Search results for: energy management
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17214

Search results for: energy management

15624 Internet of Things Applications on Supply Chain Management

Authors: Beatriz Cortés, Andrés Boza, David Pérez, Llanos Cuenca

Abstract:

The Internet of Things (IoT) field is been applied in industries with different purposes. Sensing Enterprise (SE) is an attribute of an enterprise or a network that allows it to react to business stimuli originating on the internet. These fields have come into focus recently on the enterprises and there is some evidence of the use and implications in supply chain management while finding it as an interesting aspect to work on. This paper presents a revision and proposals of IoT applications in supply chain management.

Keywords: industrial, internet of things, production systems, sensing enterprises, sensor, supply chain management

Procedia PDF Downloads 419
15623 Designing Energy Efficient Buildings for Seasonal Climates Using Machine Learning Techniques

Authors: Kishor T. Zingre, Seshadhri Srinivasan

Abstract:

Energy consumption by the building sector is increasing at an alarming rate throughout the world and leading to more building-related CO₂ emissions into the environment. In buildings, the main contributors to energy consumption are heating, ventilation, and air-conditioning (HVAC) systems, lighting, and electrical appliances. It is hypothesised that the energy efficiency in buildings can be achieved by implementing sustainable technologies such as i) enhancing the thermal resistance of fabric materials for reducing heat gain (in hotter climates) and heat loss (in colder climates), ii) enhancing daylight and lighting system, iii) HVAC system and iv) occupant localization. Energy performance of various sustainable technologies is highly dependent on climatic conditions. This paper investigated the use of machine learning techniques for accurate prediction of air-conditioning energy in seasonal climates. The data required to train the machine learning techniques is obtained using the computational simulations performed on a 3-story commercial building using EnergyPlus program plugged-in with OpenStudio and Google SketchUp. The EnergyPlus model was calibrated against experimental measurements of surface temperatures and heat flux prior to employing for the simulations. It has been observed from the simulations that the performance of sustainable fabric materials (for walls, roof, and windows) such as phase change materials, insulation, cool roof, etc. vary with the climate conditions. Various renewable technologies were also used for the building flat roofs in various climates to investigate the potential for electricity generation. It has been observed that the proposed technique overcomes the shortcomings of existing approaches, such as local linearization or over-simplifying assumptions. In addition, the proposed method can be used for real-time estimation of building air-conditioning energy.

Keywords: building energy efficiency, energyplus, machine learning techniques, seasonal climates

Procedia PDF Downloads 113
15622 Practice of Supply Chain Management in Local SMEs

Authors: Oualid Kherbach, Marian Liviu Mocan, Amine Ghoumrassi, Cristian Dumitrache

Abstract:

The Globalization system and the development of economy, e-business, and introduction of new technologies formation create new challenges to all organizations particularly for small and medium enterprises (SMEs). Many studies on supply chain management (SCM) focus on large companies with universal operations employing high-stage information technology. These make a gap in the knowing of how SMEs use and practice supply chain management. In this screenplay, successful practices of supply chain management (SCM) can give SMEs an edge over their competitors. However, SMEs in Romania and Balkan countries face problems in SCM implementation and practices due to lack of resources and direction. The objectives of this research highlight the supply chain management practices of the small and medium enterprise strip in Romania and understand how SMEs manage and use SCM. This study Checks the potential existence of systematic differences between small businesses and medium-sized businesses with regard to supply chain management practices and the application of supply management has contributed to the improvement performance and increase the profitability of companies such as increasing the market share and improving the level of clients.

Keywords: globalization, small and medium enterprises, supply chain management, practices

Procedia PDF Downloads 366
15621 Control Strategy of Solar Thermal Cooling System under the Indonesia Climate

Authors: Budihardjo Sarwo Sastrosudiro, Arnas Lubis, Muhammad Idrus Alhamid, Nasruddin Jusuf

Abstract:

Solar thermal cooling system was installed on Mechanical Research Center (MRC) Building that is located in Universitas Indonesia, Depok, Indonesia. It is the first cooling system in Indonesia that utilizes solar energy as energy input combined with natural gas; therefore, the control system must be appropriated with the climates. In order to stabilize the cooling capacity and also to maximize the use of solar energy, the system applies some controllers. Constant flow rate and on/off controller are applied for the hot water, chilled water and cooling water pumps. The hot water circulated by pump when the solar radiation is over than 400W/m2, and the chilled water is continually circulated by pump and its temperature is kept constant 7 °C by absorption chiller. The cooling water is also continually circulated until the outlet temperature of cooling tower below than 27 oC. Furthermore, the three-way valve is used to control the hot water for generate vapor on absorption chiller. The system performance using that control system is shown in this study results.

Keywords: absorption chiller, control system, solar cooling, solar energy

Procedia PDF Downloads 272
15620 Mini Coal Gasifier for Fulfilling Small-Scale Industries Energy Consumption in Indonesia

Authors: Muhammad Ade Andriansyah Efendi, Ika Monika

Abstract:

Mini coal gasifier (GasMin) is a small reactor that could convert coal into combustible gas or producer gas which is designed to fulfill energy needs of small-scale industries. The producer gas can be utilized for both external and internal combustion. The design of coal gasifier is suitable for community require because it is easy to handle, affordable and environmentally friendly. The feasibility study shows that the substitution of 12 kg LPG or specially 50 kg LPG into GasMin of 20 kg coal capacity per hour is very attractive. The estimation price of 20 kg coal per hour capacity GasMin is 40 million rupiahs. In the year 2016, the implementation of GasMin conducted at alumunium industry and batik industry at Yogyakarta, Indonesia.

Keywords: biomass, coal, energy, gasification

Procedia PDF Downloads 334
15619 An Efficient Approach for Shear Behavior Definition of Plant Stalk

Authors: M. R. Kamandar, J. Massah

Abstract:

The information of the impact cutting behavior of plants stalk plays an important role in the design and fabrication of plants cutting equipment. It is difficult to investigate a theoretical method for defining cutting properties of plants stalks because the cutting process is complex. Thus, it is necessary to set up an experimental approach to determine cutting parameters for a single stalk. To measure the shear force, shear energy and shear strength of plant stalk, a special impact cutting tester was fabricated. It was similar to an Izod impact cutting tester for metals but a cutting blade and data acquisition system were attached to the end of pendulum's arm. The apparatus was included four strain gages and a digital indicator to show the real-time cutting force of plant stalk. To measure the shear force and also testing the apparatus, two plants’ stalks, like buxus and privet, were selected. The samples (buxus and privet stalks) were cut under impact cutting process at four loading rates 1, 2, 3 and 4 m.s-1 and three internodes fifth, tenth and fifteenth by the apparatus. At buxus cutting analysis: the minimum value of cutting energy was obtained at fifth internode and loading rate 4 m.s-1 and the maximum value of shear energy was obtained at fifteenth internode and loading rate 1 m.s-1. At privet cutting analysis: the minimum value of shear consumption energy was obtained at fifth internode and loading rate: 4 m.s-1 and the maximum value of shear energy was obtained at fifteenth internode and loading rate: 1 m.s-1. The statistical analysis at both plants showed that the increase of impact cutting speed would decrease the shear consumption energy and shear strength. In two scenarios, the results showed that with increase the cutting speed, shear force would decrease.

Keywords: Buxus, Privet, impact cutting, shear energy

Procedia PDF Downloads 122
15618 Amazonian Native Biomass Residue for Sustainable Development of Isolated Communities

Authors: Bruna C. Brasileiro, José Alberto S. Sá, Brigida R. P. Rocha

Abstract:

The Amazon region development was related to large-scale projects associated with economic cycles. Economic cycles were originated from policies implemented by successive governments that exploited the resources and have not yet been able to improve the local population's quality of life. These implanted development strategies were based on vertical planning centered on State that didn’t know and showed no interest in know the local needs and potentialities. The future of this region is a challenge that depends on a model of development based on human progress associated to intelligent, selective and environmentally safe exploitation of natural resources settled in renewable and no-polluting energy generation sources – a differential factor of attraction of new investments in a context of global energy and environmental crisis. In this process the planning and support of Brazilian State, local government, and selective international partnership are essential. Residual biomass utilization allows the sustainable development by the integration of production chain and energy generation process which could improve employment condition and income of riversides. Therefore, this research discourses how the use of local residual biomass (açaí lumps) could be an important instrument of sustainable development for isolated communities located at Alcobaça Sustainable Development Reserve (SDR), Tucuruí, Pará State, since in this region the energy source more accessible for who can pay are the fossil fuels that reaches about 54% of final energy consumption by the integration between the açaí productive chain and the use of renewable energy source besides it can promote less environmental impact and decrease the use of fossil fuels and carbon dioxide emissions.

Keywords: Amazon, biomass, renewable energy, sustainability

Procedia PDF Downloads 302
15617 Technological and Economic Investigation of Concentrated Photovoltaic and Thermal Systems: A Case Study of Iran

Authors: Moloud Torkandam

Abstract:

Any cities must be designed and built in a way that minimizes their need for fossil fuel. Undoubtedly, the necessity of accepting this principle in the previous eras is undeniable with respect to the mode of constructions. Perhaps only due to the great diversity of materials and new technologies in the contemporary era, such a principle in buildings has been forgotten. The question of optimizing energy consumption in buildings has attracted a great deal of attention in many countries and, in this way, they have been able to cut down the consumption of energy up to 30 percent. The energy consumption is remarkably higher than global standards in our country, and the most important reason is the undesirable state of buildings from the standpoint of energy consumption. In addition to providing the means to protect the natural and fuel resources for the future generations, reducing the use of fossil energies may also bring about desirable outcomes such as the decrease in greenhouse gases (whose emissions cause global warming, the melting of polar ice, the rise in sea level and the climatic changes of the planet earth), the decrease in the destructive effects of contamination in residential complexes and especially urban environments and preparation for national self-sufficiency and the country’s independence and preserving national capitals. This research realize that in this modern day and age, living sustainably is a pre-requisite for ensuring a bright future and high quality of life. In acquiring this living standard, we will maintain the functions and ability of our environment to serve and sustain our livelihoods. Electricity is now an integral part of modern life, a basic necessity. In the provision of electricity, we are committed to respecting the environment by reducing the use of fossil fuels through the use of proven technologies that use local renewable and natural resources as its energy source. As far as this research concerned it is completely necessary to work on different type of energy producing such as solar and CPVT system.

Keywords: energy, photovoltaic, termal system, solar energy, CPVT

Procedia PDF Downloads 81
15616 Short-Term Energy Efficiency Decay and Risk Analysis of Ground Source Heat Pump System

Authors: Tu Shuyang, Zhang Xu, Zhou Xiang

Abstract:

The objective of this paper is to investigate the effect of short-term heat exchange decay of ground heat exchanger (GHE) on the ground source heat pump (GSHP) energy efficiency and capacity. A resistance-capacitance (RC) model was developed and adopted to simulate the transient characteristics of the ground thermal condition and heat exchange. The capacity change of the GSHP was linked to the inlet and outlet water temperature by polynomial fitting according to measured parameters given by heat pump manufacturers. Thus, the model, which combined the heat exchange decay with the capacity change, reflected the energy efficiency decay of the whole system. A case of GSHP system was analyzed by the model, and the result showed that there was risk that the GSHP might not meet the load demand because of the efficiency decay in a short-term operation. The conclusion would provide some guidances for GSHP system design to overcome the risk.

Keywords: capacity, energy efficiency, GSHP, heat exchange

Procedia PDF Downloads 348
15615 Desalination Technologies and Desalination Integrated with Renewable Energies – A Case Study

Authors: Ahmadali Shirazytabar, Hamidreza Namazi

Abstract:

As water resources are rapidly getting diminished, more and more interest is paid to the desalination of saline waters. Desalination has become a reliable and cost effective solution in provision of fresh water particularly in the arid areas of the world such as Middle East countries. However, the dramatic increase of utilizing desalination will cause a series of problems which are significantly related to energy consumption and environment impacts. The use of renewable energy sources to provide energy required by desalination processes is a feasible and simultaneously environmental friendly solution. In this study an attempt has been made to present a review on desalination technologies, desalination integrated with renewable energies, in brief, and practical progresses made during recent years particularly in the field of desalination by wind energy which is the most common form of renewable energies. Moreover, an economic analysis of a wind powered RO desalination system comprising of 10×2.5 MW wind turbines is done, and the results will be compared to those of a cogeneration system comprising of one 25 MW gas turbines, heat recovery steam generators (HRSG) and MED-TVC desalination.

Keywords: wind turbine, desalination, RO, MED, cogeneration, gas turbine, HRSG

Procedia PDF Downloads 394
15614 Thermodynamic Study of Homo-Pairs in Molten Cd-Me, (Me=Ga,in) Binary Systems

Authors: Yisau Adelaja Odusote, Olakanmi Felix Akinto

Abstract:

The associative tendency between like atoms in molten Cd-Ga and Cd-In alloy systems has been studied by using the Quasi-Chemical Approximation Model (QCAM). The concentration dependence of the microscopic functions (the concentration-concentration fluctuations in the long-wavelength limits, Scc(0), the chemical short-range order (CSRO) parameter α1 as well as the chemical diffusion) and the mixing properties as the free energy of mixing, GM, enthalpy of mixing and entropy of mixing of the two molten alloys have been determined. Thermodynamic properties of both systems deviate positively from Raoult's law, while the systems are characterized by positive interaction energy. The role of atomic size ratio on the alloying properties was discussed.

Keywords: homo-pairs, interchange energy, enthalpy, entropy, Cd-Ga, Cd-In

Procedia PDF Downloads 435
15613 Develop a Software to Hydraulic Redesign a Depropanizer Column to Minimize Energy Consumption

Authors: Mahdi Goharrokhi, Rasool Shiri, Eiraj Naser

Abstract:

A depropanizer column of a particular refinery was redesigned in this work. That is, minimum reflux ratio, minimum number of trays, feed tray location and the hydraulic characteristics of the tower were calculated and compared with the actual values of the existing tower. To Design review of the tower, fundamental equations were used to develop software which its results were compared with two commercial software results. In each case PR EOS was used. Based on the total energy consumption in reboiler and condenser, feed tray location was also determined using case study definition for tower.

Keywords: column, hydraulic design, pressure drop, energy consumption

Procedia PDF Downloads 421
15612 Artificial Bee Colony Based Modified Energy Efficient Predictive Routing in MANET

Authors: Akhil Dubey, Rajnesh Singh

Abstract:

In modern days there occur many rapid modifications in field of ad hoc network. These modifications create many revolutionary changes in the routing. Predictive energy efficient routing is inspired on the bee’s behavior of swarm intelligence. Predictive routing improves the efficiency of routing in the energetic point of view. The main aim of this routing is the minimum energy consumption during communication and maximized intermediate node’s remaining battery power. This routing is based on food searching behavior of bees. There are two types of bees for the exploration phase the scout bees and for the evolution phase forager bees use by this routing. This routing algorithm computes the energy consumption, fitness ratio and goodness of the path. In this paper we review the literature related with predictive routing, presenting modified routing and simulation result of this algorithm comparison with artificial bee colony based routing schemes in MANET and see the results of path fitness and probability of fitness.

Keywords: mobile ad hoc network, artificial bee colony, PEEBR, modified predictive routing

Procedia PDF Downloads 415
15611 Intermittent Effect of Coupled Thermal and Acoustic Sources on Combustion: A Spatial Perspective

Authors: Pallavi Gajjar, Vinayak Malhotra

Abstract:

Rockets have been known to have played a predominant role in spacecraft propulsion. The quintessential aspect of combustion-related requirements of a rocket engine is the minimization of the surrounding risks/hazards. Over time, it has become imperative to understand the combustion rate variation in presence of external energy source(s). Rocket propulsion represents a special domain of chemical propulsion assisted by high speed flows in presence of acoustics and thermal source(s). Jet noise leads to a significant loss of resources and every year a huge amount of financial aid is spent to prevent it. External heat source(s) induce high possibility of fire risk/hazards which can sufficiently endanger the operation of a space vehicle. Appreciable work had been done with justifiable simplification and emphasis on the linear variation of external energy source(s), which yields good physical insight but does not cater to accurate predictions. Present work experimentally attempts to understand the correlation between inter-energy conversions with the non-linear placement of external energy source(s). The work is motivated by the need to have better fire safety and enhanced combustion. The specific objectives of the work are a) To interpret the related energy transfer for combustion in presence of alternate external energy source(s) viz., thermal and acoustic, b) To fundamentally understand the role of key controlling parameters viz., separation distance, the number of the source(s), selected configurations and their non-linear variation to resemble real-life cases. An experimental setup was prepared using incense sticks as potential fuel and paraffin wax candles as the external energy source(s). The acoustics was generated using frequency generator, and source(s) were placed at selected locations. Non-equidistant parametric experimentation was carried out, and the effects were noted on regression rate changes. The results are expected to be very helpful in offering a new perspective into futuristic rocket designs and safety.

Keywords: combustion, acoustic energy, external energy sources, regression rate

Procedia PDF Downloads 139
15610 Defect Profile Simulation of Oxygen Implantation into Si and GaAs

Authors: N. Dahbi, R. B. Taleb

Abstract:

This study concerns the ion implantation of oxygen in two semiconductors Si and GaAs realized by a simulation using the SRIM tool. The goal of this study is to compare the effect of implantation energy on the distribution of implant ions in the two targets and to examine the different processes resulting from the interaction between the ions of oxygen and the target atoms (Si, GaAs). SRIM simulation results indicate that the implanted ions have a profile as a function of Gaussian-type; oxygen produced more vacancies and implanted deeper in Si compared to GaAs. Also, most of the energy loss is due to ionization and phonon production, where vacancy production amounts to few percent of the total energy.

Keywords: defect profile, GaAs, ion implantation, SRIM, phonon production, vacancies

Procedia PDF Downloads 182
15609 Top Management Support as an Enabling Factor for Academic Innovation through Knowledge Sharing

Authors: Sawsan J. Al-husseini, Talib A. Dosa

Abstract:

Educational institutions are today facing increasing pressures due to economic, political and social upheaval. This is only exacerbated by the nature of education as an intangible good which relies upon the intellectual assets of the organisation, its staff. Top management support has been acknowledged as having a positive general influence on knowledge management and creativity. However, there is a lack of models linking top management support, knowledge sharing, and innovation within higher education institutions, in general within developing countries, and particularly in Iraq. This research sought to investigate the impact of top management support on innovation through the mediating role of knowledge sharing in Iraqi private HEIs. A quantitative approach was taken and 262 valid responses were collected to test the causal relationships between top management support, knowledge sharing, and innovation. Employing structural equation modelling with AMOS v.25, the research demonstrated that knowledge sharing plays a pivotal role in the relationship between top management support and innovation. The research has produced some guidelines for researchers as well as leaders, and provided evidence to support the use of knowledge sharing to increase innovation within the higher education environment in developing countries, particularly Iraq.

Keywords: top management support, knowledge sharing, innovation, structural equation modelling

Procedia PDF Downloads 323
15608 Process Integration of Natural Gas Hydrate Production by CH₄-CO₂/H₂ Replacement Coupling Steam Methane Reforming

Authors: Mengying Wang, Xiaohui Wang, Chun Deng, Bei Liu, Changyu Sun, Guangjin Chen, Mahmoud El-Halwagi

Abstract:

Significant amounts of natural gas hydrates (NGHs) are considered potential new sustainable energy resources in the future. However, common used methods for methane gas recovery from hydrate sediments require high investment but with low gas production efficiency, and may cause potential environment and security problems. Therefore, there is a need for effective gas production from hydrates. The natural gas hydrate production method by CO₂/H₂ replacement coupling steam methane reforming can improve the replacement effect and reduce the cost of gas separation. This paper develops a simulation model of the gas production process integrated with steam reforming and membrane separation. The process parameters (i.e., reactor temperature, pressure, H₂O/CH₄ ratio) and the composition of CO₂ and H₂ in the feed gas are analyzed. Energy analysis is also conducted. Two design scenarios with different composition of CO₂ and H₂ in the feed gas are proposed and evaluated to assess the energy efficiency of the novel system. Results show that when the composition of CO₂ in the feed gas is between 43 % and 72 %, there is a certain composition that can meet the requirement that the flow rate of recycled gas is equal to that of feed gas, so as to ensure that the subsequent production process does not need to add feed gas or discharge recycled gas. The energy efficiency of the CO₂ in feed gas at 43 % and 72 % is greater than 1, and the energy efficiency is relatively higher when the CO₂ mole fraction in feed gas is 72 %.

Keywords: Gas production, hydrate, process integration, steam reforming

Procedia PDF Downloads 181
15607 Improving Carbon Fiber Structural Battery Performance with Polymer Interface

Authors: Kathleen Moyer, Nora Ait Boucherbil, Murtaza Zohair, Janna Eaves-Rathert, Cary Pint

Abstract:

This study demonstrates the significance of interface engineering in the field of structural energy by being the first case where the performance of the system with the structural battery is greater than the performance of the same system with a battery separate from the system. The benefits of improving the interface in the structural battery were tested by creating carbon fiber composite batteries (and independent graphite electrodes and lithium iron phosphate electrodes) with and without an improved interface. Mechanical data on the structural batteries were collected using tensile tests and electrochemical data was collected using scanning electron microscopy equipment. The full-cell lithium-ion structural batteries had capacity retention of over 80% exceeding 100 cycles with an average energy density of 52 W h kg−1 and a maximum energy density of 58 W h kg−1. Most scientific developments in the field of structural energy have been done with supercapacitors. Most scientific developments with structural batteries have been done where batteries are simply incorporated into the structural element. That method has limited advantages and can create mechanical disadvantages. This study aims to show that a large improvement in structure energy research can be made by improving the interface between the structural device and the battery.

Keywords: composite materials, electrochemical performance, mechanical properties, polymer interface, structural batteries

Procedia PDF Downloads 104
15606 An Overview of Onshore and Offshore Wind Turbines

Authors: Mohammad Borhani, Afshin Danehkar

Abstract:

With the increase in population and the upward trend of energy demand, mankind has thought of using suppliers that guarantee a stable supply of energy, unlike fossil fuels, which, in addition to the widespread emission of greenhouse gases that one of the main factors in the destruction of the ozone layer and it will be finished in a short time in the not-so-distant future. In this regard, one of the sustainable ways of energy supply is the use of wind converters. That convert wind energy into electricity. For this reason, this research focused on wind turbines and their installation conditions. The main classification of wind turbines is based on the axis of rotation, which is divided into two groups: horizontal axis and vertical axis; each of these two types, with the advancement of technology in man-made environments such as cities, villages, airports, and other human environments can be installed and operated. The main difference between offshore and onshore wind turbines is their installation and foundation. Which are usually divided into five types; including of Monopile Wind Turbines, Jacket Wind Turbines, Tripile Wind Turbines, Gravity-Based Wind Turbines, and Floating Offshore Wind Turbines. For installation in a wind power plant requires an arrangement that produces electric power, the distance between the turbines is usually between 5 or 7 times the diameter of the rotor and if perpendicular to the wind direction be If they are 3 to 5 times the diameter of the rotor, they will be more efficient.

Keywords: wind farms, Savonius, Darrieus, offshore wind turbine, renewable energy

Procedia PDF Downloads 112
15605 Exercise Intensity Increasing Appetite, Energy, Intake Energy Expenditure, and Fat Oxidation in Sedentary Overweight Individuals

Authors: Ghalia Shamlan, M. Denise Robertson, Adam Collins

Abstract:

Appetite control (i.e. control of energy intake) is important for weight maintenance. Exercise contributes to the most variable component of energy expenditure (EE) but its impact is beyond the energy cost of exercise including physiological, behavioural, and appetite effects. Exercise is known to acutely influence effect appetite but evidence as to the independent effect of intensity is lacking. This study investigated the role of exercise intensity on appetite, energy intake (EI), appetite related hormone, fat utilisation and subjective measures of appetite. One hour after a standardised breakfast, 10 sedentary overweight volunteers. Subjects undertook either 8 repeated 60 second bouts of cycling at 95% VO2max (high intensity) or 30 minutes of continuous cycling, at a fixed cadence, equivalent to 50% of the participant’s VO2max (low intensity) in a randomised crossover design. Glucose, NEFA, glucagon-like peptide-1 (GLP-1) were measured fasted, postprandial, and pre and post-exercise. Satiety was assessed subjectively throughout the study using visual analogue scales (VAS). Ad libitum intake of a pasta meal was measured at the end (3-h post-breakfast). Interestingly, there was not significant difference in EE fat oxidation between HI and LI post-exercise. Also, no significant effect of high intensity (HI) was observed on the ad libitum meal, 24h and 48h EI post-exercise. However the mean 24h EI was 3000 KJ lower following HI than low intensity (LI). Despite, no significant differences in hunger score, glucose, NEFA and GLP-1 between both intensities were observed. However, NEFA and GLP-1 plasma level were higher until 30 min post LI. In conclusion, the similarity of EE and oxidation outcomes could give overweight individuals an option to choose between intensities. However, HI could help to reduce EI. There are mechanisms and consequences of exercise in short and long-term appetite control; however, these mechanisms warrant further explanation. These results support the need for future research in to the role of in regulation energy balance, especially for obese people.

Keywords: appetite, exercise, food intake, energy expenditure

Procedia PDF Downloads 500
15604 Knowledge Management Challenges within Traditional Procurement System

Authors: M. Takhtravanchi, C. Pathirage

Abstract:

In the construction industry, project members are conveyor of project knowledge which is, often, not managed properly to be used in future projects. As construction projects are temporary and unique, project members are willing to be recruited once a project is completed. Therefore, poor management of knowledge across construction projects will lead to a considerable amount of knowledge loss; the ignoring of which would be detrimental to project performance. This issue is more prominent in projects undertaken through the traditional procurement system, as this system does not incentives project members for integration. Thus, disputes exist between the design and construction phases based on the poor management of knowledge between those two phases. This paper aims to highlight the challenges of the knowledge management that exists within the traditional procurement system. Expert interviews were conducted and challenges were identified and analysed by the Interpretive Structural Modelling (ISM) approach in order to summarise the relationships among them. Two identified key challenges are the Culture of an Organisation and Knowledge Management Policies. A knowledge of the challenges and their relationships will help project manager and stakeholders to have a better understanding of the importance of knowledge management.

Keywords: challenges, construction industry, knowledge management, traditional procurement system

Procedia PDF Downloads 429
15603 Thermal Characterization of Smart and Large-Scale Building Envelope System in a Subtropical Climate

Authors: Andrey A. Chernousov, Ben Y. B. Chan

Abstract:

The thermal behavior of a large-scale, phase change material (PCM) enhanced building envelope system was studied in regard to the need for pre-fabricated construction in subtropical regions. The proposed large-scale envelope consists of a reinforced aluminum skin, insulation core, phase change material and reinforced gypsum board. The PCM impact on an energy efficiency of an enveloped room was resolved by validation of the Energy Plus numerical scheme and optimization of a smart material location in the core. The PCM location was optimized by a minimization method of a cooling energy demand. It has been shown that there is good agreement between the test and simulation results. The optimal location of the PCM layer in Hong Kong summer conditions has been then recomputed for core thicknesses of 40, 60 and 80 mm. A non-dimensional value of the optimal PCM location was obtained to be same for all the studied cases and the considered external and internal conditions.

Keywords: thermal performance, phase change material, energy efficiency, PCM optimization

Procedia PDF Downloads 401
15602 Transmission Line Protection Challenges under High Penetration of Renewable Energy Sources and Proposed Solutions: A Review

Authors: Melake Kuflom

Abstract:

European power networks involve the use of multiple overhead transmission lines to construct a highly duplicated system that delivers reliable and stable electrical energy to the distribution level. The transmission line protection applied in the existing GB transmission network are normally independent unit differential and time stepped distance protection schemes, referred to as main-1 & main-2 respectively, with overcurrent protection as a backup. The increasing penetration of renewable energy sources, commonly referred as “weak sources,” into the power network resulted in the decline of fault level. Traditionally, the fault level of the GB transmission network has been strong; hence the fault current contribution is more than sufficient to ensure the correct operation of the protection schemes. However, numerous conventional coal and nuclear generators have been or about to shut down due to the societal requirement for CO2 emission reduction, and this has resulted in a reduction in the fault level on some transmission lines, and therefore an adaptive transmission line protection is required. Generally, greater utilization of renewable energy sources generated from wind or direct solar energy results in a reduction of CO2 carbon emission and can increase the system security and reliability but reduces the fault level, which has an adverse effect on protection. Consequently, the effectiveness of conventional protection schemes under low fault levels needs to be reviewed, particularly for future GB transmission network operating scenarios. The proposed paper will evaluate the transmission line challenges under high penetration of renewable energy sources andprovides alternative viable protection solutions based on the problem observed. The paper will consider the assessment ofrenewable energy sources (RES) based on a fully rated converter technology. The DIgSILENT Power Factory software tool will be used to model the network.

Keywords: fault level, protection schemes, relay settings, relay coordination, renewable energy sources

Procedia PDF Downloads 205
15601 Water Security and Transboundary Issues for Food Security of Ethiopia. The Case of Nile River

Authors: Kebron Asnake

Abstract:

Water security and transboundary issues are critical concerns for countries, particularly in regions where shared water resources are significant. This Research focuses on exploring the challenges and opportunities related to water security and transboundary issues in Ethiopia, using the case of the Nile River. Ethiopia, as a riparian country of the Nile River, faces complex water security issues due to its dependence on this transboundary water resource. This abstract aims to analyze the various factors that affect water security in Ethiopia, including population growth, climate change, and competing water demands. The Study examines the challenges linked to transboundary water management of the Nile River. It delves into the complexities of negotiating water allocations and addressing potential conflicts among the downstream riparian countries. The paper also discusses the role of international agreements and cooperation in promoting sustainable water resource management. Additionally, the paper highlights the opportunities for collaboration and sustainable development that arise from transboundary water management. It explores the potential for joint investments in water infrastructure, hydropower generation, and irrigation systems that can contribute to regional economic growth and water security. Furthermore, the study emphasizes the need for integrated water management approaches in Ethiopia to ensure the equitable and sustainable use of the Nile River's waters. It highlights the importance of involving stakeholders from diverse sectors, including agriculture, energy, and environmental conservation, in decision-making processes. By presenting the case of the Nile River in Ethiopia, this Abstract contributes to the understanding of water security and transboundary issues. It underscores the significance of regional cooperation and informed policy-making to address the challenges and opportunities presented by transboundary water resources. The paper serves as a foundation for further research and policy in water management in Ethiopia and other regions facing similar challenges.

Keywords: water, health, agriculture, medicine

Procedia PDF Downloads 83
15600 Multiobjective Optimization of Wastwater Treatment by Electrochemical Process

Authors: Malek Bendjaballah, Hacina Saidi, Sarra Hamidoud

Abstract:

The aim of this study is to model and optimize the performance of a new electrocoagulation (E.C) process for the treatment of wastewater as well as the energy consumption in order to extrapolate it to the industrial scale. Through judicious application of an experimental design (DOE), it has been possible to evaluate the individual effects and interactions that have a significant influence on both objective functions (maximizing efficiency and minimizing energy consumption) by using aluminum electrodes as sacrificial anode. Preliminary experiments have shown that the pH of the medium, the applied potential and the treatment time with E.C are the main parameters. A factorial design 33 has been adopted to model performance and energy consumption. Under optimal conditions, the pollution reduction efficiency is 93%, combined with a minimum energy consumption of 2.60.10-3 kWh / mg-COD. The potential or current applied and the processing time and their interaction were the most influential parameters in the mathematical models obtained. The results of the modeling were also correlated with the experimental ones. The results offer promising opportunities to develop a clean process and inexpensive technology to eliminate or reduce wastewater,

Keywords: electrocoagulation, green process, experimental design, optimization

Procedia PDF Downloads 94
15599 A Spectroscopic Study by Photoluminescence of Erbium in Gallium Nitride

Authors: A. Melouah, M. Diaf

Abstract:

The III-N nitride semiconductors appear to be excellent host materials, in particular, GaN epilayers doped with Erbium ions have shown a highly reduced thermal quenching of the Er luminescence intensity from cryogenic to elevated temperatures. The remarkable stability may be due to the large energy band gap of the material. Two methods are used for doping the Gallium nitride films with Erbium ions; ion implantation in the wafers obtained by (CVDOM) and in-situ incorporation during epitaxial growth of the layers by (MBE). Photoluminescence (PL) spectroscopy has been the main optical technique used to characterize the emission of Er-doped III-N semiconductor materials. This technique involves optical excitation of Er3+ ions and measurement of the spectrum of the light emission as a function of energy (wavelength). Excitation at above band gap energy leads to the creation of Electron-Hole pairs. Some of this pairs may transfer their energy to the Er3+ ions, exciting the 4f-electrons and resulting in optical emission. This corresponds to an indirect excitation of the Er3+ ions by electron-hole pairs. The direct excitation by the optical pumping of the radiation can be obtained.

Keywords: photoluminescence, Erbium, GaN, semiconductor materials

Procedia PDF Downloads 410
15598 Using a Simulated Learning Environment to Teach Pre-Service Special Educators Behavior Management

Authors: Roberta Gentry

Abstract:

A mixed methods study that examined candidate’s perceptions of the use of computerized simulation as an effective tool to learn classroom management will be presented. The development, implementation, and assessment of the simulation and candidate data on the feasibility of the approach in comparison to other methods will be presented.

Keywords: behavior management, simulations, teacher preparation, teacher education

Procedia PDF Downloads 399
15597 Microwave-Assisted Torrefaction of Teakwood Biomass Residues: The Effect of Power Level and Fluid Flows

Authors: Lukas Kano Mangalla, Raden Rinova Sisworo, Luther Pagiling

Abstract:

Torrefaction is an emerging thermo-chemical treatment process that aims to improve the quality of biomass fuels. This study focused on upgrading the waste teakwood through microwave torrefaction processes and investigating the key operating parameters to improve energy density for the quality of biochar production. The experiments were carried out in a 250 mL reactor placed in a microwave cavity on two different media, inert and non-inert. The microwave was operated at a frequency of 2.45GHz with power level variations of 540W, 720W, and 900W, respectively. During torrefaction processes, the nitrogen gas flows into the reactor at a rate of 0.125 mL/min, and the air flows naturally. The temperature inside the reactor was observed every 0.5 minutes for 20 minutes using a K-Type thermocouple. Changes in the mass and the properties of the torrefied products were analyzed to predict the correlation between calorific value, mass yield, and level power of the microwave. The results showed that with the increase in the operating power of microwave torrefaction, the calorific value and energy density of the product increased significantly, while mass and energy yield tended to decrease. Air can be a great potential media for substituting the expensive nitrogen to perform the microwave torrefaction for teakwood biomass.

Keywords: torrefaction, microwave heating, energy enhancement, mass and energy yield

Procedia PDF Downloads 90
15596 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.

Keywords: deep learning, long short term memory, energy, renewable energy load forecasting

Procedia PDF Downloads 263
15595 Smart Architecture and Sustainability in the Built Environment for the Hatay Refugee Camp

Authors: Ali Mohammed Ali Lmbash

Abstract:

The global refugee crisis points to the vital need for sustainable and resistant solutions to different kinds of problems for displaced persons all over the world. Among the myriads of sustainable concerns, however, there are diverse considerations including energy consumption, waste management, water access, and resiliency of structures. Our research aims to develop distinct ideas for sustainable architecture given the exigent problems in disaster-threatened areas starting with the Hatay Refugee camp in Turkey where the majority of the camp dwellers are Syrian refugees. Commencing community-based participatory research which focuses on the socio-environmental issues of displaced populations, this study will apply two approaches with a specific focus on the Hatay region. The initial experiment uses Richter's predictive model and simulations to forecast earthquake outcomes in refugee campers. The result could be useful in implementing architectural design tactics that enhance structural reliability and ensure the security and safety of shelters through earthquakes. In the second experiment a model is generated which helps us in predicting the quality of the existing water sources and since we understand how greatly water is vital for the well-being of humans, we do it. This research aims to enable camp administrators to employ forward-looking practices while managing water resources and thus minimizing health risks as well as building resilience of the refugees in the Hatay area. On the other side, this research assesses other sustainability problems of Hatay Refugee Camp as well. As energy consumption becomes the major issue, housing developers are required to consider energy-efficient designs as well as feasible integration of renewable energy technologies to minimize the environmental impact and improve the long-term sustainability of housing projects. Waste management is given special attention in this case by imposing recycling initiatives and waste reduction measures to reduce the pace of environmental degradation in the camp's land area. As well, study gives an insight into the social and economic reality of the camp, investigating the contribution of initiatives such as urban agriculture or vocational training to the enhancement of livelihood and community empowerment. In a similar fashion, this study combines the latest research with practical experience in order to contribute to the continuing discussion on sustainable architecture during disaster relief, providing recommendations and info that can be adapted on every scale worldwide. Through collaborative efforts and a dedicated sustainability approach, we can jointly get to the root of the cause and work towards a far more robust and equitable society.

Keywords: smart architecture, Hatay Camp, sustainability, machine learning.

Procedia PDF Downloads 53