Search results for: home network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6139

Search results for: home network

4549 Combined Pneumomediastinum and Pneumothorax Due to Hyperemesis Gravidarum

Authors: Fayez Hanna, Viet Tran

Abstract:

A 20 years old lady- primigravida 6 weeks pregnant with unremarkable past history, presented to the emergency department at the Royal Hobart Hospital, Tasmania, Australia, with hyperemesis gravidarum associated with, dehydration and complicated with hematemesis and chest pain resistant. Accordingly, we conducted laboratory investigations which revealed: FBC: WBC 23.9, unremarkable U&E, LFT, lipase and her VBG showed a pH 7.4, pCo2 36.7, cK+ 3.2, cNa+ 142. The decision was made to do a chest X-ray (CXR) after explaining the risks/benefit of performing radiographic investigations during pregnancy and considering the patient's plan for the termination of the pregnancy as she was not ready for motherhood for shared decision-making and consent to look for pneumoperitoneum to suggest perforated viscus that might cause the hematemesis. However, the CXR showed pneumomediastinum but no evidence of pneumoperitoneum or pneumothorax. Consequently, a decision was made to proceed with CT oesophagography with imaging pre and post oral contrast administration to identify a potential oesophageal tear since it could not be excluded using a plain film of the CXR. The CT oesophagography could not find a leak for the administered oral contrast and thus, no oesophageal tear could be confirmed but could not exclude the Mallory-Weiss tear (lower oesophageal tear). Further, the CT oesophagography showed an extensive pneumomediastinum that could not be confirmed to be pulmonary in origin noting the presence of bilateral pulmonary interstitial emphysema and pneumothorax in the apex of the right lung that was small. The patient was admitted to the Emergency Department Inpatient Unit for monitoring, supportive therapy, and symptomatic management. Her hyperemesis was well controlled with ondansetron 8mg IV, metoclopramide 10mg IV, doxylamine 25mg PO, pyridoxine 25mg PO, esomeprazole 40mg IV and oxycodone 5mg PO was given for pain control and 2 litter of IV fluid. The patient was stabilized after 24 hours and discharged home on ondansetron 8mg every 8 hours whereas the patient had a plan for medical termination of pregnancy. Three weeks later, the patient represented with nausea and vomiting complicated by a frank hematemesis. Her observation chart showed HR 117- other vital signs were normal. Pathology showed WBC 14.3 with normal U&E and Hb. The patient was managed in the Emergency Department with the same previous regimen and was discharged home on same previous regimes. Five days later, she presented again with nausea, vomiting and hematemesis and was admitted under obstetrics and gynaecology for stabilization then discharged home with a plan for surgical termination of pregnancy after 3-days rather than the previously planned medical termination of pregnancy to avoid extension of potential oesophageal tear. The surgical termination and follow up period were uneventful. The case is considered rare as pneumomediastinum is a very rare complication of hyperemesis gravidarum where vomiting-induced barotrauma leads to a ruptured oesophagus and air leak into the mediastinum. However no rupture oesophagus in our case. Although the combination of pneumothorax and pneumomediastinum without oesophageal tear was reported only 8 times in the literature, but none of them was due to hyperemesis gravidarum.

Keywords: Pneumothorax, pneumomediastinum, hyperemesis gravidarum, pneumopericardium

Procedia PDF Downloads 102
4548 Impact of Normative Institutional Factors on Sustainability Reporting

Authors: Lina Dagilienė

Abstract:

The article explores the impact of normative institutional factors on the development of sustainability reporting. The vast majority of research in the scientific literature focuses on mandatory institutional factors, i.e. how public institutions and market regulators affect sustainability reporting. Meanwhile, there is lack of empirical data for the impact of normative institutional factors. The effect of normative factors in this paper is based on the role of non-governmental organizations (NGO) and institutional theory. The case of Global Compact Local Network in the developing country was examined. The research results revealed that in the absence of regulated factors, companies were not active with regard to social disclosures; they presented non-systemized social information of a descriptive nature. Only 10% of sustainability reports were prepared using the GRI methodology. None of the reports were assured by third parties.

Keywords: institutional theory, normative, sustainability reporting, Global Compact Local Network

Procedia PDF Downloads 385
4547 Excitonic Refractive Index Change in High Purity GaAs Modulator at Room Temperature for Optical Fiber Communication Network

Authors: Durga Prasad Sapkota, Madhu Sudan Kayastha, Koichi Wakita

Abstract:

In this paper, we have compared and analyzed the electron absorption properties between with and without excitonic effect bulk in high purity GaAs spatial light modulator for an optical fiber communication network. The electroabsorption properties such as absorption spectra, change in absorption spectra, change in refractive index and extinction ratio have been calculated. We have also compared the result of absorption spectra and change in absorption spectra with the experimental results and found close agreement with experimental results.

Keywords: exciton, refractive index change, extinction ratio, GaAs

Procedia PDF Downloads 576
4546 U-Net Based Multi-Output Network for Lung Disease Segmentation and Classification Using Chest X-Ray Dataset

Authors: Jaiden X. Schraut

Abstract:

Medical Imaging Segmentation of Chest X-rays is used for the purpose of identification and differentiation of lung cancer, pneumonia, COVID-19, and similar respiratory diseases. Widespread application of computer-supported perception methods into the diagnostic pipeline has been demonstrated to increase prognostic accuracy and aid doctors in efficiently treating patients. Modern models attempt the task of segmentation and classification separately and improve diagnostic efficiency; however, to further enhance this process, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional CNN module for auxiliary classification output. The proposed model achieves a final Jaccard Index of .9634 for image segmentation and a final accuracy of .9600 for classification on the COVID-19 radiography database.

Keywords: chest X-ray, deep learning, image segmentation, image classification

Procedia PDF Downloads 145
4545 An Effective Modification to Multiscale Elastic Network Model and Its Evaluation Based on Analyses of Protein Dynamics

Authors: Weikang Gong, Chunhua Li

Abstract:

Dynamics plays an essential role in function exertion of proteins. Elastic network model (ENM), a harmonic potential-based and cost-effective computational method, is a valuable and efficient tool for characterizing the intrinsic dynamical properties encoded in biomacromolecule structures and has been widely used to detect the large-amplitude collective motions of proteins. Gaussian network model (GNM) and anisotropic network model (ANM) are the two often-used ENM models. In recent years, many ENM variants have been proposed. Here, we propose a small but effective modification (denoted as modified mENM) to the multiscale ENM (mENM) where fitting weights of Kirchhoff/Hessian matrixes with the least square method (LSM) is modified since it neglects the details of pairwise interactions. Then we perform its comparisons with the original mENM, traditional ENM, and parameter-free ENM (pfENM) on reproducing dynamical properties for the six representative proteins whose molecular dynamics (MD) trajectories are available in http://mmb.pcb.ub.es/MoDEL/. In the results, for B-factor prediction, mENM achieves the best performance among the four ENM models. Additionally, it is noted that with the weights of the multiscale Kirchhoff/Hessian matrixes modified, interestingly, the modified mGNM/mANM still has a much better performance than the corresponding traditional ENM and pfENM models. As to dynamical cross-correlation map (DCCM) calculation, taking the data obtained from MD trajectories as the standard, mENM performs the worst while the results produced by the modified mENM and pfENM models are close to those from MD trajectories with the latter a little better than the former. Generally, ANMs perform better than the corresponding GNMs except for the mENM. Thus, pfANM and the modified mANM, especially the former, have an excellent performance in dynamical cross-correlation calculation. Compared with GNMs (except for mGNM), the corresponding ANMs can capture quite a number of positive correlations for the residue pairs nearly largest distances apart, which is maybe due to the anisotropy consideration in ANMs. Furtherly, encouragingly the modified mANM displays the best performance in capturing the functional motional modes, followed by pfANM and traditional ANM models, while mANM fails in all the cases. This suggests that the consideration of long-range interactions is critical for ANM models to produce protein functional motions. Based on the analyses, the modified mENM is a promising method in capturing multiple dynamical characteristics encoded in protein structures. This work is helpful for strengthening the understanding of the elastic network model and provides a valuable guide for researchers to utilize the model to explore protein dynamics.

Keywords: elastic network model, ENM, multiscale ENM, molecular dynamics, parameter-free ENM, protein structure

Procedia PDF Downloads 121
4544 Trends and Inequalities in Distance to and Use of Nearest Natural Space in the Context of the 20-Minute Neighbourhood: A 4-Wave National Repeat Crosssectional Study, 2013 to 2019

Authors: Jonathan R. Olsen, Natalie Nicholls, Jenna Panter, Hannah Burnett, Michael Tornow, Richard Mitchell

Abstract:

The 20-minute neighborhood is a policy priority for governments worldwide and a key feature of this policy is providing access to natural space within 800 meters of home. The study aims were to (1) examine the association between distance to nearest natural space and frequent use over time and (2) examine whether frequent use and changes in use were patterned by income and housing tenure over time. Bi-annual Scottish Household Survey data were obtained for 2013 to 2019 (n:42128 aged 16+). Adults were asked the walking distance to their nearest natural space, the frequency of visits to this space and their housing tenure, as well as age, sex and income. We examined the association between distance from home of nearest natural space, housing tenure, and the likelihood of frequent natural space use (visited once a week or more). Two-way interaction terms were further applied to explore variation in the association between tenure and frequent natural space use over time. We found that 87% of respondents lived within 10 minute walk of a natural space, meeting the policy specification for a 20-minute neighbourhood. Greater proximity to natural space was associated with increased use; individuals living a 6 to 10 minute walk and over 10 minute walk were respectively 53% and 78% less likely to report frequent natural space use than those living within a 5 minute walk. Housing tenure was an important predictor of frequent natural space use; private renters and homeowners were more likely to report frequent natural space use than social renters. Our findings provide evidence that proximity to natural space is a strong predictor of frequent use. Our study provides important evidence that time-based access measures alone do not consider deep-rooted socioeconomic variation in use of Natural space. Policy makers should ensure a nuanced lens is applied to operationalising and monitoring the 20-minute neighbourhood to safeguard against exacerbating existing inequalities.

Keywords: natural space, housing, inequalities, 20-minute neighbourhood, urban design

Procedia PDF Downloads 122
4543 Comparative Connectionism: Study of the Biological Constraints of Learning Through the Manipulation of Various Architectures in a Neural Network Model under the Biological Principle of the Correlation Between Structure and Function

Authors: Giselle Maggie-Fer Castañeda Lozano

Abstract:

The main objective of this research was to explore the role of neural network architectures in simulating behavioral phenomena as a potential explanation for selective associations, specifically related to biological constraints on learning. Biological constraints on learning refer to the limitations observed in conditioning procedures, where learning is expected to occur. The study involved simulations of five different experiments exploring various phenomena and sources of biological constraints in learning. These simulations included the interaction between response and reinforcer, stimulus and reinforcer, specificity of stimulus-reinforcer associations, species differences, neuroanatomical constraints, and learning in uncontrolled conditions. The overall results demonstrated that by manipulating neural network architectures, conditions can be created to model and explain diverse biological constraints frequently reported in comparative psychology literature as learning typicities. Additionally, the simulations offer predictive content worthy of experimental testing in the pursuit of new discoveries regarding the specificity of learning. The implications and limitations of these findings are discussed. Finally, it is suggested that this research could inaugurate a line of inquiry involving the use of neural networks to study biological factors in behavior, fostering the development of more ethical and precise research practices.

Keywords: comparative psychology, connectionism, conditioning, experimental analysis of behavior, neural networks

Procedia PDF Downloads 74
4542 Starting the Hospitalization Procedure with a Medicine Combination in the Cardiovascular Department of the Imam Reza (AS) Mashhad Hospital

Authors: Maryamsadat Habibi

Abstract:

Objective: pharmaceutical errors are avoidable occurrences that can result in inappropriate pharmaceutical use, patient harm, treatment failure, increased hospital costs and length of stay, and other outcomes that affect both the individual receiving treatment and the healthcare provider. This study aimed to perform a reconciliation of medications in the cardiovascular ward of Imam Reza Hospital in Mashhad, Iran, and evaluate the prevalence of medication discrepancies between the best medication list created for the patient by the pharmacist and the medication order of the treating physician there. Materials & Methods: The 97 patients in the cardiovascular ward of the Imam Reza Hospital in Mashhad were the subject of a cross-sectional study from June to September of 2021. After giving their informed consent and being admitted to the ward, all patients with at least one underlying condition and at least two medications being taken at home were included in the study. A medical reconciliation form was used to record patient demographics and medical histories during the first 24 hours of admission, and the information was contrasted with the doctors' orders. The doctor then discovered medication inconsistencies between the two lists and double-checked them to separate the intentional from the accidental anomalies. Finally, using SPSS software version 22, it was determined how common medical discrepancies are and how different sorts of discrepancies relate to various variables. Results: The average age of the participants in this study was 57.6915.84 years, with 57.7% of men and 42.3% of women. 95.9% of the patients among these people encountered at least one medication discrepancy, and 58.9% of them suffered at least one unintentional drug cessation. Out of the 659 medications registered in the study, 399 cases (60.54%) had inconsistencies, of which 161 cases (40.35%) involved the intentional stopping of a medication, 123 cases (30.82%) involved the stopping of a medication unintentionally, and 115 cases (28.82%) involved the continued use of a medication by adjusting the dose. Additionally, the category of cardiovascular pharmaceuticals and the category of gastrointestinal medications were found to have the highest medical inconsistencies in the current study. Furthermore, there was no correlation between the frequency of medical discrepancies and the following variables: age, ward, date of visit, type, and number of underlying diseases (P=0.13), P=0.61, P=0.72, P=0.82, P=0.44, and so forth. On the other hand, there was a statistically significant correlation between the number of medications taken at home (P=0.037) and the prevalence of medical discrepancies with gender (P=0.029). The results of this study revealed that 96% of patients admitted to the cardiovascular unit at Imam Reza Hospital had at least one medication error, which was typically an intentional drug discontinuance. According to the study's findings, patients admitted to Imam Reza Hospital's cardiovascular ward have a great potential for identifying and correcting various medication discrepancies as well as for avoiding prescription errors when the medication reconciliation method is used. As a result, it is essential to carry out a precise assessment to achieve the best treatment outcomes and avoid unintended medication discontinuation, unwanted drug-related events, and drug interactions between the patient's home medications and those prescribed in the hospital.

Keywords: drug combination, drug side effects, drug incompatibility, cardiovascular department

Procedia PDF Downloads 93
4541 Patterns and Predictors of Intended Service Use among Frail Older Adults in Urban China

Authors: Yuanyuan Fu

Abstract:

Background and Purpose: Along with the change of society and economy, the traditional home function of old people has gradually weakened in the contemporary China. Acknowledging these situations, to better meet old people’s needs on formal services and improve the quality of later life, this study seeks to identify patterns of intended service use among frail old people living in the communities and examined determinants that explain heterogeneous variations in old people’s intended service use patterns. Additionally, this study also tested the relationship between culture value and intended service use patterns and the mediating role of enabling factors in terms of culture value and intended service use patterns. Methods:Participants were recruited from Haidian District, Beijing, China in 2015. The multi-stage sampling method was adopted to select sub-districts, communities and old people aged 70 years old or older. After screening, 577 old people with limitations in daily life, were successfully interviewed. After data cleaning, 550 samples were included for data analysis. This study establishes a conceptual framework based on the Anderson Model (including predisposing factors, enabling factors and need factors), and further developed it by adding culture value factors (including attitudes towards filial piety and attitudes towards social face). Using a latent class analysis (LCA), this study classifies overall patterns of old people’s formal service utilization. Fourteen types of formal services were taken into account, including housework, voluntary support, transportation, home-delivered meals, and home-delivery medical care, elderly’s canteen and day-care center/respite care and so on. Structural equation modeling (SEM) was used to examine the direct effect of culture value on service use pattern, and the mediating effect of the enabling factors. Results: The LCA classified a hierarchical structure of service use patterns: multiple intended service use (N=69, 23%), selective intended service use (N=129, 23%), and light intended service use (N=352, 64%). Through SEM, after controlling predisposing factors and need factors, the results showed the significant direct effect of culture value on older people’s intended service use patterns. Enabling factors had a partial mediation effect on the relationship between culture value and the patterns. Conclusions and Implications: Differentiation of formal services may be important for meeting frail old people’s service needs and distributing program resources by identifying target populations for intervention, which may make reference to specific interventions to better support frail old people. Additionally, culture value had a unique direct effect on the intended service use patterns of frail old people in China, enriching our theoretical understanding of sources of culture value and their impacts. The findings also highlighted the mediation effects of enabling factors on the relationship between culture value factors and intended service use patterns. This study suggests that researchers and service providers should pay more attention to the important role of culture value factors in contributing to intended service use patterns and also be more sensitive to the mediating effect of enabling factors when discussing the relationship between culture value and the patterns.

Keywords: frail old people, intended service use pattern, culture value, enabling factors, contemporary China, latent class analysis

Procedia PDF Downloads 226
4540 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity

Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Saifur Rahman Sabuj

Abstract:

This paper examines relationships between solar activity and earthquakes; it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to affect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth.

Keywords: k-nearest neighbour, support vector regression, random forest regression, long short-term memory network, earthquakes, solar activity, sunspot number, solar wind, solar flares

Procedia PDF Downloads 74
4539 The Influence of Noise on Aerial Image Semantic Segmentation

Authors: Pengchao Wei, Xiangzhong Fang

Abstract:

Noise is ubiquitous in this world. Denoising is an essential technology, especially in image semantic segmentation, where noises are generally categorized into two main types i.e. feature noise and label noise. The main focus of this paper is aiming at modeling label noise, investigating the behaviors of different types of label noise on image semantic segmentation tasks using K-Nearest-Neighbor and Convolutional Neural Network classifier. The performance without label noise and with is evaluated and illustrated in this paper. In addition to that, the influence of feature noise on the image semantic segmentation task is researched as well and a feature noise reduction method is applied to mitigate its influence in the learning procedure.

Keywords: convolutional neural network, denoising, feature noise, image semantic segmentation, k-nearest-neighbor, label noise

Procedia PDF Downloads 220
4538 Detection of New Attacks on Ubiquitous Services in Cloud Computing and Countermeasures

Authors: L. Sellami, D. Idoughi, P. F. Tiako

Abstract:

Cloud computing provides infrastructure to the enterprise through the Internet allowing access to cloud services at anytime and anywhere. This pervasive aspect of the services, the distributed nature of data and the wide use of information make cloud computing vulnerable to intrusions that violate the security of the cloud. This requires the use of security mechanisms to detect malicious behavior in network communications and hosts such as intrusion detection systems (IDS). In this article, we focus on the detection of intrusion into the cloud sing IDSs. We base ourselves on client authentication in the computing cloud. This technique allows to detect the abnormal use of ubiquitous service and prevents the intrusion of cloud computing. This is an approach based on client authentication data. Our IDS provides intrusion detection inside and outside cloud computing network. It is a double protection approach: The security user node and the global security cloud computing.

Keywords: cloud computing, intrusion detection system, privacy, trust

Procedia PDF Downloads 325
4537 Analysis and Design of Simultaneous Dual Band Harvesting System with Enhanced Efficiency

Authors: Zina Saheb, Ezz El-Masry, Jean-François Bousquet

Abstract:

This paper presents an enhanced efficiency simultaneous dual band energy harvesting system for wireless body area network. A bulk biasing is used to enhance the efficiency of the adapted rectifier design to reduce Vth of MOSFET. The presented circuit harvests the radio frequency (RF) energy from two frequency bands: 1 GHz and 2.4 GHz. It is designed with TSMC 65-nm CMOS technology and high quality factor dual matching network to boost the input voltage. Full circuit analysis and modeling is demonstrated. The simulation results demonstrate a harvester with an efficiency of 23% at 1 GHz and 46% at 2.4 GHz at an input power as low as -30 dBm.

Keywords: energy harvester, simultaneous, dual band, CMOS, differential rectifier, voltage boosting, TSMC 65nm

Procedia PDF Downloads 405
4536 Family Cohesion, Social Networks, and Cultural Differences in Latino and Asian American Help Seeking Behaviors

Authors: Eileen Y. Wong, Katherine Jin, Anat Talmon

Abstract:

Background: Help seeking behaviors are highly contingent on socio-cultural factors such as ethnicity. Both Latino and Asian Americans underutilize mental health services compared to their White American counterparts. This difference may be related to the composite of one’s social support system, which includes family cohesion and social networks. Previous studies have found that Latino families are characterized by higher levels of family cohesion and social support, and Asian American families with greater family cohesion exhibit lower levels of help seeking behaviors. While both are broadly considered collectivist communities, within-culture variability is also significant. Therefore, this study aims to investigate the relationship between help seeking behaviors in the two cultures with levels of family cohesion and strength of social network. We also consider such relationships in light of previous traumatic events and diagnoses, particularly post-traumatic stress disorder (PTSD), to understand whether clinically diagnosed individuals differ in their strength of network and help seeking behaviors. Method: An adult sample (N = 2,990) from the National Latino and Asian American Study (NLAAS) provided data on participants’ social network, family cohesion, likelihood of seeking professional help, and DSM-IV diagnoses. T-tests compared Latino American (n = 1,576) and Asian American respondents (n = 1,414) in strength of social network, level of family cohesion, and likelihood of seeking professional help. Linear regression models were used to identify the probability of help-seeking behavior based on ethnicity, PTSD diagnosis, and strength of social network. Results: Help-seeking behavior was significantly associated with family cohesion and strength of social network. It was found that higher frequency of expressing one’s feelings with family significantly predicted lower levels of help-seeking behaviors (β = [-.072], p = .017), while higher frequency of spending free time with family significantly predicted higher levels of help-seeking behaviors (β = [.129], p = .002) in the Asian American sample. Subjective importance of family relations compared to that of one’s peers also significantly predict higher levels of help-seeking behaviors (β = [.095], p = .011) in the Asian American sample. Frequency of sharing one’s problems with relatives significantly predicted higher levels of help-seeking behaviors (β = [.113], p < .01) in the Latino American sample. A PTSD diagnosis did not have any significant moderating effect. Conclusion: Considering the underutilization of mental health services in Latino and Asian American minority groups, it is crucial to understand ways in which help seeking behavior can be encouraged. Our findings suggest that different dimensions within family cohesion and social networks have differential impacts on help-seeking behavior. Given the multifaceted nature of family cohesion and cultural relevance, the implications of our findings for theory and practice will be discussed.

Keywords: family cohesion, social networks, Asian American, Latino American, help-seeking behavior

Procedia PDF Downloads 70
4535 Classification of Contexts for Mentioning Love in Interviews with Victims of the Holocaust

Authors: Marina Yurievna Aleksandrova

Abstract:

Research of the Holocaust retains value not only for history but also for sociology and psychology. One of the most important fields of study is how people were coping during and after this traumatic event. The aim of this paper is to identify the main contexts of the topic of love and to determine which contexts are more characteristic for different groups of victims of the Holocaust (gender, nationality, age). In this research, transcripts of interviews with Holocaust victims that were collected during 1946 for the "Voices of the Holocaust" project were used as data. Main contexts were analyzed with methods of network analysis and latent semantic analysis and classified by gender, age, and nationality with random forest. The results show that love is articulated and described significantly differently for male and female informants, nationality is shown results with lower values of quality metrics, as well as the age.

Keywords: Holocaust, latent semantic analysis, network analysis, text-mining, random forest

Procedia PDF Downloads 182
4534 Synchronization of Bus Frames during Universal Serial Bus Transfer

Authors: Petr Šimek

Abstract:

This work deals with the problem of synchronization of bus frames during transmission using USB (Universal Serial Bus). The principles for synchronization between USB and the non-deterministic CAN (Controller Area Network) bus will be described here. Furthermore, the work deals with ensuring the time sequence of communication frames when receiving from multiple communication bus channels. The structure of a general object for storing frames from different types of communication buses, such as CAN and LIN (Local Interconnect Network), will be described here. Finally, an evaluation of the communication throughput of bus frames for USB High speed will be performed. The creation of this architecture was based on the analysis of the communication of control units with a large number of communication buses. For the design of the architecture, a test HW with a USB-HS interface was used, which received previously known messages, which were compared with the received result. The result of this investigation is the block architecture of the control program for test HW ensuring correct data transmission via the USB bus.

Keywords: analysis, CAN, interface, LIN, synchronization, USB

Procedia PDF Downloads 65
4533 A Comparison of Neural Network and DOE-Regression Analysis for Predicting Resource Consumption of Manufacturing Processes

Authors: Frank Kuebler, Rolf Steinhilper

Abstract:

Artificial neural networks (ANN) as well as Design of Experiments (DOE) based regression analysis (RA) are mainly used for modeling of complex systems. Both methodologies are commonly applied in process and quality control of manufacturing processes. Due to the fact that resource efficiency has become a critical concern for manufacturing companies, these models needs to be extended to predict resource-consumption of manufacturing processes. This paper describes an approach to use neural networks as well as DOE based regression analysis for predicting resource consumption of manufacturing processes and gives a comparison of the achievable results based on an industrial case study of a turning process.

Keywords: artificial neural network, design of experiments, regression analysis, resource efficiency, manufacturing process

Procedia PDF Downloads 526
4532 Anticipation of Bending Reinforcement Based on Iranian Concrete Code Using Meta-Heuristic Tools

Authors: Seyed Sadegh Naseralavi, Najmeh Bemani

Abstract:

In this paper, different concrete codes including America, New Zealand, Mexico, Italy, India, Canada, Hong Kong, Euro Code and Britain are compared with the Iranian concrete design code. First, by using Adaptive Neuro Fuzzy Inference System (ANFIS), the codes having the most correlation with the Iranian ninth issue of the national regulation are determined. Consequently, two anticipated methods are used for comparing the codes: Artificial Neural Network (ANN) and Multi-variable regression. The results show that ANN performs better. Predicting is done by using only tensile steel ratio and with ignoring the compression steel ratio.

Keywords: adaptive neuro fuzzy inference system, anticipate method, artificial neural network, concrete design code, multi-variable regression

Procedia PDF Downloads 286
4531 A Hybrid Genetic Algorithm and Neural Network for Wind Profile Estimation

Authors: M. Saiful Islam, M. Mohandes, S. Rehman, S. Badran

Abstract:

Increasing necessity of wind power is directing us to have precise knowledge on wind resources. Methodical investigation of potential locations is required for wind power deployment. High penetration of wind energy to the grid is leading multi megawatt installations with huge investment cost. This fact appeals to determine appropriate places for wind farm operation. For accurate assessment, detailed examination of wind speed profile, relative humidity, temperature and other geological or atmospheric parameters are required. Among all of these uncertainty factors influencing wind power estimation, vertical extrapolation of wind speed is perhaps the most difficult and critical one. Different approaches have been used for the extrapolation of wind speed to hub height which are mainly based on Log law, Power law and various modifications of the two. This paper proposes a Artificial Neural Network (ANN) and Genetic Algorithm (GA) based hybrid model, namely GA-NN for vertical extrapolation of wind speed. This model is very simple in a sense that it does not require any parametric estimations like wind shear coefficient, roughness length or atmospheric stability and also reliable compared to other methods. This model uses available measured wind speeds at 10m, 20m and 30m heights to estimate wind speeds up to 100m. A good comparison is found between measured and estimated wind speeds at 30m and 40m with approximately 3% mean absolute percentage error. Comparisons with ANN and power law, further prove the feasibility of the proposed method.

Keywords: wind profile, vertical extrapolation of wind, genetic algorithm, artificial neural network, hybrid machine learning

Procedia PDF Downloads 490
4530 Wireless Information Transfer Management and Case Study of a Fire Alarm System in a Residential Building

Authors: Mohsen Azarmjoo, Mehdi Mehdizadeh Koupaei, Maryam Mehdizadeh Koupaei, Asghar Mahdlouei Azar

Abstract:

The increasing prevalence of wireless networks in our daily lives has made them indispensable. The aim of this research is to investigate the management of information transfer in wireless networks and the integration of renewable solar energy resources in a residential building. The focus is on the transmission of electricity and information through wireless networks, as well as the utilization of sensors and wireless fire alarm systems. The research employs a descriptive approach to examine the transmission of electricity and information on a wireless network with electric and optical telephone lines. It also investigates the transmission of signals from sensors and wireless fire alarm systems via radio waves. The methodology includes a detailed analysis of security, comfort conditions, and costs related to the utilization of wireless networks and renewable solar energy resources. The study reveals that it is feasible to transmit electricity on a network cable using two pairs of network cables without the need for separate power cabling. Additionally, the integration of renewable solar energy systems in residential buildings can reduce dependence on traditional energy carriers. The use of sensors and wireless remote information processing can enhance the safety and efficiency of energy usage in buildings and the surrounding spaces.

Keywords: renewable energy, intelligentization, wireless sensors, fire alarm system

Procedia PDF Downloads 55
4529 Cryptography and Cryptosystem a Panacea to Security Risk in Wireless Networking

Authors: Modesta E. Ezema, Chikwendu V. Alabekee, Victoria N. Ishiwu, Ifeyinwa NwosuArize, Chinedu I. Nwoye

Abstract:

The advent of wireless networking in computing technology cannot be overemphasized, it opened up easy accessibility to information resources, networking made easier and brought internet accessibility to our doorsteps, but despite all these, some mishap came in with it that is causing mayhem in today ‘s overall information security. The cyber criminals will always compromise the integrity of a message that is not encrypted or that is encrypted with a weak algorithm.In other to correct the mayhem, this study focuses on cryptosystem and cryptography. This ensures end to end crypt messaging. The study of various cryptographic algorithms, as well as the techniques and applications of the cryptography for efficiency, were all considered in the work., present and future applications of cryptography were dealt with as well as Quantum Cryptography was exposed as the current and the future area in the development of cryptography. An empirical study was conducted to collect data from network users.

Keywords: algorithm, cryptography, cryptosystem, network

Procedia PDF Downloads 349
4528 A Cooperative Signaling Scheme for Global Navigation Satellite Systems

Authors: Keunhong Chae, Seokho Yoon

Abstract:

Recently, the global navigation satellite system (GNSS) such as Galileo and GPS is employing more satellites to provide a higher degree of accuracy for the location service, thus calling for a more efficient signaling scheme among the satellites used in the overall GNSS network. In that the network throughput is improved, the spatial diversity can be one of the efficient signaling schemes; however, it requires multiple antenna that could cause a significant increase in the complexity of the GNSS. Thus, a diversity scheme called the cooperative signaling was proposed, where the virtual multiple-input multiple-output (MIMO) signaling is realized with using only a single antenna in the transmit satellite of interest and with modeling the neighboring satellites as relay nodes. The main drawback of the cooperative signaling is that the relay nodes receive the transmitted signal at different time instants, i.e., they operate in an asynchronous way, and thus, the overall performance of the GNSS network could degrade severely. To tackle the problem, several modified cooperative signaling schemes were proposed; however, all of them are difficult to implement due to a signal decoding at the relay nodes. Although the implementation at the relay nodes could be simpler to some degree by employing the time-reversal and conjugation operations instead of the signal decoding, it would be more efficient if we could implement the operations of the relay nodes at the source node having more resources than the relay nodes. So, in this paper, we propose a novel cooperative signaling scheme, where the data signals are combined in a unique way at the source node, thus obviating the need of the complex operations such as signal decoding, time-reversal and conjugation at the relay nodes. The numerical results confirm that the proposed scheme provides the same performance in the cooperative diversity and the bit error rate (BER) as the conventional scheme, while reducing the complexity at the relay nodes significantly. Acknowledgment: This work was supported by the National GNSS Research Center program of Defense Acquisition Program Administration and Agency for Defense Development.

Keywords: global navigation satellite network, cooperative signaling, data combining, nodes

Procedia PDF Downloads 282
4527 Semantic Network Analysis of the Saudi Women Driving Decree

Authors: Dania Aljouhi

Abstract:

September 26th, 2017, is a historic date for all women in Saudi Arabia. On that day, Saudi Arabia announced the decree on allowing Saudi women to drive. With the advent of vision 2030 and its goal to empower women and increase their participation in Saudi society, we see how Saudis’ Twitter users deliberate the 2017 decree from different social, cultural, religious, economic and political factors. This topic bridges social media 'Twitter,' gender and social-cultural studies to offer insights into how Saudis’ tweets reflect a broader discourse on Saudi women in the age of social media. The present study aims to explore the meanings and themes that emerge by Saudis’ Twitter users in response to the 2017 royal decree on women driving. The sample used in the current study involves (n= 1000) tweets that were collected from Sep 2017 to March 2019 to account for the Saudis’ tweets before and after implementing the decree. The paper uses semantic and thematic network analysis methods to examine the Saudis’ Twitter discourse on the women driving issue. The paper argues that Twitter as a platform has mediated the discourse of women driving among the Saudi community and facilitated social changes. Finally, framing theory (Goffman, 1974) and Networked framing (Meraz & Papacharissi 2013) are both used to explain the tweets on the decree of allowing Saudi women to drive based on # Saudi women-driving-cars.

Keywords: Saudi Arabia, women, Twitter, semantic network analysis, framing

Procedia PDF Downloads 159
4526 Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression

Authors: Zhi-Jun Lu, Qi Lu, Meng Wu, Qian Xiang, Jun Gu

Abstract:

The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising.

Keywords: artificial neural network (ANN), finite element method (FEM), perforated sections, thin-walled Steel, ultimate load

Procedia PDF Downloads 352
4525 The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks

Authors: Adrien Marque, Daniel Delahaye, Pierre Maréchal, Isabelle Berry

Abstract:

Wind direction and uncertainty are crucial in aircraft or unmanned aerial vehicle trajectories. By computing wind covariance matrices on each spatial grid point, these spatial grids can be defined as images with symmetric positive definite matrix elements. A data pre-processing step, a specific convolution, a specific max-pooling, and a specific flatten layers are implemented to process such images. Then, the neural network is applied to spatial grids, whose elements are wind covariance matrices, to solve classification problems related to the feasibility of unmanned aerial vehicles based on wind direction and wind uncertainty.

Keywords: wind direction, uncertainty level, unmanned aerial vehicle, convolution neural network, SPD matrices

Procedia PDF Downloads 56
4524 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle

Authors: Saad Chahba, Rabia Sehab, Ahmad Akrad, Cristina Morel

Abstract:

Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.

Keywords: electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit (OC) fault diagnosis, artificial neural network

Procedia PDF Downloads 210
4523 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images

Authors: Afaf Alharbi, Qianni Zhang

Abstract:

The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.

Keywords: attention multiple instance learning, MIL and transfer learning, histopathological slides, cancer tissue classification

Procedia PDF Downloads 112
4522 Navigating Government Finance Statistics: Effortless Retrieval and Comparative Analysis through Data Science and Machine Learning

Authors: Kwaku Damoah

Abstract:

This paper presents a methodology and software application (App) designed to empower users in accessing, retrieving, and comparatively exploring data within the hierarchical network framework of the Government Finance Statistics (GFS) system. It explores the ease of navigating the GFS system and identifies the gaps filled by the new methodology and App. The GFS, embodies a complex Hierarchical Network Classification (HNC) structure, encapsulating institutional units, revenues, expenses, assets, liabilities, and economic activities. Navigating this structure demands specialized knowledge, experience, and skill, posing a significant challenge for effective analytics and fiscal policy decision-making. Many professionals encounter difficulties deciphering these classifications, hindering confident utilization of the system. This accessibility barrier obstructs a vast number of professionals, students, policymakers, and the public from leveraging the abundant data and information within the GFS. Leveraging R programming language, Data Science Analytics and Machine Learning, an efficient methodology enabling users to access, navigate, and conduct exploratory comparisons was developed. The machine learning Fiscal Analytics App (FLOWZZ) democratizes access to advanced analytics through its user-friendly interface, breaking down expertise barriers.

Keywords: data science, data wrangling, drilldown analytics, government finance statistics, hierarchical network classification, machine learning, web application.

Procedia PDF Downloads 71
4521 SISSLE in Consensus-Based Ripple: Some Improvements in Speed, Security, Last Mile Connectivity and Ease of Use

Authors: Mayank Mundhra, Chester Rebeiro

Abstract:

Cryptocurrencies are rapidly finding wide application in areas such as Real Time Gross Settlements and Payments Systems. Ripple is a cryptocurrency that has gained prominence with banks and payment providers. It solves the Byzantine General’s Problem with its Ripple Protocol Consensus Algorithm (RPCA), where each server maintains a list of servers, called Unique Node List (UNL) that represents the network for the server, and will not collectively defraud it. The server believes that the network has come to a consensus when members of the UNL come to a consensus on a transaction. In this paper we improve Ripple to achieve better speed, security, last mile connectivity and ease of use. We implement guidelines and automated systems for building and maintaining UNLs for resilience, robustness, improved security, and efficient information propagation. We enhance the system so as to ensure that each server receives information from across the whole network rather than just from the UNL members. We also introduce the paradigm of UNL overlap as a function of information propagation and the trust a server assigns to its own UNL. Our design not only reduces vulnerabilities such as eclipse attacks, but also makes it easier to identify malicious behaviour and entities attempting to fraudulently Double Spend or stall the system. We provide experimental evidence of the benefits of our approach over the current Ripple scheme. We observe ≥ 4.97x and 98.22x in speedup and success rate for information propagation respectively, and ≥ 3.16x and 51.70x in speedup and success rate in consensus.

Keywords: Ripple, Kelips, unique node list, consensus, information propagation

Procedia PDF Downloads 150
4520 GIS-Based Identification of Overloaded Distribution Transformers and Calculation of Technical Electric Power Losses

Authors: Awais Ahmed, Javed Iqbal

Abstract:

Pakistan has been for many years facing extreme challenges in energy deficit due to the shortage of power generation compared to increasing demand. A part of this energy deficit is also contributed by the power lost in transmission and distribution network. Unfortunately, distribution companies are not equipped with modern technologies and methods to identify and eliminate these losses. According to estimate, total energy lost in early 2000 was between 20 to 26 percent. To address this issue the present research study was designed with the objectives of developing a standalone GIS application for distribution companies having the capability of loss calculation as well as identification of overloaded transformers. For this purpose, Hilal Road feeder in Faisalabad Electric Supply Company (FESCO) was selected as study area. An extensive GPS survey was conducted to identify each consumer, linking it to the secondary pole of the transformer, geo-referencing equipment and documenting conductor sizes. To identify overloaded transformer, accumulative kWH reading of consumer on transformer was compared with threshold kWH. Technical losses of 11kV and 220V lines were calculated using the data from substation and resistance of the network calculated from the geo-database. To automate the process a standalone GIS application was developed using ArcObjects with engineering analysis capabilities. The application uses GIS database developed for 11kV and 220V lines to display and query spatial data and present results in the form of graphs. The result shows that about 14% of the technical loss on both high tension (HT) and low tension (LT) network while about 4 out of 15 general duty transformers were found overloaded. The study shows that GIS can be a very effective tool for distribution companies in management and planning of their distribution network.

Keywords: geographical information system, GIS, power distribution, distribution transformers, technical losses, GPS, SDSS, spatial decision support system

Procedia PDF Downloads 376