringent dimensional accuracies imposed on these castings by aerospace standards. Simulation based approaches provide a platform to predict these dimensional deviations without resorting to elaborate experimentation. In the present paper, Moldex3D simulation package has been utilized to analyze the effect of variations in injection temperature, packing pressure and cooling time on the shrinkage behavior of a stepped pattern. Two types of waxes with different rheological properties have been included in the study to gauge the effect of change in wax on the dimensional deviations. A full factorial design of experiments has been configured with these parameters and results of analysis of variance have been presented.Keywords: wax patterns, investment casting, pattern die/mould, wax injection, Moldex3D simulation
Procedia PDF Downloads 3783736 Stomach Perforation, due to Chronic External Pressure
Authors: Angelis P. Barlampas
Abstract:
PURPOSE: The purpose of this paper is to demonstrate the important role of taking an appropriate and detailed history, in order to reach the best possible diagnostic conclusion. MATERIAL: A patient presented to the emergency department due to the sudden onset of continuous abdominal pain, during the last hour and with the clinical symptoms of an acute abdomen. During the clinical examination, signs of peritoneal irritation and diffuse abdominal tenderness were found. The rest of the clinical and laboratory tests did not reveal anything important. From the reported medical history, nothing of note was found, except for the report of a large liver cyst, for which he was advised not to take any further action, except from regular ultrasound examination . METHOD: A computed tomography examination was performed after per os administration of gastrografin, which revealed a hyperdense ascitic effusion, similar in density to that of gastrografin within the intestinal tract. The presence of a large cyst of the left hepatic lobe was confirmed, contacting and pushing against the stomach. In the area of the contact between the liver cyst and the pylorus, there were extraluminal air bubbles and local opacity of the peritoneal fat, with a small hyperdense effusion. Result : The above, as well as the absence of a history of stomach ulcer or recent trauma, or other pathology, argue in favor of acute pyloric perforation, due to mural necrosis, in response to chronic external pressure from the pre-existing large liver cyst.Keywords: perforation, stomach, large liver cyst, CT abdomen, acute abdominal pain, intraperitoneal leakage, constrast leakage
Procedia PDF Downloads 1023735 Nickel Electroplating in Post Supercritical CO2 Mixed Watts Bath under Different Agitations
Authors: Chun-Ying Lee, Kun-Hsien Lee, Bor-Wei Wang
Abstract:
The process of post-supercritical CO2 electroplating uses the electrolyte solution after being mixed with supercritical CO2 and released to atmospheric pressure. It utilizes the microbubbles that form when oversaturated CO2 in the electrolyte returns to gaseous state, which gives the similar effect of pulsed electroplating. Under atmospheric pressure, the CO2 bubbles gradually diffuse. Therefore, the introduction of ultrasound and/or other agitation can potentially excite the CO2 microbubbles to achieve an electroplated surface of even higher quality. In this study, during the electroplating process, three different modes of agitation: magnetic stirrer agitation, ultrasonic agitation and a combined mode (magnetic + ultrasonic) were applied, respectively, in order to obtain an optimal surface morphology and mechanical properties for the electroplated Ni coating. It is found that the combined agitation mode at a current density of 40 A/dm2 achieved the smallest grain size, lower surface roughness, and produced an electroplated Ni layer that achieved hardness of 320 HV, much higher when compared with conventional method, which were usually in the range of 160 to 300 HV. However, at the same time, the electroplating with combined agitation developed a higher internal stress of 320 MPa due to the lower current efficiency of the process and finer grain in the coating. Moreover, a new control methodology for tailoring the coating’s mechanical property through its thickness was demonstrated by the timely introduction of ultrasonic agitation during the electroplating process with post supercritical CO2 mixed electrolyte.Keywords: nickel electroplating, micro-bubbles, supercritical carbon dioxide, ultrasonic agitation
Procedia PDF Downloads 2803734 Shock-Induced Densification in Glass Materials: A Non-Equilibrium Molecular Dynamics Study
Authors: Richard Renou, Laurent Soulard
Abstract:
Lasers are widely used in glass material processing, from waveguide fabrication to channel drilling. The gradual damage of glass optics under UV lasers is also an important issue to be addressed. Glass materials (including metallic glasses) can undergo a permanent densification under laser-induced shock loading. Despite increased interest on interactions between laser and glass materials, little is known about the structural mechanisms involved under shock loading. For example, the densification process in silica glasses occurs between 8 GPa and 30 GPa. Above 30 GPa, the glass material returns to the original density after relaxation. Investigating these unusual mechanisms in silica glass will provide an overall better understanding in glass behaviour. Non-Equilibrium Molecular Dynamics simulations (NEMD) were carried out in order to gain insight on the silica glass microscopic structure under shock loading. The shock was generated by the use of a piston impacting the glass material at high velocity (from 100m/s up to 2km/s). Periodic boundary conditions were used in the directions perpendicular to the shock propagation to model an infinite system. One-dimensional shock propagations were therefore studied. Simulations were performed with the STAMP code developed by the CEA. A very specific structure is observed in a silica glass. Oxygen atoms around Silicon atoms are organized in tetrahedrons. Those tetrahedrons are linked and tend to form rings inside the structure. A significant amount of empty cavities is also observed in glass materials. In order to understand how a shock loading is impacting the overall structure, the tetrahedrons, the rings and the cavities were thoroughly analysed. An elastic behaviour was observed when the shock pressure is below 8 GPa. This is consistent with the Hugoniot Elastic Limit (HEL) of 8.8 GPa estimated experimentally for silica glasses. Behind the shock front, the ring structure and the cavity distribution are impacted. The ring volume is smaller, and most cavities disappear with increasing shock pressure. However, the tetrahedral structure is not affected. The elasticity of the glass structure is therefore related to a ring shrinking and a cavity closing. Above the HEL, the shock pressure is high enough to impact the tetrahedral structure. An increasing number of hexahedrons and octahedrons are formed with the pressure. The large rings break to form smaller ones. The cavities are however not impacted as most cavities are already closed under an elastic shock. After the material relaxation, a significant amount of hexahedrons and octahedrons is still observed, and most of the cavities remain closed. The overall ring distribution after relaxation is similar to the equilibrium distribution. The densification process is therefore related to two structural mechanisms: a change in the coordination of silicon atoms and a cavity closing. To sum up, non-equilibrium molecular dynamics were carried out to investigate silica behaviour under shock loading. Analysing the structure lead to interesting conclusions upon the elastic and the densification mechanisms in glass materials. This work will be completed with a detailed study of the mechanism occurring above 30 GPa, where no sign of densification is observed after the material relaxation.Keywords: densification, molecular dynamics simulations, shock loading, silica glass
Procedia PDF Downloads 2233733 The Cleaning Equipment to Prevents Dust Diffusion of Bus Air Filters
Authors: Jiraphorn Satechan, Thanaphon Khamthieng, Warunee Phanwong
Abstract:
This action research aimed at designing and developing the cleaning equipment to preventing dust diffusion of bus air filter. Quantitative and qualitative data collection methods were used to conduct data from October 1st, 2018 to September 30th, 2019. All of participants were male (100.0%) with aged 40- 49 years and 57.15%, of them finish bachelor degree. 71.43% of them was a driver and 57.15% of them had the working experience between 10 and 15 years. Research revealed that the participants assessed the quality of the bus air filter cleaning equipment for preventing dust diffusion at a moderate level (σ= 0.29), and 71.43 of them also suggested the development methods in order to improve the quality of bus air filters cleaning equipment as follows: 1) to install the circuit breaker for cutting the electricity and controlling the on-off of the equipment and to change the motor to the DC system, 2) should install the display monitor for wind pressure and electricity system as well as to install the air pressure gauge, 3) should install the tank lid lock for preventing air leakage and dust diffusion by increasing the blowing force and sucking power, 4) to stabilize the holding points for preventing the filter shaking while rotating and blowing for cleaning and to reduce the rotation speed in order to allow the filters to move slowly for the air system to blow for cleaning more thoroughly, 5) the amount of dust should be measured before and after cleaning and should be designed the cleaning equipment to be able to clean with a variety of filters, and sizes. Moreover, the light-weight materials should be used to build the cleaning equipment and the wheels should be installed at the base of the equipment in order to make it easier to move.Keywords: Cleaning Equipment, Bus Air Filters, Preventing Dust Diffusion, Innovation
Procedia PDF Downloads 1143732 Assessment of Acute Cardiovascular Responses to Moderate and Vigorous Intensity Aerobic Exercises in Sedentary Adults and Amateur Athletes
Authors: Caner Yilmaz, Zuhal Didem Takinaci
Abstract:
Introduction: Today, our knowledge about the effects of physical activity performed at the different intensity of the cardiovascular system are still not clear. Therefore, to contribute to the literature, in our study, sedentary individuals and amateur athletes were assessed in a single session with the aim of evaluating the cardiovascular effects of the moderate and severe exercise. Methods: 80 participants (40 amateur athletes and 40 sedentary, young adults) participated in our study. Participants were divided into two groups: amateur athletes (mean age: 25.0 ± 3.6 yrs) and sedentary in group II (mean age: 23.8 ± 3.7 yrs). Participants in both groups were assessed twice, namely, firstly, at moderate intensity (5km/h 30 min. walking) and secondly at the vigorous intensity (8km/h 20 min. jogging). Participants’ SBP (Systolic Blood Pressure), DBP (Diastolic Blood Pressure), HR (Heart Rate), SpO₂ (Oxygen Saturation), BT (Body Temperature) and RR (Respiratory Rate) were measured. Results: In our study, the findings showed that after moderate-intensity aerobic exercise, change in SBP, DBP, and SpO₂ were significantly higher in Group II (p < 0.05). After the severe intensity aerobic exercises, change in SBP, SpO₂, HR, and RR was significantly higher in Group II (p < 0.05). The BORG score of Group II was significantly higher after both moderate and severe intensity aerobic exercise (p < 0.05). Conclusion: The cardiovascular responses of amateur athletes were closer to initial values, and the differences between the two groups were increased in direct proportion to the intensity of the exercise. Both exercise intensities could be adequate.Keywords: aerobic, exercise, sedantary, cardi̇ovascular
Procedia PDF Downloads 2923731 Ultrasonic Micro Injection Molding: Manufacturing of Micro Plates of Biomaterials
Authors: Ariadna Manresa, Ines Ferrer
Abstract:
Introduction: Ultrasonic moulding process (USM) is a recent injection technology used to manufacture micro components. It is able to melt small amounts of material so the waste of material is certainly reduced comparing to microinjection molding. This is an important advantage when the materials are expensive like medical biopolymers. Micro-scaled components are involved in a variety of uses, such as biomedical applications. It is required replication fidelity so it is important to stabilize the process and minimize the variability of the responses. The aim of this research is to investigate the influence of the main process parameters on the filling behaviour, the dimensional accuracy and the cavity pressure when a micro-plate is manufactured by biomaterials such as PLA and PCL. Methodology or Experimental Procedure: The specimens are manufactured using a Sonorus 1G Ultrasound Micro Molding Machine. The used geometry is a rectangular micro-plate of 15x5mm and 1mm of thickness. The materials used for the investigation are PLA and PCL due to biocompatible and degradation properties. The experimentation is divided into two phases. Firstly, the influence of process parameters (vibration amplitude, sonotrodo velocity, ultrasound time and compaction force) on filling behavior is analysed, in Phase 1. Next, when filling cavity is assured, the influence of both cooling time and force compaction on the cavity pressure, part temperature and dimensional accuracy is instigated, which is done in Phase. Results and Discussion: Filling behavior depends on sonotrodo velocity and vibration amplitude. When the ultrasonic time is higher, more ultrasonic energy is applied and the polymer temperature increases. Depending on the cooling time, it is possible that when mold is opened, the micro-plate temperature is too warm. Consequently, the polymer relieve its stored internal energy (ultrasonic and thermal) expanding through the easier direction. This fact is reflected on dimensional accuracy, causing micro-plates thicker than the mold. It has also been observed the most important fact that affects cavity pressure is the compaction configuration during the manufacturing cycle. Conclusions: This research demonstrated the influence of process parameters on the final micro-plated manufactured. Future works will be focused in manufacturing other geometries and analysing the mechanical properties of the specimens.Keywords: biomaterial, biopolymer, micro injection molding, ultrasound
Procedia PDF Downloads 2883730 Temporal Change in Bonding Strength and Antimicrobial Effect of a Zirconia after Nonthermal Atmospheric Pressure Plasma Treatment
Authors: Chan Park, Sang-Won Park, Kwi-Dug Yun, Hyun-Pil Lim
Abstract:
Purpose: Plasma treatment under various conditions has been studied to increase the bonding strength and surface sterilization of dental ceramic materials. We assessed the evolution of the shear bond strength (SBS) and antimicrobial effect of nonthermal atmospheric pressure plasma (NTAPP) treatment over time. Methods: Presintered zirconia specimens were manufactured as discs (diameter: 15 mm, height: 2 mm) after final sintering. The specimens then received a 30-min treatment with argon gas (Ar², 99.999%; 10 L/min) using an NTAPP device. Five post-treatment intervals were evaluated: control (no treatment), P0 (within 1 h), P1 (24 h), P2 (48 h), and P3 (72 h). This study investigated the surface characteristics, SBS of two different resin cement (RelyXTM U200 self-adhesive resin cement, Panavia F2.0 methacryloyloxydecyl dihydrogen phosphate (MDP)-based resin cement), and Streptococcus mutans biofilm formation. Results: The SBS of RelyXTM U200 increased significantly (p < 0.05) within 2 days following plasma treatment (P0, P1, P2). For Panavia F 2.0, a significant decrease (p < 0.05) was detected only in the group that had undergone cementation immediately after plasma treatment (P0). S. mutans adhesion decreased significantly (p < 0.05) within 2 days of plasma treatment (P0, P1, P2) compared to the control group. The P0 group displayed a lower biofilm thickness than the P1 and P2 groups (p < 0.05). Conclusions: After NTAPP treatment of zirconia, the effects on bonding strength and antimicrobial growth persist for a limited duration. The effect of NTAPP treatment on bonding strength depends on the resin cement.Keywords: NTAPP, SBS, antimicrobial effect, zirconia
Procedia PDF Downloads 2473729 Central Line Stock and Use Audit in Adult Patients: A Quality Improvement Project on Central Venous Catheter Standardisation Across Hospital Departments
Authors: Gregor Moncrieff, Ursula Bahlmann
Abstract:
A number of incident reports were filed from the intensive care unit with regards to adult patients admitted following operations who had a central venous catheter inserted of the incorrect length for the relevant anatomical site and catheters not compatible with pressurised injection inserted whilst in theatre. Incorrect catheter length can lead to a variety of complications and pressurised injection is a requirement for contrast enhanced computerised tomography scans. This led to several patients having a repeat procedure to insert a catheter of the correct length and also compatible with pressurised injection. This project aimed to identify the types of central venous catheters used in theatres and ensure the correct equipment would be stocked and used in future cases in accordance the existing Association of Anaesthetics of Great Britain and Northern Ireland guidelines. A questionnaire was sent out to all of the anaesthetic department in our hospital aiming to determine what types of central venous catheters were preferably used by anaesthetists and why these had been chosen. We also explored any concerns regarding introduction of standardised, pressure injectable central venous catheters to the theatre department which were already in use in other parts of the hospital and in keeping with national guidance. A total of 56 responses were collected. 64% of respondents routinely used a central venous catheter which was significantly shorter than the national recommended guidance with a further 4 different types of central venous catheters used which were different to other areas of the hospital and not pressure injectable. 75% of respondents were in agreement to standardised introduction of the pressure injectable catheters of the recommended length in accordance with national guidance. Reasons why 25% respondents were opposed to introduction of these catheters were explored and discussed. We were successfully able to introduce the standardised central catheters to the theatre department following presentation at the local anaesthetic quality and safety meeting. Reasons against introduction of the catheters were discussed and a compromise was reached that the existing catheters would continue to be stocked but would only be available on request, with a focus on encouraging use of the standardised catheters. Additional changes achieved included removing redundant catheters from the theatre stock. Ongoing data is being collected to analyse positive and negative feedback from use of the introduced catheters.Keywords: central venous catheter, medical equipment, medical safety, quality improvement
Procedia PDF Downloads 1203728 The Review of Permanent Downhole Monitoring System
Abstract:
With the increasingly difficult development and operating environment of exploration, there are many new challenges and difficulties in developing and exploiting oil and gas resources. These include the ability to dynamically monitor wells and provide data and assurance for the completion and production of high-cost and complex wells. A key technology in providing these assurances and maximizing oilfield profitability is real-time permanent reservoir monitoring. The emergence of optical fiber sensing systems has gradually begun to replace traditional electronic systems. Traditional temperature sensors can only achieve single-point temperature monitoring, but fiber optic sensing systems based on the Bragg grating principle have a high level of reliability, accuracy, stability, and resolution, enabling cost-effective monitoring, which can be done in real-time, anytime, and without well intervention. Continuous data acquisition is performed along the entire wellbore. The integrated package with the downhole pressure gauge, packer, and surface system can also realize real-time dynamic monitoring of the pressure in some sections of the downhole, avoiding oil well intervention and eliminating the production delay and operational risks of conventional surveys. Real-time information obtained through permanent optical fibers can also provide critical reservoir monitoring data for production and recovery optimization.Keywords: PDHM, optical fiber, coiled tubing, photoelectric composite cable, digital-oilfield
Procedia PDF Downloads 863727 A Ratiometric Inorganic Phosphate Sensor Based on CdSe/ZnS QDs and Rhodamine 6G-Doped Nanofibers
Authors: Hong Dinh Duong, Jong Il Rhee
Abstract:
In this study, a ratiometric inorganic phosphate sensor was fabricated by a double layer of the rhodamine 6G-doped nanofibers and the CdSe/ZnS QDs-captured polymer. In which, CdSe/ZnS QDs with emission wavelengths of 595nm were synthesized and ligands on their surface were exchanged with mercaptopropionic acid (MPA). The synthesized MPA-QDs were combined with the mixture of sol-gel of 3-glycidoxypropyl trimethoxysilane (GPTMS), 3-aminopropyltrimethoxysilane (APTMS) and polyurethane (PU) to build a layer for sensing inorganic phosphate. Another sensing layer was of nanofibers doped R6G which were produced from poly(styrene-co-acrylonitrile) by electrospining. The ratio of fluorescence intensities between rhodamin 6G (R6G) and CdSe/ZnS QDs exposed at different phosphate concentrations was used for calculating a linear phosphate concentration range of 0-10mM.Keywords: nanofiber, QDs, ratiometric phosphate sensor, rhodamine 6G, sol-gel
Procedia PDF Downloads 4123726 Nitric Oxide and Potassium Channels but Not Opioid and Cannabinoid Receptors Mediate Tramadol-Induced Peripheral Antinociception in Rat Model of Paw Pressure Withdrawal
Authors: Raquel R. Soares-Santos, Daniel P. Machado, Thiago L. Romero, Igor D. G. Duarte
Abstract:
Tramadol, an analgesic classified as an 'atypical opioid,' exhibits both opioid and non-opioid mechanisms of action. This study aimed to explore these mechanisms, specifically the opioid-, cannabinoid-, nitric oxide-, and potassium channel-based mechanisms, which contribute to the peripheral antinociception effect of tramadol, in an experimental rat model. The nociceptive threshold was determined using paw pressure withdrawal. To examine the mechanisms of action, several substances were administered intraplantarly: naloxone, a non-selective opioid antagonist (50 μg/paw); AM251 (80 μg/paw) and AM630 (100 μg/paw) as the selective antagonists for type 1 and type 2 cannabinoid receptors, respectively; nitric oxide synthase inhibitors L-NOArg, L-NIO, L-NPA, and L-NIL (24 μg/paw); and the enzyme inhibitors of guanylatocyclase and phosphodiesterase of cGMP, ODQ and zaprinast. Additionally, potassium channel blockers glibenclamide, tetraethylammonium, dequalinium, and paxillin were used. The results showed that opioid and cannabinoid receptor antagonists did not reverse tramadol’s effects. L-NOarg, L-NIO, and L-NPA partially reversed antinociception, while ODQ completely reversed, and zaprinast enhanced tramadol’s antinociception effect. Notably, glibenclamide blocked tramadol’s antinociception in a dose-dependent manner. These findings suggest that tramadol’s peripheral antinociception effect is likely mediated by the nitrergic pathway and sensitive ATP potassium channels, rather than the opioid and cannabinoid pathways.Keywords: tramadol, nitric oxide, potassium channels, peripheral analgesia, opioid
Procedia PDF Downloads 193725 Antioxidant Extraction from Indonesian Crude Palm Oil and Its Antioxidation Activity
Authors: Supriyono, Sumardiyono, Puti Pertiwi
Abstract:
Crude palm oil (CPO) is a vegetable oil that came from a palm tree bunch. Palm oil tree was known as highest vegetable oil yield. It was grown across Equatorial County, especially in Malaysia and Indonesia. The greenish red color on CPO was came from carotenoid antioxidant, which could be extracted and use separately as functional food and other purposes as antioxidant source. Another antioxidant that also found in CPO is tocopherol. The aim of the research work is to find antioxidant activity on CPO comparing to the synthetic antioxidant that available in a market. On this research work, antioxidant was extracted by using a mixture of acetone and n. hexane, while activity of the antioxidant extract was determine by DPPH method. The extracted matter was shown that their antioxidant activity was about 45% compare to pure tocopherol and beta carotene.Keywords: antioxidant, , beta carotene, , crude palm oil, , DPPH, , tocopherol
Procedia PDF Downloads 2963724 Numerical Study of Microdrops Manipulation by MicroFluidic Oscillator
Authors: Tawfiq Chekifi, Brahim Dennai, Rachid Khelfaoui
Abstract:
Over the last few decades, modeling immiscible fluids such as oil and water have been a classical research topic. Droplet-based microfluidics presents a unique platform for mixing, reaction, separation, dispersion of drops and numerous other functions. for this purpose Several devices were studied, as well as microfluidic oscillator. The latter was obtained from wall attachment microfluidic amplifiers using a feedback loop from the outputs to the control inputs, nevertheless this device haven’t well used for microdrops applications. In this paper, we suggest a numerical CFD study of a microfluidic oscillator with two different lengths of feedback loop. In order to produce simultaneous microdrops of gasoil on water, a typical geometry that includes double T-junction is connected to the fluidic oscillator, The generation of microdrops is computed by volume-of-fluid method (VOF). Flow oscillations of microdrops were triggered by the Coanda effect of jet flow. The aim of work is to obtain a high oscillation frequency in output of this passive device, the influence of hydrodynamics and physics parameters on the microdrops frequency in the output of our microsystem is also analyzed, The computational results show that, the length of feedback loop, applied pressure on T-junction and interfacial tension have a significant effect on the dispersion of microdrops and its oscillation frequency. Across the range of low Reynold number, the microdrops generation and its dynamics have been accurately controlled by adjusting applying pressure ratio of two phases.Keywords: fluidic oscillator, microdrops manipulation, volume of fluid method, microfluidic oscillator
Procedia PDF Downloads 4943723 Microwave Dielectric Relaxation Study of Diethanolamine with Triethanolamine from 10 MHz-20 GHz
Authors: A. V. Patil
Abstract:
The microwave dielectric relaxation study of diethanolamine with triethanolamine binary mixture have been determined over the frequency range of 10 MHz to 20 GHz, at various temperatures using time domain reflectometry (TDR) method for 11 concentrations of the system. The present work reveals molecular interaction between same multi-functional groups [−OH and –NH2] of the alkanolamines (diethanolamine and triethanolamine) using different models such as Debye model, Excess model, and Kirkwood model. The dielectric parameters viz. static dielectric constant (ε0) and relaxation time (τ) have been obtained with Debye equation characterized by a single relaxation time without relaxation time distribution by the least squares fit method.Keywords: diethanolamine, excess properties, kirkwood properties, time domain reflectometry, triethanolamine
Procedia PDF Downloads 3063722 Tribological Response of Self-Mated Zircaloy-4 under Varying Conditions
Authors: Bharat Kumar, Deepak Kumar, Vijay Chaudhry
Abstract:
Zirconium alloys are widely used for the core components of a pressurized heavy water reactor (PHWR) or Canada deuterium (CANDU) reactor due to their low neutron absorption cross-section and excellent mechanical properties. The components made of Zirconium alloys are subjected to flow-induced vibrations, resulting in fretting wear at the interface of; pressure tubes and bearing pads, pressure tubes and calandria tubes, and calandria tubes and Liquid injection shutdown system (LISS) nozzles. There is a need to explore the tribological response under such conditions. Present work simulates the contact between calandria tube and LISS nozzle of PHWR/CANDU reactor as cylinder-on-cylinder contact configuration. Reciprocating tribo-tests were conducted on Zircaloy-4 (Zr-4) under the self-mated condition at varying amplitude, frequency, and sliding time. To understand the active wear mechanism, worn surfaces were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The change in amplitude severely affects the wear than other factors. The wear mechanism transits from adhesion to abrasion with increasing test amplitude. The dominant wear mechanisms are micro-cutting and micro-plowing followed by delamination in some areas. However, the coefficient of friction has indifferent behaviors.Keywords: zircaloy-4, tribology, calandria tube, LISS nozzle, PHWR
Procedia PDF Downloads 2173721 Coarse-Grained Molecular Simulations to Estimate Thermophysical Properties of Phase Equilibria
Authors: Hai Hoang, Thanh Xuan Nguyen Thi, Guillaume Galliero
Abstract:
Coarse-Grained (CG) molecular simulations have shown to be an efficient way to estimate thermophysical (static and dynamic) properties of fluids. Several strategies have been developed and reported in the literature for defining CG molecular models. Among them, those based on a top-down strategy (i.e. CG molecular models related to macroscopic observables), despite being heuristic, have increasingly gained attention. This is probably due to its simplicity in implementation and its ability to provide reasonable results for not only simple but also complex systems. Regarding simple Force-Fields associated with these CG molecular models, it has been found that the four parameters Mie chain model is one of the best compromises to describe thermophysical static properties (e.g. phase diagram, saturation pressure). However, parameterization procedures of these Mie-chain GC molecular models given in literature are generally insufficient to simultaneously provide static and dynamic (e.g. viscosity) properties. To deal with such situations, we have extended the corresponding states by using a quantity associated with the liquid viscosity. Results obtained from molecular simulations have shown that our approach is able to yield good estimates for both static and dynamic thermophysical properties for various real non-associating fluids. In addition, we will show that on simple (e.g. phase diagram, saturation pressure) and complex (e.g. thermodynamic response functions, thermodynamic energy potentials) static properties, results of our scheme generally provides improved results compared to existing approaches.Keywords: coarse-grained model, mie potential, molecular simulations, thermophysical properties, phase equilibria
Procedia PDF Downloads 3403720 Atmospheric CO2 Capture via Temperature/Vacuum Swing Adsorption in SIFSIX-3-Ni
Authors: Eleni Tsalaporta, Sebastien Vaesen, James M. D. MacElroy, Wolfgang Schmitt
Abstract:
Carbon dioxide capture has attracted the attention of many governments, industries and scientists over the last few decades, due to the rapid increase in atmospheric CO2 composition, with several studies being conducted in this area over the last few years. In many of these studies, CO2 capture in complex Pressure Swing Adsorption (PSA) cycles has been associated with high energy consumption despite the promising capture performance of such processes. The purpose of this study is the economic capture of atmospheric carbon dioxide for its transformation into a clean type of energy. A single column Temperature /Vacuum Swing Adsorption (TSA/VSA) process is proposed as an alternative option to multi column Pressure Swing Adsorption (PSA) processes. The proposed adsorbent is SIFSIX-3-Ni, a newly developed MOF (Metal Organic Framework), with extended CO2 selectivity and capacity. There are three stages involved in this paper: (i) SIFSIX-3-Ni is synthesized and pelletized and its physical and chemical properties are examined before and after the pelletization process, (ii) experiments are designed and undertaken for the estimation of the diffusion and adsorption parameters and limitations for CO2 undergoing capture from the air; and (iii) the CO2 adsorption capacity and dynamical characteristics of SIFSIX-3-Ni are investigated both experimentally and mathematically by employing a single column TSA/VSA, for the capture of atmospheric CO2. This work is further supported by a technical-economical study for the estimation of the investment cost and the energy consumption of the single column TSA/VSA process. The simulations are performed using gProms.Keywords: carbon dioxide capture, temperature/vacuum swing adsorption, metal organic frameworks, SIFSIX-3-Ni
Procedia PDF Downloads 2653719 Capnography in Hypoxic Pseudo-Pea May Correlate to the Amount of Required Intervention for Resuscitation
Authors: Yiyuan David Hu, Alex Lindqwister, Samuel B. Klein, Karen Moodie, Norman A. Paradis
Abstract:
Introduction: Pseudo-Pulseless Electrical Activity (p-PEA) is a lifeless form of profound cardiac shock characterized by measurable cardiac mechanical activity without clinically detectable pulses. Patients in pseudo-PEA carry different prognoses than those in true PEA and may require different therapies. End-tidal carbon dioxide (ET-CO2) has been studied in ventricular fibrillation and true PEA but in p-PEA. We utilized an hypoxic porcine model to characterize the performance of ET-CO2 in resuscitation from p-PEA. Hypothesis: Capnography correlates to the number of required interventions for resuscitation from p-PEA. Methods: Female swine (N = 14) under intravenous anesthesia were instrumented with aortic and right atrial micromanometer pressure. ECG and ET-CO2 were measured continuously. p-PEA was induced by ventilation with 6% oxygen in 94% nitrogen and was defined as a systolic aortic (Ao) pressure less than 40 mmHg. Pigs were grouped based on the interventions required to achieve ROSC: 100%O2, 100%O2 + CPR, 100%O2 + CPR + epinephrine. Results: End tidal CO2 reliably predicted O2 therapy vs CPR-based interventions needed for resuscitation (Figure 1). Pigs who would recover with 100%O2 only had a mean ET-CO2 slope of 0.039 ± 0.013 [ R2 = 0.68], those requiring oxygen + CPR had a slope of -0.15 ± 0.016 [R2 = 0.95], and those requiring oxygen + CPR + epinephrine had a slope of -0.12 ± 0.031 [R2 = 0.79]. Conclusions: In a porcine model of hypoxic p-PEA, measured ET-CO2 appears to be strongly correlated with the required interventions needed for ROSC. If confirmed clinically, these results indicate that ET-CO2 may be useful in guiding therapy in patients suffering p-PEA cardiac arrest.Keywords: pseudo-PEA, resuscitation, capnography, hypoxic pseudo-PEA
Procedia PDF Downloads 1963718 High-Speed Imaging and Acoustic Measurements of Dual-frequency Ultrasonic Processing of Graphite in Water
Authors: Justin Morton, Mohammad Khavari, Abhinav Priyadarshi, Nicole Grobert, Dmitry G. Eskin, Jiawei Mi, Kriakos Porfyrakis, Paul Prentice
Abstract:
Ultrasonic cavitation is used for various processes and applications. Recently, ultrasonic assisted liquid phase exfoliation has been implemented to produce two dimensional nanomaterials. Depending on parameters such as input transducer power and the operational frequency used to induce the cavitation, bubble dynamics can be controlled and optimised. Using ultra-high-speed imagining and acoustic pressure measurements, a dual-frequency systemand its effect on bubble dynamics was investigated. A high frequency transducer (1.174 MHz) showed that bubble fragments and satellite bubbles induced from a low frequency transducer (24 kHz) were able to extend their lifecycle. In addition, this combination of ultrasonic frequencies generated higher acoustic emissions (∼24%) than the sum of the individual transducers. The dual-frequency system also produced an increase in cavitation zone size of∼3 times compared to the low frequency sonotrode. Furthermore, the high frequency induced cavitation bubbleswere shown to rapidly oscillate, although remained stable and did not transiently collapse, even in the presence of a low pressure field. Finally, the spatial distribution of satellite and fragment bubbles from the sonotrode were shown to increase, extending the active cavitation zone. These observations elucidated the benefits of using a dual-frequency system for generating nanomaterials with the aid of ultrasound, in deionised water.Keywords: dual-frequency, cavitation, bubble dynamics, graphene
Procedia PDF Downloads 2003717 Influence of Silica Fume on Ultrahigh Performance Concrete
Authors: Vitoldas Vaitkevičius, Evaldas Šerelis
Abstract:
Silica fume, also known as microsilica (MS) or condensed silica fume is a by-product of the production of silicon metal or ferrosilicon alloys. Silica fume is one of the most effective pozzolanic additives which could be used for ultrahigh performance and other types of concrete. Despite the fact, however is not entirely clear, which amount of silica fume is most optimal for UHPC. Main objective of this experiment was to find optimal amount of silica fume for UHPC with and without thermal treatment, when different amount of quartz powder is substituted by silica fume. In this work were investigated four different composition of UHPC with different amount of silica fume. Silica fume were added 0, 10, 15 and 20% of cement (by weight) to UHPC mixture. Optimal amount of silica fume was determined by slump, viscosity, qualitative and quantitative XRD analysis and compression strength tests methods.Keywords: compressive strength, silica fume, ultrahigh performance concrete, XRD
Procedia PDF Downloads 2983716 An Eulerian Method for Fluid-Structure Interaction Simulation Applied to Wave Damping by Elastic Structures
Authors: Julien Deborde, Thomas Milcent, Stéphane Glockner, Pierre Lubin
Abstract:
A fully Eulerian method is developed to solve the problem of fluid-elastic structure interactions based on a 1-fluid method. The interface between the fluid and the elastic structure is captured by a level set function, advected by the fluid velocity and solved with a WENO 5 scheme. The elastic deformations are computed in an Eulerian framework thanks to the backward characteristics. We use the Neo Hookean or Mooney Rivlin hyperelastic models and the elastic forces are incorporated as a source term in the incompressible Navier-Stokes equations. The velocity/pressure coupling is solved with a pressure-correction method and the equations are discretized by finite volume schemes on a Cartesian grid. The main difficulty resides in that large deformations in the fluid cause numerical instabilities. In order to avoid these problems, we use a re-initialization process for the level set and linear extrapolation of the backward characteristics. First, we verify and validate our approach on several test cases, including the benchmark of FSI proposed by Turek. Next, we apply this method to study the wave damping phenomenon which is a mean to reduce the waves impact on the coastline. So far, to our knowledge, only simulations with rigid or one dimensional elastic structure has been studied in the literature. We propose to place elastic structures on the seabed and we present results where 50 % of waves energy is absorbed.Keywords: damping wave, Eulerian formulation, finite volume, fluid structure interaction, hyperelastic material
Procedia PDF Downloads 3283715 Recovery of Heavy Metals by Ion Exchange on the Zeolite Materials
Abstract:
Zeolites are a family of mineral compounds. With special properties that have led to several important industrial applications. Ion exchange has enabled the first industrial application in the field of water treatment. The exchange by aqueous pathway is the method most used in the case of such microporous materials and this technique will be used in this work. The objective of this work is to find performance materials for the recovery of heavy metals such as cadmium. The study is to compare the properties of different ion exchange zeolite Na-X, Na-A, their physical mixture and the composite A (LTA) / X (FAU). After the synthesis of various zeolites X and A, it was designed a model Core-Shell to form a composite zeolite A on zeolite X. Finally, ion exchange studies were performed on these zeolite materials. The cation is exclusively tested for cadmium, a toxic element and is harmful to health and the environment.Keywords: zeolite A, zeolite X, ion exchange, water treatment
Procedia PDF Downloads 4353714 The Influence of Reaction Parameters on Magnetic Properties of Synthesized Strontium Ferrite
Authors: M. Bahgat, F. M. Awan, H. A. Hanafy
Abstract:
The conventional ceramic route was utilized to prepare a hard magnetic powder (M-type strontium ferrite, SrFe12O19). The stoichiometric mixture of iron oxide and strontium carbonate were calcined at 1000°C and then fired at various temperatures. The influence of various reaction parameters such as mixing ratio, calcination temperature, firing temperature and firing time on the magnetic behaviors of the synthesized magnetic powder were investigated.The magnetic properties including Coercivity (Hc), Magnetic saturation (Ms), and Magnetic remnance (Mr) were measured by vibrating sample magnetometer. Morphologically the produced magnetic powder has a dense hexagonal grain shape structure.Keywords: hard magnetic materials, ceramic route, strontium ferrite, magnetic properties
Procedia PDF Downloads 6993713 The Design of Fire in Tube Boiler
Authors: Yoftahe Nigussie
Abstract:
This report presents a final year project pertaining to the design of Fire tube boiler for the purpose of producing saturated steam. The objective of the project is to produce saturated steam for different purpose with a capacity of 2000kg/h at 12bar design pressure by performing a design of a higher performance fire tube boiler that considered the requirements of cost minimization and parameters improvement. This is mostly done in selection of appropriate material for component parts, construction materials and production methods in different steps of analysis. In the analysis process, most of the design parameters are obtained by iterating with related formulas like selection of diameter of tubes with overall heat transfer coefficient optimization, and the other selections are also as like considered. The number of passes is two because of the size and area of the tubes and shell. As the analysis express by using heavy oil fuel no6 with a higher heating value of 44000kJ/kg and lower heating value of 41300kJ/kg and the amount of fuel consumed 140.37kg/hr. and produce 1610kw of heat with efficiency of 85.25%. The flow of the fluid is a cross flow because of its own advantage and the arrangement of the tube in-side the shell is welded with the tube sheet, and the tube sheet is attached with the shell and the end by using a gasket and weld. The design of the shell, using European Standard code section, is as like pressure vessel by considering the weight, including content and the supplementary accessories such as lifting lugs, openings, ends, man hole and supports with detail and assembly drawing.Keywords: steam generation, external treatment, internal treatment, steam velocity
Procedia PDF Downloads 1023712 Significance of Transient Data and Its Applications in Turbine Generators
Authors: Chandra Gupt Porwal, Preeti C. Porwal
Abstract:
Transient data reveals much about the machine's condition that steady-state data cannot. New technologies make this information much more available for evaluating the mechanical integrity of a machine train. Recent surveys at various stations indicate that simplicity is preferred over completeness in machine audits throughout the power generation industry. This is most clearly shown by the number of rotating machinery predictive maintenance programs in which only steady-state vibration amplitude is trended while important transient vibration data is not even acquired. Efforts have been made to explain what transient data is, its importance, the types of plots used for its display, and its effective utilization for analysis. In order to demonstrate the value of measuring transient data and its practical application in rotating machinery for resolving complex and persistent issues with turbine generators, the author presents a few case studies that highlight the presence of rotor instabilities due to the shaft moving towards the bearing centre in a 100 MM LMZ unit located in the Northern Capital Region (NCR), heavy misalignment noticed—especially after 2993 rpm—caused by loose coupling bolts, which prevented the machine from being synchronized for more than four months in a 250 MW KWU unit in the Western Region (WR), and heavy preload noticed at Intermediate pressure turbine (IPT) bearing near HP- IP coupling, caused by high points on coupling faces at a 500 MW KWU unit in the Northern region (NR), experienced at Indian power plants.Keywords: transient data, steady-state-data, intermediate -pressure-turbine, high-points
Procedia PDF Downloads 743711 CO2 Utilization by Reverse Water-Shift and Fischer-Tropsch Synthesis for Production of Heavier Fraction Hydrocarbons in a Container-Sized Mobile Unit
Authors: Francisco Vidal Vázquez, Pekka Simell, Christian Frilund, Matti Reinikainen, Ilkka Hiltunen, Tim Böltken, Benjamin Andris, Paolo Piermartini
Abstract:
Carbon capture and utilization (CCU) are one of the key topics in mitigation of CO2 emissions. There are many different technologies that are applied for the production of diverse chemicals from CO2 such as synthetic natural gas, Fischer-Tropsch products, methanol and polymers. Power-to-Gas and Power-to-Liquids concepts arise as a synergetic solution for storing energy and producing value added products from the intermittent renewable energy sources and CCU. VTT is a research and technology development company having energy in transition as one of the key focus areas. VTT has extensive experience in piloting and upscaling of new energy and chemical processes. Recently, VTT has developed and commissioned a Mobile Synthesis Unit (MOBSU) in close collaboration with INERATEC, a spin-off company of Karlsruhe Institute of Technology (KIT, Germany). The MOBSU is a multipurpose synthesis unit for CO2 upgrading to energy carriers and chemicals, which can be transported on-site where CO2 emission and renewable energy are available. The MOBSU is initially used for production of fuel compounds and chemical intermediates by combination of two consecutive processes: reverse Water-Gas Shift (rWGS) and Fischer-Tropsch synthesis (FT). First, CO2 is converted to CO by high-pressure rWGS and then, the CO and H2 rich effluent is used as feed for FT using an intensified reactor technology developed and designed by INERATEC. Chemical equilibrium of rWGS reaction is not affected by pressure. Nevertheless, compression would be required in between rWGS and FT in the case when rWGS is operated at atmospheric pressure. This would also require cooling of rWGS effluent, water removal and reheating. For that reason, rWGS is operated using precious metal catalyst in the MOBSU at similar pressure as FT to simplify the process. However, operating rWGS at high pressures has also some disadvantages such as methane and carbon formation, and more demanding specifications for materials. The main parts of FT module are an intensified reactor, a hot trap to condense the FT wax products, and a cold trap to condense the FT liquid products. The FT synthesis is performed using cobalt catalyst in a novel compact reactor technology with integrated highly-efficient water evaporation cooling cycle. The MOBSU started operation in November 2016. First, the FT module is tested using as feedstock H2 and CO. Subsequently, rWGS and FT modules are operated together using CO2 and H2 as feedstock of ca. 5 Nm3/hr total flowrate. On spring 2017, The MOBSU unit will be integrated together with a direct air capture (DAC) of CO2 unit, and a PEM electrolyser unit at Lappeenranta University of Technology (LUT) premises for demonstration of the SoletAir concept. This would be the first time when synthetic fuels are produced by combination of DAC unit and electrolyser unit which uses solar power for H2 production.Keywords: CO2 utilization, demonstration, Fischer-Tropsch synthesis, intensified reactors, reverse water-gas shift
Procedia PDF Downloads 294