Search results for: analog to digital converter
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3168

Search results for: analog to digital converter

1578 COVID-19’s Impact on the Use of Media, Educational Performance, and Learning in Children and Adolescents with ADHD Who Engaged in Virtual Learning

Authors: Christina Largent, Tazley Hobbs

Abstract:

Objective: A literature review was performed to examine the existing research on COVID-19 lockdown as it relates to ADHD child/adolescent individuals, media use, and impact on educational performance/learning. It was surmised that with the COVID-19 shut-down and transition to remote learning, a less structured learning environment, increased screen time, in addition to potential difficulty accessing school resources would impair ADHD individuals’ performance and learning. A resulting increase in the number of youths diagnosed and treated for ADHD would be expected. As of yet, there has been little to no published data on the incidence of ADHD as it relates to COVID-19 outside of reports from several nonprofit agencies such as CHADD (Children and Adults with Attention-Deficit/Hyperactivity Disorder ), who reported an increased number of calls to their helpline, The New York based Child Mind Institute, who reported an increased number of appointments to discuss medications, and research released from Athenahealth showing an increase in the number of patients receiving new diagnosis of ADHD and new prescriptions for ADHD medications. Methods: A literature search for articles published between 2020 and 2021 from Pubmed, Google Scholar, PsychInfo, was performed. Search phrases and keywords included “covid, adhd, child, impact, remote learning, media, screen”. Results: Studies primarily utilized parental reports, with very few from the perspective of the ADHD individuals themselves. Most findings thus far show that with the COVID-19 quarantine and transition to online learning, ADHD individuals’ experienced decreased ability to keep focused or adhere to the daily routine, as well as increased inattention-related problems, such as careless mistakes or lack of completion in homework, which in turn translated into overall more difficulty with remote learning. To add further injury, one study showed (just on evaluation of two different sites within the US) that school based services for these individuals decreased with the shift to online-learning. Increased screen time, television, social media, and gaming were noted amongst ADHD individuals. One study further differentiated the degree of digital media, identifying individuals with “problematic “ or “non-problematic” use. ADHD children with problematic digital media use suffered from more severe core symptoms of ADHD, negative emotions, executive function deficits, damage to family environment, pressure from life events, and a lower motivation to learn. Conclusions and Future Considerations: Studies found not only was online learning difficult for ADHD individuals but it, in addition to greater use of digital media, was associated with worsening ADHD symptoms impairing schoolwork, in addition to secondary findings of worsening mood and behavior. Currently, data on the number of new ADHD cases, in addition to data on the prescription and usage of stimulants during COVID-19, has not been well documented or studied; this would be well-warranted out of concern for over diagnosing or over-prescribing our youth. It would also be well-worth studying how reversible or long-lasting these negative impacts may be.

Keywords: COVID-19, remote learning, media use, ADHD, child, adolescent

Procedia PDF Downloads 124
1577 Bridging Healthcare Information Systems and Customer Relationship Management for Effective Pandemic Response

Authors: Sharda Kumari

Abstract:

As the Covid-19 pandemic continues to leave its mark on the global business landscape, companies have had to adapt to new realities and find ways to sustain their operations amid social distancing measures, government restrictions, and heightened public health concerns. This unprecedented situation has placed considerable stress on both employees and employers, underscoring the need for innovative approaches to manage the risks associated with Covid-19 transmission in the workplace. In response to these challenges, the pandemic has accelerated the adoption of digital technologies, with an increasing preference for remote interactions and virtual collaboration. Customer relationship management (CRM) systems have risen to prominence as a vital resource for organizations navigating the post-pandemic world, providing a range of benefits that include acquiring new customers, generating insightful consumer data, enhancing customer relationships, and growing market share. In the context of pandemic management, CRM systems offer three primary advantages: (1) integration features that streamline operations and reduce the need for multiple, costly software systems; (2) worldwide accessibility from any internet-enabled device, facilitating efficient remote workforce management during a pandemic; and (3) the capacity for rapid adaptation to changing business conditions, given that most CRM platforms boast a wide array of remotely deployable business growth solutions, a critical attribute when dealing with a dispersed workforce in a pandemic-impacted environment. These advantages highlight the pivotal role of CRM systems in helping organizations remain resilient and adaptive in the face of ongoing global challenges.

Keywords: healthcare, CRM, customer relationship management, customer experience, digital transformation, pandemic response, patient monitoring, patient management, healthcare automation, electronic health record, patient billing, healthcare information systems, remote workforce, virtual collaboration, resilience, adaptable business models, integration features, CRM in healthcare, telehealth, pandemic management

Procedia PDF Downloads 101
1576 Link Between Intensity-trajectories Of Acute Postoperative Pain And Risk Of Chronicization After Breast And Thoracopulmonary Surgery

Authors: Beloulou Mohamed Lamine, Fedili Benamar, Meliani Walid, Chaid Dalila

Abstract:

Introduction: The risk factors for the chronicization of postoperative pain are numerous and often intricately intertwined. Among these, the severity of acute postoperative pain is currently recognized as one of the most determining factors. Mastectomy and thoracotomy are described as among the most painful surgeries and the most likely to lead to chronic post-surgical pain (CPSP). Objective: To examine the aspects of acute postoperative pain potentially involved in the development of chronic pain following breast and thoracic surgery. Patients and Methods: A prospective study involving 164 patients was conducted over a six-month period. Postoperative pain (during mobilization) was assessed using a Visual Analog Scale (VAS) at various time points after surgery: Day 0, 1st, 2nd, 5th days, 1st and 6th months. Moderate to severe pain was defined as a VAS score ≥ 4. A comparative analysis (univariate analysis) of postoperative pain intensities at different evaluation phases was performed on patients with and without CPSP to identify potential associations with the risk of chronicization six months after surgery. Results: At the 6th month post-surgery, the incidence of CPSP was 43.0%. Moderate to severe acute postoperative pain (in the first five days) was observed in 64% of patients. The highest pain scores were reported among thoracic surgery patients. Comparative measures revealed a highly significant association between the presence of moderate to severe acute pain, especially lasting for ≥ 48 hours, and the occurrence of CPSP (p-value <0.0001). Likewise, the persistence of subacute pain (up to 4 to 6 weeks after surgery), especially of moderate to severe intensity, was significantly associated with the risk of chronicization at six months (p-value <0.0001). Conclusion: CPSP after breast and thoracic surgery remains a fairly common morbidity that profoundly affects the quality of life. Severe acute postoperative pain, especially if it is prolonged and/or with a slow decline in intensity, can be an important predictive factor for the risk of chronicization. Therefore, more effective and intensive management of acute postoperative pain, as well as longitudinal monitoring of its trajectory over time, should be an essential component of strategies for preventing chronic pain after surgery.

Keywords: chronic post-surgical pain, acute postoperative pain, breast and thoracic surgery, subacute postoperative pain, pain trajectory, predictive factor

Procedia PDF Downloads 73
1575 Satellite Photogrammetry for DEM Generation Using Stereo Pair and Automatic Extraction of Terrain Parameters

Authors: Tridipa Biswas, Kamal Pandey

Abstract:

A Digital Elevation Model (DEM) is a simple representation of a surface in 3 dimensional space with elevation as the third dimension along with X (horizontal coordinates) and Y (vertical coordinates) in rectangular coordinates. DEM has wide applications in various fields like disaster management, hydrology and watershed management, geomorphology, urban development, map creation and resource management etc. Cartosat-1 or IRS P5 (Indian Remote Sensing Satellite) is a state-of-the-art remote sensing satellite built by ISRO (May 5, 2005) which is mainly intended for cartographic applications.Cartosat-1 is equipped with two panchromatic cameras capable of simultaneous acquiring images of 2.5 meters spatial resolution. One camera is looking at +26 degrees forward while another looks at –5 degrees backward to acquire stereoscopic imagery with base to height ratio of 0.62. The time difference between acquiring of the stereopair images is approximately 52 seconds. The high resolution stereo data have great potential to produce high-quality DEM. The high-resolution Cartosat-1 stereo image data is expected to have significant impact in topographic mapping and watershed applications. The objective of the present study is to generate high-resolution DEM, quality evaluation in different elevation strata, generation of ortho-rectified image and associated accuracy assessment from CARTOSAT-1 data based Ground Control Points (GCPs) for Aglar watershed (Tehri-Garhwal and Dehradun district, Uttarakhand, India). The present study reveals that generated DEMs (10m and 30m) derived from the CARTOSAT-1 stereo pair is much better and accurate when compared with existing DEMs (ASTER and CARTO DEM) also for different terrain parameters like slope, aspect, drainage, watershed boundaries etc., which are derived from the generated DEMs, have better accuracy and results when compared with the other two (ASTER and CARTO) DEMs derived terrain parameters.

Keywords: ASTER-DEM, CARTO-DEM, CARTOSAT-1, digital elevation model (DEM), ortho-rectified image, photogrammetry, RPC, stereo pair, terrain parameters

Procedia PDF Downloads 309
1574 A Review of Applying Serious Games on Learning

Authors: Carlos Oliveira, Ulrick Pimentel

Abstract:

Digital games have conquered a growing space in the lives of children, adolescents and adults. In this perspective, the use of this resource has shown to be an important strategy that facilitates the learning process. This research is a literature review on the use of serious games in teaching, which shows the characteristics of these games, the benefits and possible harms that this resource can produce, in addition to the possible methods of evaluating the effectiveness of this resource in teaching. The results point out that Serious Games have significant potential as a tool for instruction. However, their effectiveness in terms of learning outcomes is still poorly studied, mainly due to the complexity involved in evaluating intangible measures.

Keywords: serious games, learning, application, literature review

Procedia PDF Downloads 311
1573 Use of Personal Rhythm to Authenticate Encrypted Messages

Authors: Carlos Gonzalez

Abstract:

When communicating using private and secure keys, there is always the doubt as to the identity of the message creator. We introduce an algorithm that uses the personal typing rhythm (keystroke dynamics) of the message originator to increase the trust of the authenticity of the message originator by the message recipient. The methodology proposes the use of a Rhythm Certificate Authority (RCA) to validate rhythm information. An illustrative example of the communication between Bob and Alice and the RCA is included. An algorithm of how to communicate with the RCA is presented. This RCA can be an independent authority or an enhanced Certificate Authority like the one used in public key infrastructure (PKI).

Keywords: authentication, digital signature, keystroke dynamics, personal rhythm, public-key encryption

Procedia PDF Downloads 304
1572 A Literature Review of Precision Agriculture: Applications of Diagnostic Diseases in Corn, Potato, and Rice Based on Artificial Intelligence

Authors: Carolina Zambrana, Grover Zurita

Abstract:

The food loss production that occurs in deficient agricultural production is one of the major problems worldwide. This puts the population's food security and the efficiency of farming investments at risk. It is to be expected that this food security will be achieved with the own and efficient production of each country. It will have an impact on the well-being of its population and, thus, also on food sovereignty. The production losses in quantity and quality occur due to the lack of efficient detection of diseases at an early stage. It is very difficult to solve the agriculture efficiency using traditional methods since it takes a long time to be carried out due to detection imprecision of the main diseases, especially when the production areas are extensive. Therefore, the main objective of this research study is to perform a systematic literature review, of the latest five years, of Precision Agriculture (PA) to be able to understand the state of the art of the set of new technologies, procedures, and optimization processes with Artificial Intelligence (AI). This study will focus on Corns, Potatoes, and Rice diagnostic diseases. The extensive literature review will be performed on Elsevier, Scopus, and IEEE databases. In addition, this research will focus on advanced digital imaging processing and the development of software and hardware for PA. The convolution neural network will be handling special attention due to its outstanding diagnostic results. Moreover, the studied data will be incorporated with artificial intelligence algorithms for the automatic diagnosis of crop quality. Finally, precision agriculture with technology applied to the agricultural sector allows the land to be exploited efficiently. This system requires sensors, drones, data acquisition cards, and global positioning systems. This research seeks to merge different areas of science, control engineering, electronics, digital image processing, and artificial intelligence for the development, in the near future, of a low-cost image measurement system that allows the optimization of crops with AI.

Keywords: precision agriculture, convolutional neural network, deep learning, artificial intelligence

Procedia PDF Downloads 79
1571 Optimization of Doubly Fed Induction Generator Equivalent Circuit Parameters by Direct Search Method

Authors: Mamidi Ramakrishna Rao

Abstract:

Doubly-fed induction generator (DFIG) is currently the choice for many wind turbines. These generators, when connected to the grid through a converter, is subjected to varied power system conditions like voltage variation, frequency variation, short circuit fault conditions, etc. Further, many countries like Canada, Germany, UK, Scotland, etc. have distinct grid codes relating to wind turbines. Accordingly, following the network faults, wind turbines have to supply a definite reactive current. To satisfy the requirements including reactive current capability, an optimum electrical design becomes a mandate for DFIG to function. This paper intends to optimize the equivalent circuit parameters of an electrical design for satisfactory DFIG performance. Direct search method has been used for optimization of the parameters. The variables selected include electromagnetic core dimensions (diameters and stack length), slot dimensions, radial air gap between stator and rotor and winding copper cross section area. Optimization for 2 MW DFIG has been executed separately for three objective functions - maximum reactive power capability (Case I), maximum efficiency (Case II) and minimum weight (Case III). In the optimization analysis program, voltage variations (10%), power factor- leading and lagging (0.95), speeds for corresponding to slips (-0.3 to +0.3) have been considered. The optimum designs obtained for objective functions were compared. It can be concluded that direct search method of optimization helps in determining an optimum electrical design for each objective function like efficiency or reactive power capability or weight minimization.

Keywords: direct search, DFIG, equivalent circuit parameters, optimization

Procedia PDF Downloads 256
1570 Human Factors Issues and Measures in Advanced NPPs

Authors: Jun Su Ha

Abstract:

Various advanced technologies will be adopted in Advanced Control Rooms (ACRs) of advanced Nuclear Power Plants (NPPs), which is thought to increase operators’ performance. However, potential human factors issues coupled with digital technologies might be troublesome. Human factors issues in ACRs are identified and strategies (or countermeasures) for evaluating and analyzing each of issues are addressed in this study.

Keywords: advanced control room, human factor issues, human performance, human error, nuclear power plant

Procedia PDF Downloads 470
1569 A Semantic E-Learning and E-Assessment System of Learners

Authors: Wiem Ben Khalifa, Dalila Souilem, Mahmoud Neji

Abstract:

The evolutions of Social Web and Semantic Web lead us to ask ourselves about the way of supporting the personalization of learning by means of intelligent filtering of educational resources published in the digital networks. We recommend personalized courses of learning articulated around a first educational course defined upstream. Resuming the context and the stakes in the personalization, we also suggest anchoring the personalization of learning in a community of interest within a group of learners enrolled in the same training. This reflection is supported by the display of an active and semantic system of learning dedicated to the constitution of personalized to measure courses and in the due time.

Keywords: Semantic Web, semantic system, ontology, evaluation, e-learning

Procedia PDF Downloads 335
1568 The OQAM-OFDM System Using WPT/IWPT Replaced FFT/IFFT

Authors: Alaa H. Thabet, Ehab F. Badran, Moustafa H. Aly

Abstract:

With the rapid expand of wireless digital communications, demand for wireless systems that are reliable and have a high spectral efficiency have increased too. FBMC scheme based on the OFDM/OQAM has been recognized for its good performance to achieve high data rates. Fast Fourier Transforms (FFT) has been used to produce the orthogonal sub-carriers. Due to the drawbacks of OFDM -FFT based system which are the high peak-to-average ratio (PAR) and the synchronization. In this paper, Wavelet Packet Transform (WPT) is used in the place of FFT, and show better performance.

Keywords: OQAM-OFDM, wavelet packet transform, PAPR, FFT

Procedia PDF Downloads 460
1567 Impact of the Hayne Royal Commission on the Operating Model of Australian Financial Advice Firms

Authors: Mohammad Abu-Taleb

Abstract:

The final report of the Royal Commission into Australian financial services misconduct, released in February 2019, has had a significant impact on the financial advice industry. The recommendations released in the Commissioner’s final report include changes to ongoing fee arrangements, a new disciplinary system for financial advisers, and mandatory reporting of compliance concerns. This thesis aims to explore the impact of the Royal Commission’s recommendations on the operating model of financial advice firms in terms of advice products, processes, delivery models, and customer segments. Also, this research seeks to investigate whether the Royal Commission’s outcome has accelerated the use of enhanced technology solutions within the operating model of financial advice firms. And to identify the key challenges confronting financial advice firms whilst implementing the Commissioner’s recommendations across their operating models. In order to achieve the objectives of this thesis, a qualitative research design has been adopted through semi-structured in-depth interviews with 24 financial advisers and managers who are engaged in the operation of financial advice services. The study used the thematic analysis approach to interpret the qualitative data collected from the interviews. The findings of this thesis reveal that customer-centric operating models will become more prominent across the financial advice industry in response to the Commissioner’s final report. And the Royal Commission’s outcome has accelerated the use of advice technology solutions within the operating model of financial advice firms. In addition, financial advice firms have started more than before using simpler and more automated web-based advice services, which enable financial advisers to provide simple advice in a greater scale, and also to accelerate the use of robo-advice models and digital delivery to mass customers in the long term. Furthermore, the study identifies process and technology changes as, long with technical and interpersonal skills development, as the key challenges encountered financial advice firms whilst implementing the Commissioner’s recommendations across their operating models.

Keywords: hayne royal commission, financial planning advice, operating model, advice products, advice processes, delivery models, customer segments, digital advice solutions

Procedia PDF Downloads 88
1566 Small and Medium Sized Ports between Specialisation and Diversification: A Framework Tool for Sustainable Development

Authors: Christopher Meyer, Laima Gerlitz

Abstract:

European ports are facing high political pressure through the implementation of initiatives such as the European Green Deal or IMO's 2030 targets (Fit for 55). However, small and medium-sized ports face even higher challenges compared to bigger ones due to lower capacities in various fields such as investments, infra-structure, Human Resources, and funding opportunities. Small and Medium-Sized Ports (SMPs) roles in economic systems are various depending on their specific functionality in maritime ecosystems. Depending on their different situations, being an actor in multiport gateways, aligned to core ports, regional nodes in peripheries for the hinterland, specialized cluster members, or logistical nodes, different strategic business models may be applied to increase SMPs' competitiveness among other bigger ports. Additionally, SMPs are facing more challenges for future development in terms of digital and green transition of their operations. Thus, it is necessary to evaluate the own strategical position and apply management strategies alongside the regional growth and innovation strategies for diversification or specialisation of own port businesses. The research uses inductive perspectives to set up a transferable framework based on case studies to be analysed. In line with particular research and document analysis, qualitative approaches were considered. The research is based on a deep literature review on SMPs as well as theories on diversification and specialisation. Existing theories from different fields are evaluated on their application for the port sector and these specific maritime actors, paying respect to enabling innovation incorporation to enhance digital and environmental transition with fu-ture perspectives for SMPs. The paper aims to provide a decision-making matrix for the strategic positioning of SMPs in Europe, including opportunities to get access to particular EU funds for future development alongside the Regional In-novation Strategies on Smart Specialisation.

Keywords: strategic planning, sustainability transition, competitiveness portfolio, EU green deal

Procedia PDF Downloads 79
1565 A Newspapers Expectations Indicator from Web Scraping

Authors: Pilar Rey del Castillo

Abstract:

This document describes the building of an average indicator of the general sentiments about the future exposed in the newspapers in Spain. The raw data are collected through the scraping of the Digital Periodical and Newspaper Library website. Basic tools of natural language processing are later applied to the collected information to evaluate the sentiment strength of each word in the texts using a polarized dictionary. The last step consists of summarizing these sentiments to produce daily indices. The results are a first insight into the applicability of these techniques to produce periodic sentiment indicators.

Keywords: natural language processing, periodic indicator, sentiment analysis, web scraping

Procedia PDF Downloads 133
1564 Determination of Potential Agricultural Lands Using Landsat 8 OLI Images and GIS: Case Study of Gokceada (Imroz) Turkey

Authors: Rahmi Kafadar, Levent Genc

Abstract:

In present study, it was aimed to determine potential agricultural lands (PALs) in Gokceada (Imroz) Island of Canakkale province, Turkey. Seven-band Landsat 8 OLI images acquired on July 12 and August 13, 2013, and their 14-band combination image were used to identify current Land Use Land Cover (LULC) status. Principal Component Analysis (PCA) was applied to three Landsat datasets in order to reduce the correlation between the bands. A total of six Original and PCA images were classified using supervised classification method to obtain the LULC maps including 6 main classes (“Forest”, “Agriculture”, “Water Surface”, “Residential Area-Bare Soil”, “Reforestation” and “Other”). Accuracy assessment was performed by checking the accuracy of 120 randomized points for each LULC maps. The best overall accuracy and Kappa statistic values (90.83%, 0.8791% respectively) were found for PCA images which were generated from 14-bands combined images called 3-B/JA. Digital Elevation Model (DEM) with 15 m spatial resolution (ASTER) was used to consider topographical characteristics. Soil properties were obtained by digitizing 1:25000 scaled soil maps of rural services directorate general. Potential Agricultural Lands (PALs) were determined using Geographic information Systems (GIS). Procedure was applied considering that “Other” class of LULC map may be used for agricultural purposes in the future properties. Overlaying analysis was conducted using Slope (S), Land Use Capability Class (LUCC), Other Soil Properties (OSP) and Land Use Capability Sub-Class (SUBC) properties. A total of 901.62 ha areas within “Other” class (15798.2 ha) of LULC map were determined as PALs. These lands were ranked as “Very Suitable”, “Suitable”, “Moderate Suitable” and “Low Suitable”. It was determined that the 8.03 ha were classified as “Very Suitable” while 18.59 ha as suitable and 11.44 ha as “Moderate Suitable” for PALs. In addition, 756.56 ha were found to be “Low Suitable”. The results obtained from this preliminary study can serve as basis for further studies.

Keywords: digital elevation model (DEM), geographic information systems (GIS), gokceada (Imroz), lANDSAT 8 OLI-TIRS, land use land cover (LULC)

Procedia PDF Downloads 353
1563 Mobile Marketing Adoption in Pakistan

Authors: Manzoor Ahmad

Abstract:

The rapid advancement of mobile technology has transformed the way businesses engage with consumers, making mobile marketing a crucial strategy for organizations worldwide. This paper presents a comprehensive study on the adoption of mobile marketing in Pakistan, aiming to provide valuable insights into the current landscape, challenges, and opportunities in this emerging market. To achieve this objective, a mixed-methods approach was employed, combining quantitative surveys and qualitative interviews with industry experts, marketers, and consumers. The study encompassed a diverse range of sectors, including retail, telecommunications, banking, and e-commerce, ensuring a comprehensive understanding of mobile marketing practices across different industries. The findings indicate that mobile marketing has gained significant traction in Pakistan, with a growing number of organizations recognizing its potential for reaching and engaging with consumers effectively. Factors such as increasing smartphone penetration, affordable data plans, and the rise of social media usage have contributed to the widespread adoption of mobile marketing strategies. However, several challenges and barriers to mobile marketing adoption were identified. These include issues related to data privacy and security, limited digital literacy among consumers, inadequate infrastructure, and cultural considerations. Additionally, the study highlights the need for tailored and localized mobile marketing strategies to address the diverse cultural and linguistic landscape of Pakistan. Based on the insights gained from the study, practical recommendations are provided to support organizations in optimizing their mobile marketing efforts in Pakistan. These recommendations encompass areas such as consumer targeting, content localization, mobile app development, personalized messaging, and measurement of mobile marketing effectiveness. This research contributes to the existing literature on mobile marketing adoption in developing countries and specifically sheds light on the unique dynamics of the Pakistani market. It serves as a valuable resource for marketers, practitioners, and policymakers seeking to leverage mobile marketing strategies in Pakistan, ultimately fostering the growth and success of businesses operating in this region.

Keywords: mobile marketing, digital marketing, mobile advertising, adoption of mobile marketing

Procedia PDF Downloads 109
1562 Enhancing Cultural Heritage Data Retrieval by Mapping COURAGE to CIDOC Conceptual Reference Model

Authors: Ghazal Faraj, Andras Micsik

Abstract:

The CIDOC Conceptual Reference Model (CRM) is an extensible ontology that provides integrated access to heterogeneous and digital datasets. The CIDOC-CRM offers a “semantic glue” intended to promote accessibility to several diverse and dispersed sources of cultural heritage data. That is achieved by providing a formal structure for the implicit and explicit concepts and their relationships in the cultural heritage field. The COURAGE (“Cultural Opposition – Understanding the CultuRal HeritAGE of Dissent in the Former Socialist Countries”) project aimed to explore methods about socialist-era cultural resistance during 1950-1990 and planned to serve as a basis for further narratives and digital humanities (DH) research. This project highlights the diversity of flourished alternative cultural scenes in Eastern Europe before 1989. Moreover, the dataset of COURAGE is an online RDF-based registry that consists of historical people, organizations, collections, and featured items. For increasing the inter-links between different datasets and retrieving more relevant data from various data silos, a shared federated ontology for reconciled data is needed. As a first step towards these goals, a full understanding of the CIDOC CRM ontology (target ontology), as well as the COURAGE dataset, was required to start the work. Subsequently, the queries toward the ontology were determined, and a table of equivalent properties from COURAGE and CIDOC CRM was created. The structural diagrams that clarify the mapping process and construct queries are on progress to map person, organization, and collection entities to the ontology. Through mapping the COURAGE dataset to CIDOC-CRM ontology, the dataset will have a common ontological foundation with several other datasets. Therefore, the expected results are: 1) retrieving more detailed data about existing entities, 2) retrieving new entities’ data, 3) aligning COURAGE dataset to a standard vocabulary, 4) running distributed SPARQL queries over several CIDOC-CRM datasets and testing the potentials of distributed query answering using SPARQL. The next plan is to map CIDOC-CRM to other upper-level ontologies or large datasets (e.g., DBpedia, Wikidata), and address similar questions on a wide variety of knowledge bases.

Keywords: CIDOC CRM, cultural heritage data, COURAGE dataset, ontology alignment

Procedia PDF Downloads 147
1561 Television Commercial Ideation: Considerations for the Future

Authors: Rashid Farooq, Moazzam Naseer, Rehan Hasan

Abstract:

Increasing challenges posed to the creativity in the discipline of advertising during time’s movement towards the maturity of The Third Wave – a concept of change by Toffler, have to be the major theme of this study. Creative concepts for the changing media landscape are becoming a challenge for the creative industry as Stein says that the usefulness is a dimension no creative work could avoid. Furthermore, Spencer points out that the global capitalist society provides a base for the development of digital technologies. Innovation within the discipline of creativity is reshaping this process. In this review article, the role of creativity and innovation in the development and delivery of the message has to be examined.

Keywords: advertising, creativity, ideation, new media

Procedia PDF Downloads 218
1560 Flicker Detection with Motion Tolerance for Embedded Camera

Authors: Jianrong Wu, Xuan Fu, Akihiro Higashi, Zhiming Tan

Abstract:

CMOS image sensors with a rolling shutter are used broadly in the digital cameras embedded in mobile devices. The rolling shutter suffers the flicker artifacts from the fluorescent lamp, and it could be observed easily. In this paper, the characteristics of illumination flicker in motion case were analyzed, and two efficient detection methods based on matching fragment selection were proposed. According to the experimental results, our methods could achieve as high as 100% accuracy in static scene, and at least 97% in motion scene.

Keywords: illumination flicker, embedded camera, rolling shutter, detection

Procedia PDF Downloads 420
1559 Predicting Wearable Technology Readiness in a South African Government Department: Exploring the Influence of Wearable Technology Acceptance and Positive Attitude

Authors: Henda J Thomas, Cornelia PJ Harmse, Cecile Schultz

Abstract:

Wearables are one of the technologies that will flourish within the fourth industrial revolution and digital transformation arenas, allowing employers to integrate collected data into organisational information systems. The study aimed to investigate whether wearable technology readiness can predict employees’ acceptance to wear wearables in the workplace. The factors of technology readiness predisposition that predict acceptance and positive attitudes towards wearable use in the workplace were examined. A quantitative research approach was used. The population consisted of 8 081 South African Department of Employment and Labour employees (DEL). Census sampling was used, and questionnaires to collect data were sent electronically to all 8 081 employees, 351 questionnaires were received back. The measuring instrument called the Technology Readiness and Acceptance Model (TRAM) was used in this study. Four hypotheses were formulated to investigate the relationship between readiness and acceptance of wearables in the workplace. The results found consistent predictions of technology acceptance (TA) by eagerness, optimism, and discomfort in the technology readiness (TR) scales. The TR scales of optimism and eagerness were consistent positive predictors of the TA scales, while discomfort proved to be a negative predictor for two of the three TA scales. Insecurity was found not to be a predictor of TA. It was recommended that the digital transformation policy of the DEL should be revised. Wearables in the workplace should be embraced from the viewpoint of convenience, automation, and seamless integration with the DEL information systems. The empirical contribution of this study can be seen in the fact that positive attitude emerged as a factor that extends the TRAM. In this study, positive attitude is identified as a new dimension to the TRAM not found in the original TA model and subsequent studies of the TRAM. Furthermore, this study found that Perceived Usefulness (PU) and Behavioural Intention to Use and (BIU) could not be separated but formed one factor. The methodological contribution of this study can lead to the development of a Wearable Readiness and Acceptance Model (WRAM). To the best of our knowledge, no author has yet introduced the WRAM into the body of knowledge.

Keywords: technology acceptance model, technology readiness index, technology readiness and acceptance model, wearable devices, wearable technology, fourth industrial revolution

Procedia PDF Downloads 89
1558 Photocatalytic Eco-Active Ceramic Slabs to Abate Air Pollution under LED Light

Authors: Claudia L. Bianchi, Giuseppina Cerrato, Federico Galli, Federica Minozzi, Valentino Capucci

Abstract:

At the beginning of the industrial productions, porcelain gres tiles were considered as just a technical material, aesthetically not very beautiful. Today thanks to new industrial production methods, both properties, and beauty of these materials completely fit the market requests. In particular, the possibility to prepare slabs of large sizes is the new frontier of building materials. Beside these noteworthy architectural features, new surface properties have been introduced in the last generation of these materials. In particular, deposition of TiO₂ transforms the traditional ceramic into a photocatalytic eco-active material able to reduce polluting molecules present in air and water, to eliminate bacteria and to reduce the surface dirt thanks to the self-cleaning property. The problem of photocatalytic materials resides in the fact that it is necessary a UV light source to activate the oxidation processes on the surface of the material, processes that are turned off inexorably when the material is illuminated by LED lights and, even more so, when we are in darkness. First, it was necessary a thorough study change the existing plants to deposit the photocatalyst very evenly and this has been done thanks to the advent of digital printing and the development of an ink custom-made that stabilizes the powdered TiO₂ in its formulation. In addition, the commercial TiO₂, which is used for the traditional photocatalytic coating, has been doped with metals in order to activate it even in the visible region and thus in the presence of sunlight or LED. Thanks to this active coating, ceramic slabs are able to purify air eliminating odors and VOCs, and also can be cleaned with very soft detergents due to the self-cleaning properties given by the TiO₂ present at the ceramic surface. Moreover, the presence of dopant metals (patent WO2016157155) also allows the material to work as well as antibacterial in the dark, by eliminating one of the negative features of photocatalytic building materials that have so far limited its use on a large scale. Considering that we are constantly in contact with bacteria, some of which are dangerous for health. Active tiles are 99,99% efficient on all bacteria, from the most common such as Escherichia coli to the most dangerous such as Staphilococcus aureus Methicillin-resistant (MRSA). DIGITALIFE project LIFE13 ENV/IT/000140 – award for best project of October 2017.

Keywords: Ag-doped microsized TiO₂, eco-active ceramic, photocatalysis, digital coating

Procedia PDF Downloads 229
1557 A 3-Dimensional Memory-Based Model for Planning Working Postures Reaching Specific Area with Postural Constraints

Authors: Minho Lee, Donghyun Back, Jaemoon Jung, Woojin Park

Abstract:

The current 3-dimensional (3D) posture prediction models commonly provide only a few optimal postures to achieve a specific objective. The problem with such models is that they are incapable of rapidly providing several optimal posture candidates according to various situations. In order to solve this problem, this paper presents a 3D memory-based posture planning (3D MBPP) model, which is a new digital human model that can analyze the feasible postures in 3D space for reaching tasks that have postural constraints and specific reaching space. The 3D MBPP model can be applied to the types of works that are done with constrained working postures and have specific reaching space. The examples of such works include driving an excavator, driving automobiles, painting buildings, working at an office, pitching/batting, and boxing. For these types of works, a limited amount of space is required to store all of the feasible postures, as the hand reaches boundary can be determined prior to perform the task. This prevents computation time from increasing exponentially, which has been one of the major drawbacks of memory-based posture planning model in 3D space. This paper validates the utility of 3D MBPP model using a practical example of analyzing baseball batting posture. In baseball, batters swing with both feet fixed to the ground. This motion is appropriate for use with the 3D MBPP model since the player must try to hit the ball when the ball is located inside the strike zone (a limited area) in a constrained posture. The results from the analysis showed that the stored and the optimal postures vary depending on the ball’s flying path, the hitting location, the batter’s body size, and the batting objective. These results can be used to establish the optimal postural strategies for achieving the batting objective and performing effective hitting. The 3D MBPP model can also be applied to various domains to determine the optimal postural strategies and improve worker comfort.

Keywords: baseball, memory-based, posture prediction, reaching area, 3D digital human models

Procedia PDF Downloads 216
1556 Multimedia Design in Tactical Play Learning and Acquisition for Elite Gaelic Football Practitioners

Authors: Michael McMahon

Abstract:

The use of media (video/animation/graphics) has long been used by athletes, coaches, and sports scientists to analyse and improve performance in technical skills and team tactics. Sports educators are increasingly open to the use of technology to support coach and learner development. However, an overreliance is a concern., This paper is part of a larger Ph.D. study looking into these new challenges for Sports Educators. Most notably, how to exploit the deep-learning potential of Digital Media among expert learners, how to instruct sports educators to create effective media content that fosters deep learning, and finally, how to make the process manageable and cost-effective. Central to the study is Richard Mayers Cognitive Theory of Multimedia Learning. Mayers Multimedia Learning Theory proposes twelve principles that shape the design and organization of multimedia presentations to improve learning and reduce cognitive load. For example, the Prior Knowledge principle suggests and highlights different learning outcomes for Novice and Non-Novice learners, respectively. Little research, however, is available to support this principle in modified domains (e.g., sports tactics and strategy). As a foundation for further research, this paper compares and contrasts a range of contemporary multimedia sports coaching content and assesses how they perform as learning tools for Strategic and Tactical Play Acquisition among elite sports practitioners. The stress tests applied are guided by Mayers's twelve Multimedia Learning Principles. The focus is on the elite athletes and whether current coaching digital media content does foster improved sports learning among this cohort. The sport of Gaelic Football was selected as it has high strategic and tactical play content, a wide range of Practitioner skill levels (Novice to Elite), and also a significant volume of Multimedia Coaching Content available for analysis. It is hoped the resulting data will help identify and inform the future instructional content design and delivery for Sports Practitioners and help promote best design practices optimal for different levels of expertise.

Keywords: multimedia learning, e-learning, design for learning, ICT

Procedia PDF Downloads 103
1555 Artificial Intelligence and Development: The Missing Link

Authors: Driss Kettani

Abstract:

ICT4D actors are naturally attempted to include AI in the range of enabling technologies and tools that could support and boost the Development process, and to refer to these as AI4D. But, doing so, assumes that AI complies with the very specific features of ICT4D context, including, among others, affordability, relevance, openness, and ownership. Clearly, none of these is fulfilled, and the enthusiastic posture that AI4D is a natural part of ICT4D is not grounded and, to certain extent, does not serve the purpose of Technology for Development at all. In the context of Development, it is important to emphasize and prioritize ICT4D, in the national digital transformation strategies, instead of borrowing "trendy" waves of the IT Industry that are motivated by business considerations, with no specific care/consideration to Development.

Keywords: AI, ICT4D, technology for development, position paper

Procedia PDF Downloads 88
1554 Effects of High-Intensity Interval Training versus Traditional Rehabilitation Exercises on Functional Outcomes in Patients with Knee Osteoarthritis: A Randomized Controlled Trial

Authors: Ahmed Torad

Abstract:

Background: Knee osteoarthritis (OA) is a prevalent musculoskeletal condition characterized by pain and functional impairment. While various rehabilitation approaches have been employed, the effectiveness of high-intensity interval training (HIIT) compared to traditional rehabilitation exercises remains unclear. Objective: This randomized controlled trial aimed to compare the effects of HIIT and traditional rehabilitation exercises on pain reduction, functional improvement, and quality of life in individuals with knee OA. Methods: A total of 120 participants diagnosed with knee OA were randomly allocated into two groups: the HIIT group (n=60) and the traditional rehabilitation group (n=60). The HIIT group participated in a 12-week supervised program consisting of high-intensity interval exercises, while the traditional rehabilitation group followed a conventional physiotherapy regimen. Outcome measures included visual analog scale (VAS) pain scores, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and the Short Form-36 Health Survey (SF-36) at baseline and after the intervention period. Results: Both groups showed significant improvements in pain scores, functional outcomes (WOMAC), and quality of life (SF-36) after 12 weeks of intervention. However, the HIIT group demonstrated superior pain reduction (p<0.001), functional improvement (p<0.001), and physical health-related quality of life (p=0.002) compared to the traditional rehabilitation group. No significant differences were observed in mental health-related quality of life between the two groups. Conclusion: High-intensity interval training appears to be a more effective rehabilitation approach than traditional exercises for individuals with knee osteoarthritis, resulting in greater pain reduction, improved function, and enhanced physical health-related quality of life. These findings suggest that HIIT may represent a promising intervention strategy for managing knee OA and enhancing the overall well-being of affected individuals.

Keywords: knee osteoarthritis, high-intensity interval training, traditional rehabilitation exercises, randomized controlled trial, pain reduction, functional improvement, quality of life

Procedia PDF Downloads 75
1553 Climate Species Lists: A Combination of Methods for Urban Areas

Authors: Andrea Gion Saluz, Tal Hertig, Axel Heinrich, Stefan Stevanovic

Abstract:

Higher temperatures, seasonal changes in precipitation, and extreme weather events are increasingly affecting trees. To counteract the increasing challenges of urban trees, strategies are increasingly being sought to preserve existing tree populations on the one hand and to prepare for the coming years on the other. One such strategy lies in strategic climate tree species selection. The search is on for species or varieties that can cope with the new climatic conditions. Many efforts in German-speaking countries deal with this in detail, such as the tree lists of the German Conference of Garden Authorities (GALK), the project Stadtgrün 2021, or the instruments of the Climate Species Matrix by Prof. Dr. Roloff. In this context, different methods for a correct species selection are offered. One possibility is to select certain physiological attributes that indicate the climate resilience of a species. To calculate the dissimilarity of the present climate of different geographic regions in relation to the future climate of any city, a weighted (standardized) Euclidean distance (SED) for seasonal climate values is calculated for each region of the Earth. The calculation was performed in the QGIS geographic information system, using global raster datasets on monthly climate values in the 1981-2010 standard period. Data from a European forest inventory were used to identify tree species growing in the calculated analogue climate regions. The inventory used is the compilation of georeferenced point data at a 1 km grid resolution on the occurrence of tree species in 21 European countries. In this project, the results of the methodological application are shown for the city of Zurich for the year 2060. In the first step, analog climate regions based on projected climate values for the measuring station Kirche Fluntern (ZH) were searched for. In a further step, the methods mentioned above were applied to generate tree species lists for the city of Zurich. These lists were then qualitatively evaluated with respect to the suitability of the different tree species for the Zurich area to generate a cleaned and thus usable list of possible future tree species.

Keywords: climate change, climate region, climate tree, urban tree

Procedia PDF Downloads 108
1552 Vertical and Horizantal Distribution Patterns of Major and Trace Elements: Surface and Subsurface Sediments of Endhorheic Lake Acigol Basin, Denizli Turkey

Authors: M. Budakoglu, M. Karaman

Abstract:

Lake Acıgöl is located in area with limited influences from urban and industrial pollution sources, there is nevertheless a need to understand all potential lithological and anthropogenic sources of priority contaminants in this closed basin. This study discusses vertical and horizontal distribution pattern of major, trace elements of recent lake sediments to better understand their current geochemical analog with lithological units in the Lake Acıgöl basin. This study also provides reliable background levels for the region by the detailed surfaced lithological units data. The detail results of surface, subsurface and shallow core sediments from these relatively unperturbed ecosystems, highlight its importance as conservation area, despite the high-scale industrial salt production activity. While P2O5/TiO2 versus MgO/CaO classification diagram indicate magmatic and sedimentary origin of lake sediment, Log(SiO2/Al2O3) versus Log(Na2O/K2O) classification diagrams express lithological assemblages of shale, iron-shale, vacke and arkose. The plot between TiO2 vs. SiO2 and P2O5/TiO2 vs. MgO/CaO also supports the origin of the primary magma source. The average compositions of the 20 different lithological units used as a proxy for geochemical background in the study area. As expected from weathered rock materials, there is a large variation in the major element content for all analyzed lake samples. The A-CN-K and A-CNK-FM ternary diagrams were used to deduce weathering trends. Surface and subsurface sediments display an intense weathering history according to these ternary diagrams. The most of the sediments samples plot around UCC and TTG, suggesting a low to moderate weathering history for the provenance. The sediments plot in a region clearly suggesting relative similar contents in Al2O3, CaO, Na2O, and K2O from those of lithological samples.

Keywords: Lake Acıgöl, recent lake sediment, geochemical speciation of major and trace elements, heavy metals, Denizli, Turkey

Procedia PDF Downloads 411
1551 Automatic Content Curation of Visual Heritage

Authors: Delphine Ribes Lemay, Valentine Bernasconi, André Andrade, Lara DéFayes, Mathieu Salzmann, FréDéRic Kaplan, Nicolas Henchoz

Abstract:

Digitization and preservation of large heritage induce high maintenance costs to keep up with the technical standards and ensure sustainable access. Creating impactful usage is instrumental to justify the resources for long-term preservation. The Museum für Gestaltung of Zurich holds one of the biggest poster collections of the world from which 52’000 were digitised. In the process of building a digital installation to valorize the collection, one objective was to develop an algorithm capable of predicting the next poster to show according to the ones already displayed. The work presented here describes the steps to build an algorithm able to automatically create sequences of posters reflecting associations performed by curator and professional designers. The exposed challenge finds similarities with the domain of song playlist algorithms. Recently, artificial intelligence techniques and more specifically, deep-learning algorithms have been used to facilitate their generations. Promising results were found thanks to Recurrent Neural Networks (RNN) trained on manually generated playlist and paired with clusters of extracted features from songs. We used the same principles to create the proposed algorithm but applied to a challenging medium, posters. First, a convolutional autoencoder was trained to extract features of the posters. The 52’000 digital posters were used as a training set. Poster features were then clustered. Next, an RNN learned to predict the next cluster according to the previous ones. RNN training set was composed of poster sequences extracted from a collection of books from the Gestaltung Museum of Zurich dedicated to displaying posters. Finally, within the predicted cluster, the poster with the best proximity compared to the previous poster is selected. The mean square distance between features of posters was used to compute the proximity. To validate the predictive model, we compared sequences of 15 posters produced by our model to randomly and manually generated sequences. Manual sequences were created by a professional graphic designer. We asked 21 participants working as professional graphic designers to sort the sequences from the one with the strongest graphic line to the one with the weakest and to motivate their answer with a short description. The sequences produced by the designer were ranked first 60%, second 25% and third 15% of the time. The sequences produced by our predictive model were ranked first 25%, second 45% and third 30% of the time. The sequences produced randomly were ranked first 15%, second 29%, and third 55% of the time. Compared to designer sequences, and as reported by participants, model and random sequences lacked thematic continuity. According to the results, the proposed model is able to generate better poster sequencing compared to random sampling. Eventually, our algorithm is sometimes able to outperform a professional designer. As a next step, the proposed algorithm should include a possibility to create sequences according to a selected theme. To conclude, this work shows the potentiality of artificial intelligence techniques to learn from existing content and provide a tool to curate large sets of data, with a permanent renewal of the presented content.

Keywords: Artificial Intelligence, Digital Humanities, serendipity, design research

Procedia PDF Downloads 184
1550 Subjective Evaluation of Mathematical Morphology Edge Detection on Computed Tomography (CT) Images

Authors: Emhimed Saffor

Abstract:

In this paper, the problem of edge detection in digital images is considered. Three methods of edge detection based on mathematical morphology algorithm were applied on two sets (Brain and Chest) CT images. 3x3 filter for first method, 5x5 filter for second method and 7x7 filter for third method under MATLAB programming environment. The results of the above-mentioned methods are subjectively evaluated. The results show these methods are more efficient and satiable for medical images, and they can be used for different other applications.

Keywords: CT images, Matlab, medical images, edge detection

Procedia PDF Downloads 338
1549 Improving Preconception Health and Lifestyle Behaviours through Digital Health Intervention: The OptimalMe Program

Authors: Bonnie R. Brammall, Rhonda M. Garad, Helena J. Teede, Cheryce L. Harrison

Abstract:

Introduction: Reproductive aged women are at high-risk for accelerated weight gain and obesity development, with pregnancy recognised as a critical contributory life phase. Healthy lifestyle interventions during the preconception and antenatal period improve maternal and infant health outcomes. Yet, interventions from preconception through to postpartum and translation and implementation into real-world healthcare settings remain limited. OptimalMe is a randomised, hybrid implementation effectiveness study of evidence-based healthy lifestyle intervention. Here, we report engagement, acceptability of the intervention during preconception, and self-reported behaviour change outcomes as a result of the preconception phase of the intervention. Methods: Reproductive aged women who upgraded their private health insurance to include pregnancy and birth cover, signalling a pregnancy intention, were invited to participate. Women received access to an online portal with preconception health and lifestyle modules, goal-setting and behaviour change tools, monthly SMS messages, and two coaching sessions (randomised to video or phone) prior to pregnancy. Results: Overall n=527 expressed interest in participating. Of these, n=33 did not meet inclusion criteria, n=8 were not contactable for eligibility screening, and n=177 failed to engage after the screening, leaving n=309 who were enrolled in OptimalMe and randomised to intervention delivery method. Engagement with coaching sessions dropped by 25% for session two, with no difference between intervention groups. Women had a mean (SD) age of 31.7 (4.3) years and, at baseline, a self-reported mean BMI of 25.7 (6.1) kg/m², with 55.8% (n=172) of a healthy BMI. Behaviour was sub-optimal with infrequent self-weighing (38.1%), alcohol consumption prevalent (57.1%), sub-optimal pre-pregnancy supplementation (61.5%), and incomplete medical screening. Post-intervention 73.2% of women reported engagement with a GP for preconception care and improved lifestyle behaviour (85.5%), since starting OptimalMe. Direct pre-and-post comparison of individual participant data showed that of 322 points of potential change (up-to-date cervical screening, elimination of high-risk behaviours [alcohol, drugs, smoking], uptake of preconception supplements and improved weighing habits) 158 (49.1%) points of change were achieved. Health coaching sessions were found to improve accountability and confidence, yet further personalisation and support were desired. Engagement with video and phone sessions was comparable, having similar impacts on behaviour change, and both methods were well accepted and increased women's accountability. Conclusion: A low-intensity digital health and lifestyle program with embedded health coaching can improve the uptake of preconception care and lead to self-reported behaviour change. This is the first program of its kind to reach an otherwise healthy population of women planning a pregnancy. Women who were otherwise healthy showed divergence from preconception health and lifestyle objectives and benefited from the intervention. OptimalMe shows promising results for population-based behaviour change interventions that can improve preconception lifestyle habits and increase engagement with clinical health care for pregnancy preparation.

Keywords: preconception, pregnancy, preventative health, weight gain prevention, self-management, behaviour change, digital health, telehealth, intervention, women's health

Procedia PDF Downloads 91