Search results for: safety stock optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7032

Search results for: safety stock optimization

5472 Nanabis™: A Non-Opioid Alternative for Management of Cancer Bone Pain

Authors: Sean Hall

Abstract:

Prior to COVID-19, the world was preoccupied with opioids, effectiveness versus risk, and specifically toxicity versus abuse. Historically underpinning opioid use was a concept of safety. As use over time and real-world data evolved, a pursuit for efficacy associated with non-opioid alternatives became mainstream. On January 8, 2021, the US signed back into the opioid problem, with these two fundamental questions still unresolved. The author will share the current progression of a lead non-opioid cancer bone pain candidate, NanaBis™. NanaBis™ represents two innovative factors: The active ingredients are from cannabinoids; these ingredients are in a proprietary sub-micron delivery platform, NanoCelle®. The author will offer an opinion piece, potentiating the future role of delivery platforms in medicine to increase both patient safety and compliance.

Keywords: NanaBis, nanoCelle, opioids, toxicity

Procedia PDF Downloads 79
5471 Pilot Scale Deproteinization Study on Fish Scale Using Response Surface Methodology

Authors: Fatima Bellali, Mariem Kharroubi

Abstract:

Fish scale wastes are one of the main sources of production of value-added products such as collagen. The main aim of this study is to investigate the optimization conditions of the sardine scale deproteinization using response surface methodology (RSM) on a pilot scale. In order to look for the optimal conditions, a Box–Behnken-based design of experiment (DOE) method was carried out. The model predicted values of product coal ash content were in good agreement with the experiment values (R2 = 0.9813). Finally, model-based optimization was carried out to identify the operating parameters (reaction time=4h and the solid-liquid ratio= 1/10) and to obtain the lowest collagen content.

Keywords: pilot scale, Plackett and Burman design, fish waste, deproteinization

Procedia PDF Downloads 138
5470 Optimal Tuning of a Fuzzy Immune PID Parameters to Control a Delayed System

Authors: S. Gherbi, F. Bouchareb

Abstract:

This paper deals with the novel intelligent bio-inspired control strategies, it presents a novel approach based on an optimal fuzzy immune PID parameters tuning, it is a combination of a PID controller, inspired by the human immune mechanism with fuzzy logic. Such controller offers more possibilities to deal with the delayed systems control difficulties due to the delay term. Indeed, we use an optimization approach to tune the four parameters of the controller in addition to the fuzzy function; the obtained controller is implemented in a modified Smith predictor structure, which is well known that it is the most efficient to the control of delayed systems. The application of the presented approach to control a three tank delay system shows good performances and proves the efficiency of the method.

Keywords: delayed systems, fuzzy immune PID, optimization, Smith predictor

Procedia PDF Downloads 414
5469 FEM for Stress Reduction by Optimal Auxiliary Holes in a Uniaxially Loaded Plate

Authors: Basavaraj R. Endigeri, Shriharsh Desphande

Abstract:

Optimization and reduction of stress concentration around holes in a uniaxially loaded plate is one of the important design criteria in many of the engineering applications. These stress risers will lead to failure of the component at the region of high stress concentration which has to be avoided by means of providing auxiliary holes on either side of the parent hole. By literature survey it is known that till date, there is no analytical solution documented to reduce the stress concentration by providing auxiliary holes expect for fever geometries. In the present work, plate with a hole subjected to uniaxial load is analyzed with the numerical method to determine the optimum sizes and locations for the auxillary holes for different center hole diameter to plate width ratios. The introduction of auxiliary holes at a optimum location and radii with its effect on stress concentration is also represented graphically. The finite element analysis package ANSYS 8.0 is used to carry out analysis and optimization is performed to determine the location and radii for optimum values of auxiliary holes to reduce stress concentration. All the results for different diameter to plate width ratio are presented graphically. It is found from the work that introduction of auxiliary holes on either side of central circular hole will reduce stress concentration factor by a factor of 19 to 21 percentage.

Keywords: finite element method, optimization, stress concentration factor, auxiliary holes

Procedia PDF Downloads 427
5468 Geospatial Modeling Framework for Enhancing Urban Roadway Intersection Safety

Authors: Neeti Nayak, Khalid Duri

Abstract:

Despite the many advances made in transportation planning, the number of injuries and fatalities in the United States which involve motorized vehicles near intersections remain largely unchanged year over year. Data from the National Highway Traffic Safety Administration for 2018 indicates accidents involving motorized vehicles at traffic intersections accounted for 8,245 deaths and 914,811 injuries. Furthermore, collisions involving pedal cyclists killed 861 people (38% at intersections) and injured 46,295 (68% at intersections), while accidents involving pedestrians claimed 6,247 lives (25% at intersections) and injured 71,887 (56% at intersections)- the highest tallies registered in nearly 20 years. Some of the causes attributed to the rising number of accidents relate to increasing populations and the associated changes in land and traffic usage patterns, insufficient visibility conditions, and inadequate applications of traffic controls. Intersections that were initially designed with a particular land use pattern in mind may be rendered obsolete by subsequent developments. Many accidents involving pedestrians are accounted for by locations which should have been designed for safe crosswalks. Conventional solutions for evaluating intersection safety often require costly deployment of engineering surveys and analysis, which limit the capacity of resource-constrained administrations to satisfy their community’s needs for safe roadways adequately, effectively relegating mitigation efforts for high-risk areas to post-incident responses. This paper demonstrates how geospatial technology can identify high-risk locations and evaluate the viability of specific intersection management techniques. GIS is used to simulate relevant real-world conditions- the presence of traffic controls, zoning records, locations of interest for human activity, design speed of roadways, topographic details and immovable structures. The proposed methodology provides a low-cost mechanism for empowering urban planners to reduce the risks of accidents using 2-dimensional data representing multi-modal street networks, parcels, crosswalks and demographic information alongside 3-dimensional models of buildings, elevation, slope and aspect surfaces to evaluate visibility and lighting conditions and estimate probabilities for jaywalking and risks posed by blind or uncontrolled intersections. The proposed tools were developed using sample areas of Southern California, but the model will scale to other cities which conform to similar transportation standards given the availability of relevant GIS data.

Keywords: crosswalks, cyclist safety, geotechnology, GIS, intersection safety, pedestrian safety, roadway safety, transportation planning, urban design

Procedia PDF Downloads 91
5467 Studying on Pile Seismic Operation with Numerical Method by Using FLAC 3D Software

Authors: Hossein Motaghedi, Kaveh Arkani, Siavash Salamatpoor

Abstract:

Usually the piles are important tools for safety and economical design of high and heavy structures. For this aim the response of single pile under dynamic load is so effective. Also, the agents which have influence on single pile response are properties of pile geometrical, soil and subjected loads. In this study the finite difference numerical method and by using FLAC 3D software is used for evaluation of single pile behavior under peak ground acceleration (PGA) of El Centro earthquake record in California (1940). The results of this models compared by experimental results of other researchers and it will be seen that the results of this models are approximately coincide by experimental data's. For example the maximum moment and displacement in top of the pile is corresponding to the other experimental results of pervious researchers. Furthermore, in this paper is tried to evaluate the effective properties between soil and pile. The results is shown that by increasing the pile diagonal, the pile top displacement will be decreased. As well as, by increasing the length of pile, the top displacement will be increased. Also, by increasing the stiffness ratio of pile to soil, the produced moment in pile body will be increased and the taller piles have more interaction by soils and have high inertia. So, these results can help directly to optimization design of pile dimensions.

Keywords: pile seismic response, interaction between soil and pile, numerical analysis, FLAC 3D

Procedia PDF Downloads 373
5466 The Design, Development, and Optimization of a Capacitive Pressure Sensor Utilizing an Existing 9DOF Platform

Authors: Andrew Randles, Ilker Ocak, Cheam Daw Don, Navab Singh, Alex Gu

Abstract:

Nine Degrees of Freedom (9 DOF) systems are already in development in many areas. In this paper, an integrated pressure sensor is proposed that will make use of an already existing monolithic 9 DOF inertial MEMS platform. Capacitive pressure sensors can suffer from limited sensitivity for a given size of membrane. This novel pressure sensor design increases the sensitivity by over 5 times compared to a traditional array of square diaphragms while still fitting within a 2 mm x 2 mm chip and maintaining a fixed static capacitance. The improved design uses one large diaphragm supported by pillars with fixed electrodes placed above the areas of maximum deflection. The design optimization increases the sensitivity from 0.22 fF/kPa to 1.16 fF/kPa. Temperature sensitivity was also examined through simulation.

Keywords: capacitive pressure sensor, 9 DOF, 10 DOF, sensor, capacitive, inertial measurement unit, IMU, inertial navigation system, INS

Procedia PDF Downloads 531
5465 Optimization of Fenton Process for the Treatment of Young Municipal Leachate

Authors: Bouchra Wassate, Younes Karhat, Khadija El Falaki

Abstract:

Leachate is a source of surface water and groundwater contamination if it has not been pretreated. Indeed, due to its complex structure and its pollution load make its treatment extremely difficult to achieve the standard limits required. The objective of this work is to show the interest of advanced oxidation processes on leachate treatment of urban waste containing high concentrations of organic pollutants. The efficiency of Fenton (Fe2+ +H2O2 + H+) reagent for young leachate recovered from collection trucks household waste in the city of Casablanca, Morocco, was evaluated with the objectives of chemical oxygen demand (COD) and discoloration reductions. The optimization of certain physicochemical parameters (initial pH value, reaction time, and [Fe2+], [H2O2]/ [Fe2+] ratio) has yielded good results in terms of reduction of COD and discoloration of the leachate.

Keywords: COD removal, color removal, Fenton process, oxidation process, leachate

Procedia PDF Downloads 272
5464 Hybrid Approach for the Min-Interference Frequency Assignment

Authors: F. Debbat, F. T. Bendimerad

Abstract:

The efficient frequency assignment for radio communications becomes more and more crucial when developing new information technologies and their applications. It is consists in defining an assignment of frequencies to radio links, to be established between base stations and mobile transmitters. Separation of the frequencies assigned is necessary to avoid interference. However, unnecessary separation causes an excess requirement for spectrum, the cost of which may be very high. This problem is NP-hard problem which cannot be solved by conventional optimization algorithms. It is therefore necessary to use metaheuristic methods to solve it. This paper proposes Hybrid approach based on simulated annealing (SA) and Tabu Search (TS) methods to solve this problem. Computational results, obtained on a number of standard problem instances, testify the effectiveness of the proposed approach.

Keywords: cellular mobile communication, frequency assignment problem, optimization, tabu search, simulated annealing

Procedia PDF Downloads 367
5463 Development of a General Purpose Computer Programme Based on Differential Evolution Algorithm: An Application towards Predicting Elastic Properties of Pavement

Authors: Sai Sankalp Vemavarapu

Abstract:

This paper discusses the application of machine learning in the field of transportation engineering for predicting engineering properties of pavement more accurately and efficiently. Predicting the elastic properties aid us in assessing the current road conditions and taking appropriate measures to avoid any inconvenience to commuters. This improves the longevity and sustainability of the pavement layer while reducing its overall life-cycle cost. As an example, we have implemented differential evolution (DE) in the back-calculation of the elastic modulus of multi-layered pavement. The proposed DE global optimization back-calculation approach is integrated with a forward response model. This approach treats back-calculation as a global optimization problem where the cost function to be minimized is defined as the root mean square error in measured and computed deflections. The optimal solution which is elastic modulus, in this case, is searched for in the solution space by the DE algorithm. The best DE parameter combinations and the most optimum value is predicted so that the results are reproducible whenever the need arises. The algorithm’s performance in varied scenarios was analyzed by changing the input parameters. The prediction was well within the permissible error, establishing the supremacy of DE.

Keywords: cost function, differential evolution, falling weight deflectometer, genetic algorithm, global optimization, metaheuristic algorithm, multilayered pavement, pavement condition assessment, pavement layer moduli back calculation

Procedia PDF Downloads 150
5462 Application of Medium High Hydrostatic Pressure in Preserving Textural Quality and Safety of Pineapple Compote

Authors: Nazim Uddin, Yohiko Nakaura, Kazutaka Yamamoto

Abstract:

Compote (fruit in syrup) of pineapple (Ananas comosus L. Merrill) is expected to have a high market potential as one of convenient ready-to-eat (RTE) foods worldwide. High hydrostatic pressure (HHP) in combination with low temperature (LT) was applied to the processing of pineapple compote as well as medium HHP (MHHP) in combination with medium-high temperature (MHT) since both processes can enhance liquid impregnation and inactivate microbes. MHHP+MHT (55 or 65 °C) process, as well as the HHP+LT process, has successfully inactivated the microbes in the compote to a non-detectable level. Although the compotes processed by MHHP+MHT or HHP+LT have lost the fresh texture as in a similar manner as those processed solely by heat, it was indicated that the texture degradations by heat were suppressed under MHHP. Degassing process reduced the hardness, while calcium (Ca) contributed to be retained hardness in MHT and MHHP+MHT processes. Electrical impedance measurement supported the damage due to degassing and heat. The color, Brix, and appearance were not affected by the processing methods significantly. MHHP+MHT and HHP+LT processes may be applicable to produce high-quality, safe RTE pineapple compotes. Further studies on the optimization of packaging and storage condition will be indispensable for commercialization.

Keywords: compote of pineapple, RTE, medium high hydrostatic pressure, postharvest loss, texture

Procedia PDF Downloads 123
5461 Heat Transfer Process Parameter Optimization in SI/Ge Using TAGUCHI Method

Authors: Evln Ranga Charyulu, S. P. Venu Madhavarao, S. Udaya kumar, S. V. S. S. N. V. G. Krishna Murthy

Abstract:

With the advent of new nanometer process technologies, it is possible to integrate billion transistors on a single substrate. When more and more functionality included there is the possibility of multi-million transistors switching simultaneously consuming more power and dissipating more power along with more leakage of current into the substrate of porous silicon or germanium material. These results in substrate heating and thermal noise generation coupled to signals of interest. The heating process is represented by coupled nonlinear partial differential equations in porous silicon and germanium. By identifying heat sources and heat fluxes may results in designing of ultra-low power circuits. The PDEs are solved by finite difference scheme assuming that boundary layer equations in porous silicon and germanium. Local heat fluxes along the vertical isothermal surface immersed in porous SI/Ge are considered. The parameters considered for optimization are thermal diffusivity, thermal expansion coefficient, thermal diffusion ratio, permeability, specific heat at constant temperatures, Rayleigh number, amplitude of wavy surface, mass expansion coefficient. The diffusion of heat was caused by the concentration gradient. Thermal physical properties are homogeneous and isotropic. By using L8, TAGUCHI method the parameters are optimized.

Keywords: heat transfer, pde, taguchi optimization, SI/Ge

Procedia PDF Downloads 324
5460 Crude Oil and Stocks Markets: Prices and Uncertainty Transmission Analysis

Authors: Kamel Malik Bensafta, Gervasio Semedo

Abstract:

The purpose of this paper is to investigate the relationship between oil prices and socks markets. The empirical analysis in this paper is conducted within the context of Multivariate GARCH models, using a transform version of the so-called BEKK parameterization. We show that mean and uncertainty of US market are transmitted to oil market and European market. We also identify an important transmission from WTI prices to Brent Prices.

Keywords: oil volatility, stock markets, MGARCH, transmission, structural break

Procedia PDF Downloads 509
5459 Optimisation of B2C Supply Chain Resource Allocation

Authors: Firdaous Zair, Zoubir Elfelsoufi, Mohammed Fourka

Abstract:

The allocation of resources is an issue that is needed on the tactical and operational strategic plan. This work considers the allocation of resources in the case of pure players, manufacturers and Click & Mortars that have launched online sales. The aim is to improve the level of customer satisfaction and maintaining the benefits of e-retailer and of its cooperators and reducing costs and risks. Our contribution is a decision support system and tool for improving the allocation of resources in logistics chains e-commerce B2C context. We first modeled the B2C chain with all operations that integrates and possible scenarios since online retailers offer a wide selection of personalized service. The personalized services that online shopping companies offer to the clients can be embodied in many aspects, such as the customizations of payment, the distribution methods, and after-sales service choices. In addition, every aspect of customized service has several modes. At that time, we analyzed the optimization problems of supply chain resource allocation in customized online shopping service mode, which is different from the supply chain resource allocation under traditional manufacturing or service circumstances. Then we realized an optimization model and algorithm for the development based on the analysis of the allocation of the B2C supply chain resources. It is a multi-objective optimization that considers the collaboration of resources in operations, time and costs but also the risks and the quality of services as well as dynamic and uncertain characters related to the request.

Keywords: e-commerce, supply chain, B2C, optimisation, resource allocation

Procedia PDF Downloads 255
5458 Computationally Efficient Stacking Sequence Blending for Composite Structures with a Large Number of Design Regions Using Cellular Automata

Authors: Ellen Van Den Oord, Julien Marie Jan Ferdinand Van Campen

Abstract:

This article introduces a computationally efficient method for stacking sequence blending of composite structures. The computational efficiency makes the presented method especially interesting for composite structures with a large number of design regions. Optimization of composite structures with an unequal load distribution may lead to locally optimized thicknesses and ply orientations that are incompatible with one another. Blending constraints can be enforced to achieve structural continuity. In literature, many methods can be found to implement structural continuity by means of stacking sequence blending in one way or another. The complexity of the problem makes the blending of a structure with a large number of adjacent design regions, and thus stacking sequences, prohibitive. In this work the local stacking sequence optimization is preconditioned using a method found in the literature that couples the mechanical behavior of the laminate, in the form of lamination parameters, to blending constraints, yielding near-optimal easy-to-blend designs. The preconditioned design is then fed to the scheme using cellular automata that have been developed by the authors. The method is applied to the benchmark 18-panel horseshoe blending problem to demonstrate its performance. The computational efficiency of the proposed method makes it especially suited for composite structures with a large number of design regions.

Keywords: composite, blending, optimization, lamination parameters

Procedia PDF Downloads 210
5457 Numerical Investigation of a Supersonic Ejector for Refrigeration System

Authors: Karima Megdouli, Bourhan Taschtouch

Abstract:

Supersonic ejectors have many applications in refrigeration systems. And improving ejector performance is the key to improve the efficiency of these systems. One of the main advantages of the ejector is its geometric simplicity and the absence of moving parts. This paper presents a theoretical model for evaluating the performance of a new supersonic ejector configuration for refrigeration system applications. The relationship between the flow field and the key parameters of the new configuration has been illustrated by analyzing the Mach number and flow velocity contours. The method of characteristics (MOC) is used to design the supersonic nozzle of the ejector. The results obtained are compared with those obtained by CFD. The ejector is optimized by minimizing exergy destruction due to irreversibility and shock waves. The optimization converges to an efficient optimum solution, ensuring improved and stable performance over the whole considered range of uncertain operating conditions.

Keywords: supersonic ejector, theoretical model, CFD, optimization, performance

Procedia PDF Downloads 67
5456 A New Framework for ECG Signal Modeling and Compression Based on Compressed Sensing Theory

Authors: Siavash Eftekharifar, Tohid Yousefi Rezaii, Mahdi Shamsi

Abstract:

The purpose of this paper is to exploit compressed sensing (CS) method in order to model and compress the electrocardiogram (ECG) signals at a high compression ratio. In order to obtain a sparse representation of the ECG signals, first a suitable basis matrix with Gaussian kernels, which are shown to nicely fit the ECG signals, is constructed. Then the sparse model is extracted by applying some optimization technique. Finally, the CS theory is utilized to obtain a compressed version of the sparse signal. Reconstruction of the ECG signal from the compressed version is also done to prove the reliability of the algorithm. At this stage, a greedy optimization technique is used to reconstruct the ECG signal and the Mean Square Error (MSE) is calculated to evaluate the precision of the proposed compression method.

Keywords: compressed sensing, ECG compression, Gaussian kernel, sparse representation

Procedia PDF Downloads 444
5455 Ficus Carica as Adsorbent for Removal of Phenol from Aqueous Solutions: Modelling and Optimization

Authors: Tizi Hayet, Berrama Tarek, Bounif Nadia

Abstract:

Phenol and its derivatives are organic compounds utilized in the chemical industry. They are introduced into the environment by accidental spills and illegal release of industrial and municipal wastewater. Phenols are organic intermediaries that considered as potential pollutants. Adsorption is one of the purification and separation techniques used in this area. Algeria produces annually 131000 tones of fig; therefore, a large amount of fig leaves is generated, and the conversion of this waste into adsorbent allows the valorization of agricultural residue. The main purpose of this present work is to describe an application of the statistical method for modeling and optimization of the conditions of the phenol (Ph) adsorption from agricultural by-product locally available (fig leaves). The best experimental performance of Ph elimination on the adsorbent was obtained with: Adsorbent concentration (X2) = 0.2 g L-1; Initial concentration (X3) = 150 mg L-1; Speed agitation (X1) = 300 rpm.

Keywords: low-cost adsorbents, fig leaves, full factorial design, phenol, biosorption

Procedia PDF Downloads 70
5454 Control of Oil Content of Fried Zucchini Slices by Partial Predrying and Process Optimization

Authors: E. Karacabey, Ş. G. Özçelik, M. S. Turan, C. Baltacıoğlu, E. Küçüköner

Abstract:

Main concern about deep-fat-fried food materials is their high final oil contents absorbed during frying process and/or after cooling period, since diet including high content of oil is accepted unhealthy by consumers. Different methods have been evaluated to decrease oil content of fried food stuffs. One promising method is partially drying of food material before frying. In the present study it was aimed to control and decrease the final oil content of zucchini slices by means of partial drying and to optimize process conditions. Conventional oven drying was used to decrease moisture content of zucchini slices at a certain extent. Process performance in terms of oil uptake was evaluated by comparing oil content of predried and then fried zucchini slices with those determined for directly fried ones. For predrying and frying processes, oven temperature and weight loss and frying oil temperature and time pairs were controlled variables, respectively. Zucchini slices were also directly fried for sensory evaluations revealing preferred properties of final product in terms of surface color, moisture content, texture and taste. These properties of directly fried zucchini slices taking the highest score at the end of sensory evaluation were determined and used as targets in optimization procedure. Response surface methodology was used for process optimization. The properties, determined after sensory evaluation, were selected as targets; meanwhile oil content was aimed to be minimized. Results indicated that final oil content of zucchini slices could be reduced from 58% to 46% by controlling conditions of predrying and frying processes. As a result, it was suggested that predrying could be one choose to reduce oil content of fried zucchini slices for health diet. This project (113R015) has been supported by TUBITAK.

Keywords: health process, optimization, response surface methodology, oil uptake, conventional oven

Procedia PDF Downloads 358
5453 First Investigation on CZTS Electron affinity and Thickness Optimization using SILVACO-Atlas 2D Simulation

Authors: Zeineb Seboui, Samar Dabbabi

Abstract:

In this paper, we study the performance of Cu₂ZnSnS₄ (CZTS) based solar cell. In our knowledge, it is for the first time that the FTO/ZnO:Co/CZTS structure is simulated using the SILVACO-Atlas 2D simulation. Cu₂ZnSnS₄ (CZTS), ZnO:Co and FTO (SnO₂:F) layers have been deposited on glass substrates by the spray pyrolysis technique. The extracted physical properties, such as thickness and optical parameters of CZTS layer, are considered to create a new input data of CZTS based solar cell. The optimization of CZTS electron affinity and thickness is performed to have the best FTO/ZnO: Co/CZTS efficiency. The use of CZTS absorber layer with 3.99 eV electron affinity and 3.2 µm in thickness leads to the higher efficiency of 16.86 %, which is very important in the development of new technologies and new solar cell devices.

Keywords: CZTS solar cell, characterization, electron affinity, thickness, SILVACO-atlas 2D simulation

Procedia PDF Downloads 61
5452 The Design Optimization for Sound Absorption Material of Multi-Layer Structure

Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Kyu Park

Abstract:

Sound absorbing material is used as automotive interior material. Sound absorption coefficient should be predicted to design it. But it is difficult to predict sound absorbing coefficient because it is comprised of several material layers. So, its targets are achieved through many experimental tunings. It causes a lot of cost and time. In this paper, we propose the process to estimate the sound absorption coefficient with multi-layer structure. In order to estimate the coefficient, physical properties of each material are used. These properties also use predicted values by Foam-X software using the sound absorption coefficient data measured by impedance tube. Since there are many physical properties and the measurement equipment is expensive, the values predicted by software are used. Through the measurement of the sound absorption coefficient of each material, its physical properties are calculated inversely. The properties of each material are used to calculate the sound absorption coefficient of the multi-layer material. Since the absorption coefficient of multi-layer can be calculated, optimization design is possible through simulation. Then, we will compare and analyze the calculated sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If this method is used when developing automotive interior materials with multi-layer structure, the development effort can be reduced because it can be optimized by simulation. So, cost and time can be saved.

Keywords: sound absorption material, sound impedance tube, sound absorption coefficient, optimization design

Procedia PDF Downloads 270
5451 Revolutionizing Healthcare Facility Maintenance: A Groundbreaking AI, BIM, and IoT Integration Framework

Authors: Mina Sadat Orooje, Mohammad Mehdi Latifi, Behnam Fereydooni Eftekhari

Abstract:

The integration of cutting-edge Internet of Things (IoT) technologies with advanced Artificial Intelligence (AI) systems is revolutionizing healthcare facility management. However, the current landscape of hospital building maintenance suffers from slow, repetitive, and disjointed processes, leading to significant financial, resource, and time losses. Additionally, the potential of Building Information Modeling (BIM) in facility maintenance is hindered by a lack of data within digital models of built environments, necessitating a more streamlined data collection process. This paper presents a robust framework that harmonizes AI with BIM-IoT technology to elevate healthcare Facility Maintenance Management (FMM) and address these pressing challenges. The methodology begins with a thorough literature review and requirements analysis, providing insights into existing technological landscapes and associated obstacles. Extensive data collection and analysis efforts follow to deepen understanding of hospital infrastructure and maintenance records. Critical AI algorithms are identified to address predictive maintenance, anomaly detection, and optimization needs alongside integration strategies for BIM and IoT technologies, enabling real-time data collection and analysis. The framework outlines protocols for data processing, analysis, and decision-making. A prototype implementation is executed to showcase the framework's functionality, followed by a rigorous validation process to evaluate its efficacy and gather user feedback. Refinement and optimization steps are then undertaken based on evaluation outcomes. Emphasis is placed on the scalability of the framework in real-world scenarios and its potential applications across diverse healthcare facility contexts. Finally, the findings are meticulously documented and shared within the healthcare and facility management communities. This framework aims to significantly boost maintenance efficiency, cut costs, provide decision support, enable real-time monitoring, offer data-driven insights, and ultimately enhance patient safety and satisfaction. By tackling current challenges in healthcare facility maintenance management it paves the way for the adoption of smarter and more efficient maintenance practices in healthcare facilities.

Keywords: artificial intelligence, building information modeling, healthcare facility maintenance, internet of things integration, maintenance efficiency

Procedia PDF Downloads 35
5450 A Game-Theory-Based Price-Optimization Algorithm for the Simulation of Markets Using Agent-Based Modelling

Authors: Juan Manuel Sanchez-Cartas, Gonzalo Leon

Abstract:

A price competition algorithm for ABMs based on game theory principles is proposed to deal with the simulation of theoretical market models. The algorithm is applied to the classical Hotelling’s model and to a two-sided market model to show it leads to the optimal behavior predicted by theoretical models. However, when theoretical models fail to predict the equilibrium, the algorithm is capable of reaching a feasible outcome. Results highlight that the algorithm can be implemented in other simulation models to guarantee rational users and endogenous optimal behaviors. Also, it can be applied as a tool of verification given that is theoretically based.

Keywords: agent-based models, algorithmic game theory, multi-sided markets, price optimization

Procedia PDF Downloads 428
5449 Engineering Analysis for Fire Safety Using Computational Fluid Dynamic (CFD)

Authors: Munirajulu M, Srikanth Modem

Abstract:

A large cricket stadium with the capacity to accommodate several thousands of spectators has the seating arena consisting of a two-tier arrangement with an upper and a lower bowl and an intermediate concourse podium level for pedestrian movement to access the bowls. The uniqueness of the stadium is that spectators can have an unobstructed view from all around the podium towards the field of play. Upper and lower bowls are connected by stairs. The stairs landing is a precast slab supported by cantilevered steel beams. These steel beams are fixed to precast columns supporting the stadium structure. The stair slabs are precast concrete supported on a landing slab and cantilevered steel beams. During an event of a fire at podium level between two staircases, fire resistance of steel beams is very critical to life safety. If the steel beam loses its strength due to lack of fire resistance, it will be weak in supporting stair slabs and may lead to a hazard in evacuating occupants from the upper bowl to the lower bowl. In this study, to ascertain fire rating and life safety, a performance-based design using CFD analysis is used to evaluate the steel beams' fire resistance. A fire size of 3.5 MW (convective heat output of fire) with a wind speed of 2.57 m/s is considered for fire and smoke simulation. CFD results show that the smoke temperature near the staircase/ around the staircase does not exceed 1500 C for the fire duration considered. The surface temperature of cantilevered steel beams is found to be less than or equal to 1500 C. Since this temperature is much less than the critical failure temperature of steel (5200 C), it is concluded that the design of structural steel supports on the staircase is adequate and does not need additional fire protection such as fire-resistant coating. CFD analysis provided an engineering basis for the performance-based design of steel structural elements and an opportunity to optimize fire protection requirements. Thus, performance-based design using CFD modeling and simulation of fire and smoke is an innovative way to evaluate fire rating requirements, ascertain life safety and optimize the design with regard to fire protection on structural steel elements.

Keywords: fire resistance, life safety, performance-based design, CFD analysis

Procedia PDF Downloads 177
5448 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.

Keywords: deregulated energy market, forecasting, machine learning, system marginal price

Procedia PDF Downloads 195
5447 Optimum Design of Grillage Systems Using Firefly Algorithm Optimization Method

Authors: F. Erdal, E. Dogan, F. E. Uz

Abstract:

In this study, firefly optimization based optimum design algorithm is presented for the grillage systems. Naming of the algorithm is derived from the fireflies, whose sense of movement is taken as a model in the development of the algorithm. Fireflies’ being unisex and attraction between each other constitute the basis of the algorithm. The design algorithm considers the displacement and strength constraints which are implemented from LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Construction). It selects the appropriate W (Wide Flange)-sections for the transverse and longitudinal beams of the grillage system among 272 discrete W-section designations given in LRFD-AISC so that the design limitations described in LRFD are satisfied and the weight of the system is confined to be minimal. Number of design examples is considered to demonstrate the efficiency of the algorithm presented.

Keywords: firefly algorithm, steel grillage systems, optimum design, stochastic search techniques

Procedia PDF Downloads 409
5446 Mitigating the Negative Health Effects from Stress - A Social Network Analysis

Authors: Jennifer A. Kowalkowski

Abstract:

Production agriculture (farming) is a physically, emotionally, and cognitively stressful occupation, where workers have little control over the stressors that impact both their work and their lives. In an occupation already rife with hazards, these occupational-related stressors have been shown to increase farm workers’ risks for illness, injury, disability, and death associated with their work. Despite efforts to mitigate the negative health effects from occupational-related stress (ORS) and to promote health and well-being (HWB) among farmers in the US, marked improvements have not been attained. Social support accessed through social networks has been shown to buffer against the negative health effects from stress, yet no studies have directly examined these relationships among farmers. The purpose of this study was to use social network analysis to explore the social networks of farm owner-operators and the social supports available to them for mitigating the negative health effects of ORS. A convenience sample of 71 farm owner-operators from a Midwestern County in the US completed and returned a mailed survey (55.5% response rate) that solicited information about their social networks related to ORS. Farmers reported an average of 2.4 individuals in their personal networks and higher levels of comfort discussing ORS with female network members. Farmers also identified few connections (3.4% density) and indicated low comfort with members of affiliation networks specific to ORS. Findings from this study highlighted that farmers accessed different social networks and resources for their personal HWB than for issues related to occupational(farm-related) health and safety. In addition, farmers’ social networks for personal HWB were smaller, with different relational characteristics than reported in studies of farmers’ social networks related to occupational health and safety. Collectively, these findings suggest that farmers conceptualize personal HWB differently than farm health and safety. Therefore, the same research approaches and targets that guide occupational health and safety research may not be appropriate for personal HWB for farmers. Interventions and programming targeting ORS and HWB have largely been offered through the same platforms or mechanisms as occupational health and safety programs. This may be attributed to the significant overlap between the farm as a family business and place of residence, or that ORS stems from farm-related issues. However, these assumptions translated to health research of farmers and farm families from the occupational health and safety literature have not been directly studied or challenged. Thismay explain why past interventions have not been effective at improving health outcomes for farmers and farm families. A close examination of findings from this study raises important questions for researchers who study agricultural health. Findings from this study have significant implications for future research agendas focused on addressing ORS, HWB, and health disparities for farmersand farm families.

Keywords: agricultural health, occupational-related stress, social networks, well-being

Procedia PDF Downloads 94
5445 Applications of Artificial Neural Networks in Civil Engineering

Authors: Naci Büyükkaracığan

Abstract:

Artificial neural networks (ANN) is an electrical model based on the human brain nervous system and working principle. Artificial neural networks have been the subject of an active field of research that has matured greatly over the past 55 years. ANN now is used in many fields. But, it has been viewed that artificial neural networks give better results in particular optimization and control systems. There are requirements of optimization and control system in many of the area forming the subject of civil engineering applications. In this study, the first artificial intelligence systems are widely used in the solution of civil engineering systems were examined with the basic principles and technical aspects. Finally, the literature reviews for applications in the field of civil engineering were conducted and also artificial intelligence techniques were informed about the study and its results.

Keywords: artificial neural networks, civil engineering, Fuzzy logic, statistics

Procedia PDF Downloads 389
5444 Statistical Analysis to Select Evacuation Route

Authors: Zaky Musyarof, Dwi Yono Sutarto, Dwima Rindy Atika, R. B. Fajriya Hakim

Abstract:

Each country should be responsible for the safety of people, especially responsible for the safety of people living in disaster-prone areas. One of those services is provides evacuation route for them. But all this time, the selection of evacuation route is seem doesn’t well organized, it could be seen that when a disaster happen, there will be many accumulation of people on the steps of evacuation route. That condition is dangerous to people because hampers evacuation process. By some methods in Statistical analysis, author tries to give a suggestion how to prepare evacuation route which is organized and based on people habit. Those methods are association rules, sequential pattern mining, hierarchical cluster analysis and fuzzy logic.

Keywords: association rules, sequential pattern mining, cluster analysis, fuzzy logic, evacuation route

Procedia PDF Downloads 486
5443 Comparison of Different Data Acquisition Techniques for Shape Optimization Problems

Authors: Attila Vámosi, Tamás Mankovits, Dávid Huri, Imre Kocsis, Tamás Szabó

Abstract:

Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. The shape optimization problem of rubber parts led to the study of FEM based calculation processes. This type of problems was posed and investigated by several authors. In this paper the time demand of certain calculation methods are studied and the possibilities of time reduction is presented.

Keywords: rubber bumper, data acquisition, finite element analysis, support vector regression

Procedia PDF Downloads 461