Search results for: propensity score matching
1018 One-Shot Text Classification with Multilingual-BERT
Authors: Hsin-Yang Wang, K. M. A. Salam, Ying-Jia Lin, Daniel Tan, Tzu-Hsuan Chou, Hung-Yu Kao
Abstract:
Detecting user intent from natural language expression has a wide variety of use cases in different natural language processing applications. Recently few-shot training has a spike of usage on commercial domains. Due to the lack of significant sample features, the downstream task performance has been limited or leads to an unstable result across different domains. As a state-of-the-art method, the pre-trained BERT model gathering the sentence-level information from a large text corpus shows improvement on several NLP benchmarks. In this research, we are proposing a method to change multi-class classification tasks into binary classification tasks, then use the confidence score to rank the results. As a language model, BERT performs well on sequence data. In our experiment, we change the objective from predicting labels into finding the relations between words in sequence data. Our proposed method achieved 71.0% accuracy in the internal intent detection dataset and 63.9% accuracy in the HuffPost dataset. Acknowledgment: This work was supported by NCKU-B109-K003, which is the collaboration between National Cheng Kung University, Taiwan, and SoftBank Corp., Tokyo.Keywords: OSML, BERT, text classification, one shot
Procedia PDF Downloads 1011017 Determining the Number of Words Required to Fulfil the Writing Task in an English Proficiency Exam with the Raters’ Scores
Authors: Defne Akinci Midas
Abstract:
The aim of this study was to determine the minimum, and maximum number of words that would be sufficient to fulfill the writing task in the local English Proficiency Exam (EPE) produced and administered at the Middle East Technical University, Ankara, Turkey. The relationship between the number of words and the scores of the written products that had been awarded by two raters in three online EPEs administered in 2020 was examined. The means, standard deviations, percentages, range, minimum and maximum scores as well as correlations of the scores awarded to written products with the words that amount to 0-50, 51-100, 101-150, 151-200, 201-250, 251-300, and so on were computed. The results showed that the raters did not award a full score to texts that had fewer than 100 words. Moreover, the texts that had around 200 words were awarded the highest scores. The highest number of words that earned the highest scores was about 225, and from then onwards, the scores were either stable or lower. A positive low to moderate correlation was found between the number of words and scores awarded to the texts. We understand that the idea of ‘the longer, the better’ did not apply here. The results also showed that words between 101 to about 225 were sufficient to fulfill the writing task to fully display writing skills and language ability in the specific case of this exam.Keywords: English proficiency exam, number of words, scoring, writing task
Procedia PDF Downloads 1751016 Pregnancy Outcomes Affected by COVID-19, Large Obstetrics and Gynecology Cohort in Southern Vietnam
Authors: Le-Quyen Nguyen, Hoang Van Bui, Ngoc Thi Tran, Binh Thanh Le, Linus Olson, Thanh Quang Le
Abstract:
Objective: We compared of outcomes between infected and non-infected COVID-19 pregnant at the largest obstetrics and gynecology hospital in southern Vietnam. Materials and Methods: A retrospective study was conducted at gestational age (GA) 28-42 weeks, who terminated pregnancy and had a real-time PCR test for SARS-CoV-2 at Tu Du Hospital. Demographic, clinical, laboratory, and epidemiological data were collected from hospital electronic-medical-records. Diagnosis and screening of SARS-CoV-2 used Real-time-PCR. Results: From July to October 2021, 9,246 pregnant with GA of 28-42 weeks were delivered, including 664 infected with COVID-19 and 8,582 non-infected. The cesarean section (CS) rates of pregnant with and without COVID-19 were 47.3% and 46.0%. At GA 32-34 weeks, the rate of CS with COVID-19 was 5.07 times higher than without. The rate of postpartum hemorrhage (PPH) and the Apgar score between these two groups were similar. The mortality rate of infected pregnants was 2.26%. Conclusions: COVID-19 infection increased the CS rate in the group of preterm pregnancies from 32 to less than 34 weeks. COVID-19 did not increase the risk of complications related to adverse pregnancy outcomes such as PPH, Apgar scores, the ratio of stillbirths, deaths due to malformation, and fetal deaths in labor.Keywords: COVID-19, SARS-CoV-2, pregnancy, outcome, vietnam
Procedia PDF Downloads 1371015 Self-Reliance Support and Environment Interaction in Long-Term Care
Authors: Chen-Yuan Hsu
Abstract:
Introduction Elderly is growing and results to live in the long-term care (LTC) and then due to the routine of the facilities in Taiwan, also resulted to losing of those people with environment interaction, so, the self-reliance support (SRS) for those people to experience environment interaction is an essential. Methods This study was recruited samples of a LTC in the central of Taiwan. There was a following research on the SRS group with 20 samples collected and routine care group with 20 samples. A structured questionnaire as the Environment Interaction Dimension, as data collection included demographic information and the dimensions of environment interaction. Data analysis used SPSS 22.0 for Window 2000 to report the finding. Results The Environment Interaction Dimension for Taiwanese is a Chinese version of the containing 8 items. The result of t-test analysis found that environment interaction showed a significant difference between groups (p<.05), the result recommended that there was a higher score of environment interaction dimension on the SRS group (29.90±5.56) comparing with the routine care group (22.1±5.53). Conclusion This study showed that the SRS group was higher than the routine care group on the environment interaction dimension for Taiwanese elderly living in the LTC. The results can also provide the reference for LTC, to encourage those people to participate in SRS in LTC, and therefore also improving their environment interaction.Keywords: self-reliance support, environment interaction, long-term care, elderly
Procedia PDF Downloads 1061014 A Follow–Up Study of Bachelor of Science Graduates in Applied Statistics from Suan Sunandha Rajabhat University during the 1999-2012 Academic Years
Authors: Somruedee Pongsena
Abstract:
The purpose of this study is to follow up on the graduated students of Bachelor of Science in Applied Statistics from Suan Sunandha Rajabhat University (SSRU) during the 1999 – 2012 academic years and to provide the fundamental guideline for developing the current curriculum according to Thai Qualifications Framework for Higher Education (TQF: HEd). The sample was collected from 75 graduates by interview and online questionnaire. The content covered 5 subjects: ethics and moral, knowledge, cognitive skills, interpersonal skills and responsibility, numerical analysis as well as communication and information technology skills. Data were analyzed by using statistical methods as percentiles, means, standard deviation, t-tests, and F-tests. The findings showed that samples were mostly females younger than 26 years old. The majority of graduates had income in the range of 10,001-20,000 Baht and their experience range was 2-5 years. In addition, overall opinions from receiving knowledge to apply to work were at agree; mean score was 3.97 and standard deviation was 0.40. In terms of opinion difference, the hypothesis' testing results indicate gender only had different opinion at a significant level of 0.05.Keywords: follow-up, graduates, knowledge, opinion, work performance.
Procedia PDF Downloads 2111013 Career Guidance System Using Machine Learning
Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan
Abstract:
Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should properly evaluate their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, Neural Networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable to offer an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills
Procedia PDF Downloads 801012 Framework to Quantify Customer Experience
Authors: Anant Sharma, Ashwin Rajan
Abstract:
Customer experience is measured today based on defining a set of metrics and KPIs, setting up thresholds and defining triggers across those thresholds. While this is an effective way of measuring against a Key Performance Indicator ( referred to as KPI in the rest of the paper ), this approach cannot capture the various nuances that make up the overall customer experience. Customers consume a product or service at various levels, which is not reflected in metrics like Customer Satisfaction or Net Promoter Score, but also across other measurements like recurring revenue, frequency of service usage, e-learning and depth of usage. Here we explore an alternative method of measuring customer experience by flipping the traditional views. Rather than rolling customers up to a metric, we roll up metrics to hierarchies and then measure customer experience. This method allows any team to quantify customer experience across multiple touchpoints in a customer’s journey. We make use of various data sources which contain information for metrics like CXSAT, NPS, Renewals, and depths of service usage collected across a customer lifecycle. This data can be mined systematically to get linkages between different data points like geographies, business groups, products and time. Additional views can be generated by blending synthetic contexts into the data to show trends and top/bottom types of reports. We have created a framework that allows us to measure customer experience using the above logic.Keywords: analytics, customers experience, BI, business operations, KPIs, metrics
Procedia PDF Downloads 751011 Prediction of Incompatibility Between Excipients and API in Gliclazide Tablets Using Infrared Spectroscopy and Principle Component Analysis
Authors: Farzad Khajavi
Abstract:
Recognition of the interaction between active pharmaceutical ingredients (API) and excipients is a pivotal factor in the development of all pharmaceutical dosage forms. By predicting the interaction between API and excipients, we will be able to prevent the advent of impurities or at least lessen their amount. In this study, we used principle component analysis (PCA) to predict the interaction between Gliclazide as a secondary amine with Lactose in pharmaceutical solid dosage forms. The infrared spectra of binary mixtures of Gliclazide with Lactose at different mole ratios were recorded, and the obtained matrix was analyzed with PCA. By plotting score columns of the analyzed matrix, the incompatibility between Gliclazide and Lactose was observed. This incompatibility was seen experimentally. We observed the appearance of the impurity originated from the Maillard reaction between Gliclazide and Lactose at the chromatogram of the manufactured tablets in room temperature and under accelerated stability conditions. This impurity increases at the stability months. By changing Lactose to Mannitol and using Calcium Dibasic Phosphate in the tablet formulation, the amount of the impurity decreased and was in the acceptance range defined by British pharmacopeia for Gliclazide Tablets. This method is a fast and simple way to predict the existence of incompatibility between excipients and active pharmaceutical ingredients.Keywords: PCA, gliclazide, impurity, infrared spectroscopy, interaction
Procedia PDF Downloads 2081010 Career Guidance System Using Machine Learning
Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan
Abstract:
Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should evaluate properly their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, neural networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable of offering an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills
Procedia PDF Downloads 701009 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction
Abstract:
Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.
Procedia PDF Downloads 891008 Different Ergonomic Exposures and Infrared Thermal Temperature on Low Back
Authors: Sihao Lin
Abstract:
Objectives: Infrared thermography (IRT) has been little documented in the objective measurement of ergonomic exposure. We aimed to examine the association between different ergonomic exposures and low back skin temperature measured by IRT. Methods: A total of 114 subjects among sedentary students, sports students and cleaning workers were selected as different ergonomic exposure levels. Low back skin temperature was measured by infrared thermography before and post ergonomic exposure. Ergonomic exposure was assessed by Quick Exposure Check (QEC) and quantitative scores were calculated on the low back. Multiple regressions were constructed to examine the possible associations between ergonomic risk exposures and the skin temperature over the low back. Results: Compared to the two student groups, clean workers had significantly higher ergonomic exposure scores on the low back. The low back temperature variations were different among the three groups. The temperature decreased significantly among students with ergonomic exposure (P < 0.01), while it increased among cleaning workers. With adjustment of confounding, the post-exposure temperature and the temperature changes after exposure showed a significantly negative association with ergonomic exposure scores. For maximum temperature, one increasing ergonomic score decreased -0.23◦C (95% CI -0.37, -0.10) of temperature after ergonomic exposure over the low back. Conclusion: There was a significant association between ergonomic exposures and infrared thermal temperature over low back. IRT could be used as an objective assessment of ergonomic exposure on the low back.Keywords: ergonomic exposure, infrared thermography, musculoskeletal disorders, skin temperature, low back
Procedia PDF Downloads 1031007 The Role of Muzara’ah Islamic Financing in Supporting Smallholder Farmers among Muslim Communities: An Empirical Experience of Yobe Microfinance Bank
Authors: Sheriff Muhammad Ibrahim
Abstract:
The contemporary world has seen many agents of market liberalization, globalization, and expansion in agribusiness, which pose a big threat to the existence of smallholder farmers in the farming business or, at most, being marginalized against government interventions, investors' partnerships and further stretched by government policies in an effort to promote subsistent farming that can generate profits and speedy growth through attracting foreign businesses. The consequence of these modern shifts ends basically at the expense of smallholder farmers. Many scholars believed that this shift was among the major causes of urban-rural drift facing almost all communities in the World. In an effort to address these glaring economic crises, various governments at different levels and development agencies have created different programs trying to identify other sources of income generation for rural farmers. However, despite the different approaches adopted by many communities and states, the mass rural exodus continues to increase as the rural farmers continue to lose due to a lack of reliable sources for cost-efficient inputs such as agricultural extension services, mechanization supports, quality, and improved seeds, soil matching fertilizers and access to credit facilities and profitable markets for rural farmers output. Unfortunately for them, they see these agricultural requirements provided by large-scale farmers making their farming activities cheaper and yields higher. These have further created other social problems between the smallholder farmers and the large-scale farmers in many areas. This study aims to suggest the Islamic mode of agricultural financing named Muzara’ah for smallholder farmers as a microfinance banking product adopted and practiced by Yobe Microfinance Bank as a model to promote agricultural financing to be adopted in other communities. The study adopts a comparative research method to conclude that the Muzara’ah model of financing can be adopted as a valid means of financing smallholder farmers and reducing food insecurity.Keywords: Muzara'ah, Islamic finance, agricultural financing, microfinance, smallholder farmers
Procedia PDF Downloads 621006 Examining the Nutrition Knowledge, Attitude, and Practices of Elderly Residents in Duguri District, Bauchi State, Nigeria: A Village-Level Analysis
Authors: Iliyasu A. A. Ibrahim
Abstract:
Nutrition knowledge, attitudes, and practices (KAPs) play a vital role in preventing malnutrition and its consequences, impacting quality of life. This study aimed to assess KAPs among elderly individuals (60-90 years) in 4 villages of Duguri District, Alkaleri, Nigeria. A cross-sectional study was conducted among 2000 geriatrics from four villages. Studies showed that 70.6% of participants demonstrated poor nutrition knowledge, 60.2% exhibited unhealthy practices, while 50.5% displayed negative attitudes. Village-wise Comparison indicated that Yashi village recorded the lowest poor knowledge score (47.2%), Mainamaji (57.4%), Kungibar (66.2%), and Badara (67.2%) followed. Yashi village showed the most positive attitude (51.1%). The study revealed factors influencing KAPs, such as travel exposure and higher education, correlated with better attitudes and practices. The study highlights the significance of addressing nutrition-related KAP gaps among Duguri district’s elderly. Raising awareness and implementing a nutrition strategy with a focus on older adults is crucial. Concrete measures must ensure elders' nutritional needs are met, enhancing their quality of life.Keywords: nutrition, knowledge, attitude, practice, elderly, Duguri
Procedia PDF Downloads 101005 Selecting Answers for Questions with Multiple Answer Choices in Arabic Question Answering Based on Textual Entailment Recognition
Authors: Anes Enakoa, Yawei Liang
Abstract:
Question Answering (QA) system is one of the most important and demanding tasks in the field of Natural Language Processing (NLP). In QA systems, the answer generation task generates a list of candidate answers to the user's question, in which only one answer is correct. Answer selection is one of the main components of the QA, which is concerned with selecting the best answer choice from the candidate answers suggested by the system. However, the selection process can be very challenging especially in Arabic due to its particularities. To address this challenge, an approach is proposed to answer questions with multiple answer choices for Arabic QA systems based on Textual Entailment (TE) recognition. The developed approach employs a Support Vector Machine that considers lexical, semantic and syntactic features in order to recognize the entailment between the generated hypotheses (H) and the text (T). A set of experiments has been conducted for performance evaluation and the overall performance of the proposed method reached an accuracy of 67.5% with C@1 score of 80.46%. The obtained results are promising and demonstrate that the proposed method is effective for TE recognition task.Keywords: information retrieval, machine learning, natural language processing, question answering, textual entailment
Procedia PDF Downloads 1451004 Forecasting Future Society to Explore Promising Security Technologies
Authors: Jeonghwan Jeon, Mintak Han, Youngjun Kim
Abstract:
Due to the rapid development of information and communication technology (ICT), a substantial transformation is currently happening in the society. As the range of intelligent technologies and services is continuously expanding, ‘things’ are becoming capable of communicating one another and even with people. However, such “Internet of Things” has the technical weakness so that a great amount of such information transferred in real-time may be widely exposed to the threat of security. User’s personal data are a typical example which is faced with a serious security threat. The threats of security will be diversified and arose more frequently because next generation of unfamiliar technology develops. Moreover, as the society is becoming increasingly complex, security vulnerability will be increased as well. In the existing literature, a considerable number of private and public reports that forecast future society have been published as a precedent step of the selection of future technology and the establishment of strategies for competitiveness. Although there are previous studies that forecast security technology, they have focused only on technical issues and overlooked the interrelationships between security technology and social factors are. Therefore, investigations of security threats in the future and security technology that is able to protect people from various threats are required. In response, this study aims to derive potential security threats associated with the development of technology and to explore the security technology that can protect against them. To do this, first of all, private and public reports that forecast future and online documents from technology-related communities are collected. By analyzing the data, future issues are extracted and categorized in terms of STEEP (Society, Technology, Economy, Environment, and Politics), as well as security. Second, the components of potential security threats are developed based on classified future issues. Then, points that the security threats may occur –for example, mobile payment system based on a finger scan technology– are identified. Lastly, alternatives that prevent potential security threats are proposed by matching security threats with points and investigating related security technologies from patent data. Proposed approach can identify the ICT-related latent security menaces and provide the guidelines in the ‘problem – alternative’ form by linking the threat point with security technologies.Keywords: future society, information and communication technology, security technology, technology forecasting
Procedia PDF Downloads 4681003 Operationalizing the Concept of Community Resilience through Community Capitals Framework-Based Index
Authors: Warda Ajaz
Abstract:
This study uses the ‘Community Capitals Framework’ (CCF) to develop a community resilience index that can serve as a useful tool for measuring resilience of communities in diverse contexts and backgrounds. CCF is an important analytical tool to assess holistic community change. This framework identifies seven major types of community capitals: natural, cultural, human, social, political, financial and built, and claims that the communities that have been successful in supporting healthy sustainable community and economic development have paid attention to all these capitals. The framework, therefore, proposes to study the community development through identification of assets in these major capitals (stock), investment in these capitals (flow), and the interaction between these capitals. Capital based approaches have been extensively used to assess community resilience, especially in the context of natural disasters and extreme events. Therefore, this study identifies key indicators for estimating each of the seven capitals through an extensive literature review and then develops an index to calculate a community resilience score. The CCF-based community resilience index presents an innovative way of operationalizing the concept of community resilience and will contribute toward decision-relevant research regarding adaptation and mitigation of community vulnerabilities to climate change-induced, as well as other adverse events.Keywords: adverse events, community capitals, community resilience, climate change, economic development, sustainability
Procedia PDF Downloads 2681002 Valuation of Entrepreneurship Education (EE) Curriculum and Self-Employment Generation among Graduates of Tertiary Institutions in Edo State, Nigeria
Authors: Angela Obose Oriazowanlan
Abstract:
Despite the introduction of Entrepreneurship education into the Nigerian University curriculum to prepare graduates for self-employment roles in order to abate employment challenges, their unemployment rate still soars high. The study, therefore, examined the relevance of the curriculum contents and its delivery mechanism to equip graduates with appropriate entrepreneurial skills prior to graduation. Four research questions and two hypotheses guided the study. The survey research design was adopted for the study. An infinite population of graduates of a period of five years with 200 sample representatives using the simple random sampling technique was adopted. A 45-item structured questionnaire was used for data gathering. The gathered data thereof was anlysed using the descriptive statistics of mean and standard deviation, while the formulated hypotheses were tested with Z-score at 0.5 level of significance. The findings revealed, among others, that graduates acquisition of appropriate entrepreneurial skills for self-employment generation is low due to curriculum deficiencies, insufficient time allotment, and the delivery mechanism. It was recommended, among others, that the curriculum should be reviewed to improve its relevancy and that sufficient time should be allotted to enable adequate teaching and learning process.Keywords: evaluation of entrepreneurship education (EE) curriculum, self-employment generation, graduates of tertiary institutions, Edo state, Nigeria
Procedia PDF Downloads 991001 Utilization of the Compendium on Contextualized Story Word Problems in Mathematics
Authors: Rex C. Apillanes, Ana Rubi L. Sereño, Ellen Joy L. Palangan
Abstract:
The main objective of this action research is to know the effectiveness of the compendium on Contextualized Story Word Problem in Mathematics used as an intervention material to enhance the comprehension and problem-solving skills of Grade 4 pupils. This also addresses the competencies outlined in the curriculum guide while, at the same time, providing instructional material which the pupils can work on and practice solving word problems. The twelve randomly selected grade four pupils of Mantuyom Elementary School have been chosen as respondents for this action research in consideration of their consent and approval. A Pre-Test and a Post-test have been given to the pupils to determine their baseline proficiency level in four fundamental operations. The data has been statistically treated using a T-test to determine their difference. At a mean score of 13.42 and 16.83 for pre and post-tests, respectively, the p-value of 0.000620816 reflects a highly significant difference for the pre-test and post-test. This is lesser than the 0.05 level of significance (p≤0.05). Therefore, it is found that the compendium of contextualized story word problems is an efficient instructional material for Mathematics 4, yet; it is recommended that a Parents’ User Guide shall be developed to assist the parents in the conduct of the Remediation, Reinforcement and Enhancement (RRE).Keywords: action research, compendium, contextualized, story, word problem, research, intervention
Procedia PDF Downloads 1011000 Investigating the Change in Self-Reliance Index in Drought Affected Pastoralist Communities of Borena Zone, Ethiopia
Authors: Soressa Tolcha Jarra
Abstract:
This research paper delves into the assessment of self-reliance indexes within drought-affected pastoralist communities of the Borena Zone, Ethiopia, in enhancing self-reliance among community members. Through a mixed-methods approach, including surveys, interviews, and field observations, the study evaluates the socioeconomic impact initiatives on livelihoods, resilience, and community empowerment. For measuring the progress of households towards self-reliance, the Self-Reliance-Index (SRI) was used by comparing the data/index score of a responding humanitarian-development-peace triple nexus project beneficiary from the baseline in October 2023 with data of the same responding beneficiary from this research done in May 2024. In this case, the 373 respondents that were interviewed during both surveys were chosen to represent the population of interest at the moment of each survey. The Self-Reliance-Index (SRI) has an average value of 2.02 for respondents during the baseline and an average value of 2.37 for respondents of the study, representing thus a positive difference of 0.35. Moreover, the study disaggregated the findings into four groups for further interpretation of the SRI analysis. The findings contribute to the discourse on sustainable development strategies in arid and semi-arid regions, offering practical recommendations for future interventions and policy formulation.Keywords: Borena, drought, pastoralist, self-reliance index (SRI)
Procedia PDF Downloads 33999 Neural Machine Translation for Low-Resource African Languages: Benchmarking State-of-the-Art Transformer for Wolof
Authors: Cheikh Bamba Dione, Alla Lo, Elhadji Mamadou Nguer, Siley O. Ba
Abstract:
In this paper, we propose two neural machine translation (NMT) systems (French-to-Wolof and Wolof-to-French) based on sequence-to-sequence with attention and transformer architectures. We trained our models on a parallel French-Wolof corpus of about 83k sentence pairs. Because of the low-resource setting, we experimented with advanced methods for handling data sparsity, including subword segmentation, back translation, and the copied corpus method. We evaluate the models using the BLEU score and find that transformer outperforms the classic seq2seq model in all settings, in addition to being less sensitive to noise. In general, the best scores are achieved when training the models on word-level-based units. For subword-level models, using back translation proves to be slightly beneficial in low-resource (WO) to high-resource (FR) language translation for the transformer (but not for the seq2seq) models. A slight improvement can also be observed when injecting copied monolingual text in the target language. Moreover, combining the copied method data with back translation leads to a substantial improvement of the translation quality.Keywords: backtranslation, low-resource language, neural machine translation, sequence-to-sequence, transformer, Wolof
Procedia PDF Downloads 147998 Real Time Traffic Performance Study over MPLS VPNs with DiffServ
Authors: Naveed Ghani
Abstract:
With the arrival of higher speed communication links and mature application running over the internet, the requirement for reliable, efficient and robust network designs rising day by day. Multi-Protocol Label Switching technology (MPLS) Virtual Private Networks (VPNs) have committed to provide optimal network services. They are gaining popularity in industry day by day. Enterprise customers are moving to service providers that offer MPLS VPNs. The main reason for this shifting is the capability of MPLS VPN to provide built in security features and any-to-any connectivity. MPLS VPNs improved the network performance due to fast label switching as compare to traditional IP Forwarding but traffic classification and policing was still required on per hop basis to enhance the performance of real time traffic which is delay sensitive (particularly voice and video). QoS (Quality of service) is the most important factor to prioritize enterprise networks’ real time traffic such as voice and video. This thesis is focused on the study of QoS parameters (e.g. delay, jitter and MOS (Mean Opinion Score)) for the real time traffic over MPLS VPNs. DiffServ (Differentiated Services) QoS model will be used over MPLS VPN network to get end-to-end service quality.Keywords: network, MPLS, VPN, DiffServ, MPLS VPN, DiffServ QoS, QoS Model, GNS2
Procedia PDF Downloads 426997 Deep Supervision Based-Unet to Detect Buildings Changes from VHR Aerial Imagery
Authors: Shimaa Holail, Tamer Saleh, Xiongwu Xiao
Abstract:
Building change detection (BCD) from satellite imagery is an essential topic in urbanization monitoring, agricultural land management, and updating geospatial databases. Recently, methods for detecting changes based on deep learning have made significant progress and impressive results. However, it has the problem of being insensitive to changes in buildings with complex spectral differences, and the features being extracted are not discriminatory enough, resulting in incomplete buildings and irregular boundaries. To overcome these problems, we propose a dual Siamese network based on the Unet model with the addition of a deep supervision strategy (DS) in this paper. This network consists of a backbone (encoder) based on ImageNet pre-training, a fusion block, and feature pyramid networks (FPN) to enhance the step-by-step information of the changing regions and obtain a more accurate BCD map. To train the proposed method, we created a new dataset (EGY-BCD) of high-resolution and multi-temporal aerial images captured over New Cairo in Egypt to detect building changes for this purpose. The experimental results showed that the proposed method is effective and performs well with the EGY-BCD dataset regarding the overall accuracy, F1-score, and mIoU, which were 91.6 %, 80.1 %, and 73.5 %, respectively.Keywords: building change detection, deep supervision, semantic segmentation, EGY-BCD dataset
Procedia PDF Downloads 120996 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 75995 Physicochemical and Sensory Properties of Gluten-Free Semolina Produced from Blends of Cassava, Maize and Rice
Authors: Babatunde Stephen Oladeji, Gloria Asuquo Edet
Abstract:
The proximate, functional, pasting, and sensory properties of semolina from blends of cassava, maize, and rice were investigated. Cassava, maize, and rice were milled and sieved to pass through a 1000 µm sieve, then blended in the following ratios to produce five samples; FS₁ (40:30:30), FS₂ (20:50:30), FS₃ (25:25:50), FS₄ (34:33:33) and FS₅ (60:20:20) for cassava, maize, and rice, respectively. A market sample of wheat semolina labeled as FSc served as the control. The proximate composition, functional properties, pasting profile, and sensory characteristics of the blends were determined using standard analytical methods. The protein content of the samples ranged from 5.66% to 6.15%, with sample FS₂ having the highest value and being significantly different (p ≤ 0.05). The bulk density of the formulated samples ranged from 0.60 and 0.62 g/ml. The control (FSc) had a higher bulk density of 0.71 g/ml. The water absorption capacity of both the formulated and control samples ranged from 0.67% to 2.02%, with FS₃ having the highest value and FSc having the lowest value (0.67%). The peak viscosity of the samples ranged from 60.83-169.42 RVU, and the final viscosity of semolina samples ranged from 131.17 to 235.42 RVU. FS₅ had the highest overall acceptability score (7.46), but there was no significant difference (p ≤ 0.05) from other samples except for FS₂ (6.54) and FS₃ (6.29). This study establishes that high-quality and consumer-acceptable semolina that is comparable to the market sample could be produced from blends of cassava, maize, and rice.Keywords: semolina, gluten, celiac disease, wheat allergies
Procedia PDF Downloads 103994 Dual-Channel Multi-Band Spectral Subtraction Algorithm Dedicated to a Bilateral Cochlear Implant
Authors: Fathi Kallel, Ahmed Ben Hamida, Christian Berger-Vachon
Abstract:
In this paper, a Speech Enhancement Algorithm based on Multi-Band Spectral Subtraction (MBSS) principle is evaluated for Bilateral Cochlear Implant (BCI) users. Specifically, dual-channel noise power spectral estimation algorithm using Power Spectral Densities (PSD) and Cross Power Spectral Densities (CPSD) of the observed signals is studied. The enhanced speech signal is obtained using Dual-Channel Multi-Band Spectral Subtraction ‘DC-MBSS’ algorithm. For performance evaluation, objective speech assessment test relying on Perceptual Evaluation of Speech Quality (PESQ) score is performed to fix the optimal number of frequency bands needed in DC-MBSS algorithm. In order to evaluate the speech intelligibility, subjective listening tests are assessed with 3 deafened BCI patients. Experimental results obtained using French Lafon database corrupted by an additive babble noise at different Signal-to-Noise Ratios (SNR) showed that DC-MBSS algorithm improves speech understanding for single and multiple interfering noise sources.Keywords: speech enhancement, spectral substracion, noise estimation, cochlear impalnt
Procedia PDF Downloads 549993 Electricity Generation from Renewables and Targets: An Application of Multivariate Statistical Techniques
Authors: Filiz Ersoz, Taner Ersoz, Tugrul Bayraktar
Abstract:
Renewable energy is referred to as "clean energy" and common popular support for the use of renewable energy (RE) is to provide electricity with zero carbon dioxide emissions. This study provides useful insight into the European Union (EU) RE, especially, into electricity generation obtained from renewables, and their targets. The objective of this study is to identify groups of European countries, using multivariate statistical analysis and selected indicators. The hierarchical clustering method is used to decide the number of clusters for EU countries. The conducted statistical hierarchical cluster analysis is based on the Ward’s clustering method and squared Euclidean distances. Hierarchical cluster analysis identified eight distinct clusters of European countries. Then, non-hierarchical clustering (k-means) method was applied. Discriminant analysis was used to determine the validity of the results with data normalized by Z score transformation. To explore the relationship between the selected indicators, correlation coefficients were computed. The results of the study reveal the current situation of RE in European Union Member States.Keywords: share of electricity generation, k-means clustering, discriminant, CO2 emission
Procedia PDF Downloads 415992 The Characteristics of the Graduates Based on Thailand Qualification Framework (TQF) of the Faculty of Industrial Technology, Suan Sunandha Rajabhat University
Authors: Apinya Mungaomklang, Natakamol Lookkham
Abstract:
The purpose of this research is to study the characteristics of the graduates based on Thailand Qualification Framework (TQF) of the Faculty of Industrial Technology, Suan Sunandha Rajabhat University. The population of the research was employers/entrepreneurs/supervisors of students who were doing Professional Experiences course in their respective organizations during semester 1/2012. Data were collected during the month of September 2012 from the total number of 100 people. The tool used in this research was a questionnaire developed by the research team. Data were analyzed using percentage, mean and standard deviation using a computer program. The results showed that most of the surveyed organizations were private companies. The program with most students doing Professional Experiences course was Safety Technology and Occupational Health. The nature of work that most students did was associated with the document. Employers/ entrepreneurs/employers’ opinions on the characteristics of the graduates based on TQF received high scores. Cognitive skills received the highest score, followed by interpersonal relationships and responsibilities, ethics and moral, numerical analysis skills, communication and information technology skills, and knowledge, respectively.Keywords: graduates characteristics, Thailand Qualification Framework, employers, entrepreneurs
Procedia PDF Downloads 317991 Case Report: Peripartum Cardiomyopathy, a Rare but Fatal Condition in Pregnancy and Puerperium
Authors: Sadaf Abbas, HimGauri Sabnis
Abstract:
Introduction: Peripartum cardiomyopathy is a rare but potentially life-threatening condition that presents as heart failure during the last month of pregnancy or within five months postpartum. The incidence of postpartum cardiomyopathy ranges from 1 in 1300 to 1 in 15,000 pregnancies. Risk factors include multiparty, advanced maternal age, multiple pregnancies, pre-eclampsia, and chronic hypertension. Study: A 30-year-old Para3+0 presented to the Emergency Department of St’Marry Hospital, Isle of Wight, on the seventh day postpartum, with acute shortness of breath (SOB), chest pain, cough, and a temperature of 38 degrees. The risk factors were smoking and class II obesity (BMI of 40.62). The patient had mild pre-eclampsia in the last pregnancy and was on labetalol and aspirin during an antenatal period, which was stopped postnatally. There was also a history of pre-eclampsia and haemolysis, elevated liver enzymes, low platelets (HELLP syndrome) in previous pregnancies, which led to preterm delivery at 35 weeks in the second pregnancy, and the first baby was stillborn at 24 weeks. On assessment, there was a national early warning score (NEWS score) of 3, persistent tachycardia, and mild crepitation in the lungs. Initial investigations revealed an enlarged heart on chest X-ray, and a CT pulmonary angiogram indicated bilateral basal pulmonary congestion without pulmonary embolism, suggesting fluid overload. Laboratory results showed elevated CRP and normal troponin levels initially, which later increased, indicating myocardial involvement. Echocardiography revealed a severely dilated left ventricle with an ejection fraction (EF) of 31%, consistent with severely impaired systolic function. The cardiology team reviewed the patient and admitted to the Coronary Care Unit. As sign and symptoms were suggestive of fluid overload and congestive cardiac failure, management was done with diuretics, beta-blockers, angiotensin-converting enzyme inhibitors (ACE inhibitors), proton pump inhibitors, and supportive care. During admission, there was complications such as acute kidney injury, but then recovered well. Chest pain had resolved following the treatment. After being admitted for eight days, there was an improvement in the symptoms, and the patient was discharged home with a further plan of cardiac MRI and genetic testing due to a family history of sudden cardiac death. Regular appointment has been made with the Cardiology team to follow-up on the symptoms. Since discharge, the patient made a good recovery. A cardiac MRI was done, which showed severely impaired left ventricular function, ejection fraction (EF) of 38% with mild left ventricular dilatation, and no evidence of previous infarction. Overall appearance is of non-ischemic dilated cardiomyopathy. The main challenge at the time of admission was the non-availability of a cardiac radiology team, so the definitive diagnosis was delayed. The long-term implications include risk of recurrence, chronic heart failure, and, consequently, an effect on quality of life. Therefore, regular follow-up is critical in patient’s management. Conclusions: Peripartum cardiomyopathy is one of the cardiovascular diseases whose causes are still unknown yet and, in some cases, are uncontrolled. By raising awareness about the symptoms and management of this complication it will reduce morbidity and mortality rates and also the length of stay in the hospital.Keywords: cardiomyopathy, cardiomegaly, pregnancy, puerperium
Procedia PDF Downloads 31990 Safe Limits Concentration of Ammonia at Work Environments through CD8 Expression in Rats
Authors: Abdul Rohim Tualeka, Erick Caravan K. Betekeneng, Ramdhoni Zuhro, Reko Triyono, M. Sahri
Abstract:
It has been widely reported incidence caused by acute and chronic effects of exposure to ammonia in the working environment in Indonesia, but ammonia concentration was found to be below the threshold value. The purpose of this study was to determine the safety limit concentration of ammonia in the working environment through the expression of CD8 as a reference for determining the threshold value of ammonia in the working environment. This research was a laboratory experimental with post test only control group design using experimental animals as subjects experiment. From homogeneity test results indicated that the weight of white rats exposed and control groups had a homogeneous variant with a significant level of p (0.701) > α (0.05). Description of the average breathing rate is 0.0013 m³/h. Average weight rats based group listed exposure is 0.1405 kg. From the calculation IRS CD8, CD8 highest score in the doses contained 0.0154, with the location of the highest dose of ammonia without any effect on the lungs of rats is 0.0154 mg/kg body weight of mice. Safe Human Dose (SHD) ammonia is 0.002 mg/kg body weight workers. The conclusion of this study is the safety limit concentration of ammonia gas in the working environment of 0,025 ppm.Keywords: ammonia, CD8, rats, safe limits concentration
Procedia PDF Downloads 223989 Constructing Optimized Criteria of Objective Assessment Indicators among Elderly Frailty
Authors: Shu-Ching Chiu, Shu-Fang Chang
Abstract:
The World Health Organization (WHO) has been actively developing intervention programs to deal with geriatric frailty. In its White Paper on Healthcare Policy 2020, the Department of Health, Bureau of Health Promotion proposed that active aging and the prevention of disability are essential for elderly people to maintain good health. The paper recommended five main policies relevant to this objective, one of which is the prevention of frailty and disability. Scholars have proposed a number of different criteria to diagnose and assess frailty; no consistent or normative standard of measurement is currently available. In addition, many methods of assessment are recursive, which can easily result in recall bias. Due to the relationship between frailty and physical fitness with regard to co-morbidity, it is important that academics optimize the criteria used to assess frailty by objectively evaluating the physical fitness of senior citizens. This study used a review of the literature to identify fitness indicators suitable for measuring frailty in the elderly. This study recommends that measurement criteria be integrated to produce an optimized predictive value for frailty score. Healthcare professionals could use this data to detect frailty at an early stage and provide appropriate care to prevent further debilitation and increase longevity.Keywords: frailty, aging, physical fitness, optimized criteria, healthcare
Procedia PDF Downloads 354