Search results for: n-D heat equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4806

Search results for: n-D heat equation

3246 Structural Evolution of Na6Mn(SO4)4 from High-Pressure Synchrotron Powder X-ray Diffraction

Authors: Monalisa Pradhan, Ajana Dutta, Irshad Kariyattuparamb Abbas, Boby Joseph, T. N. Guru Row, Diptikanta Swain, Gopal K. Pradhan

Abstract:

Compounds with the Vanthoffite crystal structure having general formula Na6M(SO₄)₄ (M= Mg, Mn, Ni , Co, Fe, Cu and Zn) display a variety of intriguing physical properties intimately related to their structural arrangements. The compound Na6Mn(SO4)4 shows antiferromagnetic ordering at low temperature where the in-plane Mn-O•••O-Mn interactions facilitates antiferromagnetic ordering via a super-exchange interaction between the Mn atoms through the oxygen atoms . The inter-atomic bond distances and angles can easily be tuned by applying external pressure and can be probed using high resolution X-ray diffraction. Moreover, because the magnetic interaction among the Mn atoms are super-exchange type via Mn-O•••O-Mn path, the variation of the Mn-O•••O-Mn dihedral angle and Mn-O bond distances under high pressure inevitably affects the magnetic properties. Therefore, it is evident that high pressure studies on the magnetically ordered materials would shed light on the interplay between their structural properties and magnetic ordering. This will indeed confirm the role of buckling of the Mn-O polyhedral in understanding the origin of anti-ferromagnetism. In this context, we carried out the pressure dependent X-ray diffraction measurement in a diamond anvil cell (DAC) up to a maximum pressure of 17 GPa to study the phase transition and determine equation of state from the volume compression data. Upon increasing the pressure, we didn’t observe any new diffraction peaks or sudden discontinuity in the pressure dependences of the d values up to the maximum achieved pressure of ~17 GPa. However, it is noticed that beyond 12 GPa the a and b lattice parameters become identical while there is a discontinuity in the β value around the same pressure. This indicates a subtle transition to a pseudo-monoclinic phase. Using the third order Birch-Murnaghan equation of state (EOS) to fit the volume compression data for the entire range, we found the bulk modulus (B0) to be 44 GPa. If we consider the subtle transition at 12 GPa, we tried to fit another equation state for the volume beyond 12 GPa using the second order Birch-Murnaghan EOS. This gives a bulk modulus of ~ 34 GPa for this phase.

Keywords: mineral, structural phase transition, high pressure XRD, spectroscopy

Procedia PDF Downloads 87
3245 Numerical Simulation of Two-Phase Flows Using a Pressure-Based Solver

Authors: Lei Zhang, Jean-Michel Ghidaglia, Anela Kumbaro

Abstract:

This work focuses on numerical simulation of two-phase flows based on the bi-fluid six-equation model widely used in many industrial areas, such as nuclear power plant safety analysis. A pressure-based numerical method is adopted in our studies due to the fact that in two-phase flows, it is common to have a large range of Mach numbers because of the mixture of liquid and gas, and density-based solvers experience stiffness problems as well as a loss of accuracy when approaching the low Mach number limit. This work extends the semi-implicit pressure solver in the nuclear component CUPID code, where the governing equations are solved on unstructured grids with co-located variables to accommodate complicated geometries. A conservative version of the solver is developed in order to capture exactly the shock in one-phase flows, and is extended to two-phase situations. An inter-facial pressure term is added to the bi-fluid model to make the system hyperbolic and to establish a well-posed mathematical problem that will allow us to obtain convergent solutions with refined meshes. The ability of the numerical method to treat phase appearance and disappearance as well as the behavior of the scheme at low Mach numbers will be demonstrated through several numerical results. Finally, inter-facial mass and heat transfer models are included to deal with situations when mass and energy transfer between phases is important, and associated industrial numerical benchmarks with tabulated EOS (equations of state) for fluids are performed.

Keywords: two-phase flows, numerical simulation, bi-fluid model, unstructured grids, phase appearance and disappearance

Procedia PDF Downloads 393
3244 Entropy Production in Mixed Convection in a Horizontal Porous Channel Using Darcy-Brinkman Formulation

Authors: Amel Tayari, Atef Eljerry, Mourad Magherbi

Abstract:

The paper reports a numerical investigation of the entropy generation analysis due to mixed convection in laminar flow through a channel filled with porous media. The second law of thermodynamics is applied to investigate the entropy generation rate. The Darcy-Brinkman Model is employed. The entropy generation due to heat transfer and friction dissipations has been determined in mixed convection by solving numerically the continuity, momentum and energy equations, using a control volume finite element method. The effects of Darcy number, modified Brinkman number and the Rayleigh number on averaged entropy generation and averaged Nusselt number are investigated. The Rayleigh number varied between 103 ≤ Ra ≤ 105 and the modified Brinkman number ranges between 10-5 ≤ Br≤ 10-1 with fixed values of porosity and Reynolds number at 0.5 and 10 respectively. The Darcy number varied between 10-6 ≤ Da ≤10.

Keywords: entropy generation, porous media, heat transfer, mixed convection, numerical methods, darcy, brinkman

Procedia PDF Downloads 411
3243 In Silico Analysis of Small Heat Shock Protein Gene Family by RNA-Seq during Tomato Fruit Ripening

Authors: Debora P. Arce, Flavia J. Krsticevic, Marco R. Bertolaccini, Joaquín Ezpeleta, Estela M. Valle, Sergio D. Ponce, Elizabeth Tapia

Abstract:

Small Heat Shock Proteins (sHSPs) are low molecular weight chaperones that play an important role during stress response and development in all living organisms. Fruit maturation and oxidative stress can induce sHSP synthesis both in Arabidopsis and tomato plants. RNA-Seq technology is becoming widely used in various transcriptomics studies; however, analyzing and interpreting the RNA-Seq data face serious challenges. In the present work, we de novo assembled the Solanum lycopersicum transcriptome for three different maturation stages (mature green, breaker and red ripe). Differential gene expression analysis was carried out during tomato fruit development. We identified 12 sHSPs differentially expressed that might be involved in breaker and red ripe fruit maturation. Interestingly, these sHSPs have different subcellular localization and suggest a complex regulation of the fruit maturation network process.

Keywords: sHSPs, maturation, tomato, RNA-Seq, assembly

Procedia PDF Downloads 480
3242 Investigating the Effect of Urban Expansion on the Urban Heat Island and Land Use Land Cover Changes: The Case Study of Lahore, Pakistan

Authors: Shah Fahad

Abstract:

Managing the Urban Heat Island (UHI) effects is a pressing concern for achieving sustainable urban development and ensuring thermal comfort in major cities of developing nations, such as Lahore, Pakistan. The current UHI effect is mostly triggered by climate change and rapid urbanization. This study explored UHI over the Lahore district and its adjoining urban and rural-urban fringe areas. Landsat satellite data was utilized to investigate spatiotemporal patterns of Land Use and Land Cover changes (LULC), Land Surface Temperature (LST), UHI, Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), and Urban Thermal Field Variance Index (UTFVI). The built-up area increased very fast, with a coverage of 22.99% in 2000, 36.06% in 2010, and 47.17% in 2020, while vegetation covered 53.21 % in 2000 and 46.16 % in 2020. It also revealed a significant increase in the mean LST, from 33°C in 2000 to 34.8°C in 2020. The results indicated a significantly positive correlation between LST and NDBI, a weak correlation was also observed between LST and NDVI. The study used scatterplots to show the correlation between NDBI and NDVI with LST, results revealed that the NDBI and LST had an R² value of 0.6831 in 2000 and 0.06541 in 2022, while NDVI and LST had an R² value of 0.0235 in 1998 and 0.0295 in 2022. Proper environmental planning is vital in specific locations to enhance quality of life, protect the ecosystem, and mitigate climate change impacts.

Keywords: land use land cover, spatio-temporal analysis, remote sensing, land surface temperature, urban heat island, lahore pakistan

Procedia PDF Downloads 77
3241 Numerical Analysis of CO₂ Storage as Clathrates in Depleted Natural Gas Hydrate Formation

Authors: Sheraz Ahmad, Li Yiming, Li XiangFang, Xia Wei, Zeen Chen

Abstract:

Holding CO₂ at massive scale in the enclathrated solid matter called hydrate can be perceived as one of the most reliable methods for CO₂ sequestration to take greenhouse gases emission control measures and global warming preventive actions. In this study, a dynamically coupled mass and heat transfer mathematical model is developed which elaborates the unsteady behavior of CO₂ flowing into a porous medium and converting itself into hydrates. The combined numerical model solution by implicit finite difference method is explained and through coupling the mass, momentum and heat conservation relations, an integrated model can be established to analyze the CO₂ hydrate growth within P-T equilibrium conditions. CO₂ phase transition, effect of hydrate nucleation by exothermic heat release and variations of thermo-physical properties has been studied during hydrate nucleation. The results illustrate that formation pressure distribution becomes stable at the early stage of hydrate nucleation process and always remains stable afterward, but formation temperature is unable to keep stable and varies during CO₂ injection and hydrate nucleation process. Initially, the temperature drops due to cold high-pressure CO₂ injection since when the massive hydrate growth triggers and temperature increases under the influence of exothermic heat evolution. Intermittently, it surpasses the initial formation temperature before CO₂ injection initiates. The hydrate growth rate increases by increasing injection pressure in the long formation and it also expands overall hydrate covered length in the same induction period. The results also show that the injection pressure conditions and hydrate growth rate affect other parameters like CO₂ velocity, CO₂ permeability, CO₂ density, CO₂ and H₂O saturation inside the porous medium. In order to enhance the hydrate growth rate and expand hydrate covered length, the injection temperature is reduced, but it did not give satisfactory outcomes. Hence, CO₂ injection in vacated natural gas hydrate porous sediment may form hydrate under low temperature and high-pressure conditions, but it seems very challenging on a huge scale in lengthy formations.

Keywords: CO₂ hydrates, CO₂ injection, CO₂ Phase transition, CO₂ sequestration

Procedia PDF Downloads 135
3240 A Basic Concept for Installing Cooling and Heating System Using Seawater Thermal Energy from the West Coast of Korea

Authors: Jun Byung Joon, Seo Seok Hyun, Lee Seo Young

Abstract:

As carbon dioxide emissions increase due to rapid industrialization and reckless development, abnormal climates such as floods and droughts are occurring. In order to respond to such climate change, the use of existing fossil fuels is reduced, and the proportion of eco-friendly renewable energy is gradually increasing. Korea is an energy resource-poor country that depends on imports for 93% of its total energy. As the global energy supply chain instability experienced due to the Russia-Ukraine crisis increases, countries around the world are resetting energy policies to minimize energy dependence and strengthen security. Seawater thermal energy is a renewable energy that replaces the existing air heat energy. It uses the characteristic of having a higher specific heat than air to cool and heat main spaces of buildings to increase heat transfer efficiency and minimize power consumption to generate electricity using fossil fuels, and Carbon dioxide emissions can be minimized. In addition, the effect on the marine environment is very small by using only the temperature characteristics of seawater in a limited way. K-water carried out a demonstration project of supplying cooling and heating energy to spaces such as the central control room and presentation room in the management building by acquiring the heat source of seawater circulated through the power plant's waterway by using the characteristics of the tidal power plant. Compared to the East Sea and the South Sea, the main system was designed in consideration of the large tidal difference, small temperature difference, and low-temperature characteristics, and its performance was verified through operation during the demonstration period. In addition, facility improvements were made for major deficiencies to strengthen monitoring functions, provide user convenience, and improve facility soundness. To spread these achievements, the basic concept was to expand the seawater heating and cooling system with a scale of 200 USRT at the Tidal Culture Center. With the operational experience of the demonstration system, it will be possible to establish an optimal seawater heat cooling and heating system suitable for the characteristics of the west coast ocean. Through this, it is possible to reduce operating costs by KRW 33,31 million per year compared to air heat, and through industry-university-research joint research, it is possible to localize major equipment and materials and develop key element technologies to revitalize the seawater heat business and to advance into overseas markets. The government's efforts are needed to expand the seawater heating and cooling system. Seawater thermal energy utilizes only the thermal energy of infinite seawater. Seawater thermal energy has less impact on the environment than river water thermal energy, except for environmental pollution factors such as bottom dredging, excavation, and sand or stone extraction. Therefore, it is necessary to increase the sense of speed in project promotion by innovatively simplifying unnecessary licensing/permission procedures. In addition, support should be provided to secure business feasibility by dramatically exempting the usage fee of public waters to actively encourage development in the private sector.

Keywords: seawater thermal energy, marine energy, tidal power plant, energy consumption

Procedia PDF Downloads 102
3239 Numerical Study of Homogeneous Nanodroplet Growth

Authors: S. B. Q. Tran

Abstract:

Drop condensation is the phenomenon that the tiny drops form when the oversaturated vapour present in the environment condenses on a substrate and makes the droplet growth. Recently, this subject has received much attention due to its applications in many fields such as thin film growth, heat transfer, recovery of atmospheric water and polymer templating. In literature, many papers investigated theoretically and experimentally in macro droplet growth with the size of millimeter scale of radius. However few papers about nanodroplet condensation are found in the literature especially theoretical work. In order to understand the droplet growth in nanoscale, we perform the numerical simulation work to study nanodroplet growth. We investigate and discuss the role of the droplet shape and monomer diffusion on drop growth and their effect on growth law. The effect of droplet shape is studied by doing parametric studies of contact angle and disjoining pressure magnitude. Besides, the effect of pinning and de-pinning behaviours is also studied. We investigate the axisymmetric homogeneous growth of 10–100 nm single water nanodroplet on a substrate surface. The main mechanism of droplet growth is attributed to the accumulation of laterally diffusing water monomers, formed by the absorption of water vapour in the environment onto the substrate. Under assumptions of quasi-steady thermodynamic equilibrium, the nanodroplet evolves according to the augmented Young–Laplace equation. Using continuum theory, we model the dynamics of nanodroplet growth including the coupled effects of disjoining pressure, contact angle and monomer diffusion with the assumption of constant flux of water monomers at the far field. The simulation result is validated by comparing with the published experimental result. For the case of nanodroplet growth with constant contact angle, our numerical results show that the initial droplet growth is transient by monomer diffusion. When the flux at the far field is small, at the beginning, the droplet grows by the diffusion of initially available water monomers on the substrate and after that by the flux at the far field. In the steady late growth rate of droplet radius and droplet height follow a power law of 1/3, which is unaffected by the substrate disjoining pressure and contact angle. However, it is found that the droplet grows faster in radial direction than high direction when disjoining pressure and contact angle increase. The simulation also shows the information of computational domain effect in the transient growth period. When the computational domain size is larger, the mass coming in the free substrate domain is higher. So the mass coming in the droplet is also higher. The droplet grows and reaches the steady state faster. For the case of pinning and de-pinning droplet growth, the simulation shows that the disjoining pressure does not affect the droplet radius growth law 1/3 in steady state. However the disjoining pressure modifies the growth rate of the droplet height, which then follows a power law of 1/4. We demonstrate how spatial depletion of monomers could lead to a growth arrest of the nanodroplet, as observed experimentally.

Keywords: augmented young-laplace equation, contact angle, disjoining pressure, nanodroplet growth

Procedia PDF Downloads 273
3238 Early Melt Season Variability of Fast Ice Degradation Due to Small Arctic Riverine Heat Fluxes

Authors: Grace E. Santella, Shawn G. Gallaher, Joseph P. Smith

Abstract:

In order to determine the importance of small-system riverine heat flux on regional landfast sea ice breakup, our study explores the annual spring freshet of the Sagavanirktok River from 2014-2019. Seasonal heat cycling ultimately serves as the driving mechanism behind the freshet; however, as an emerging area of study, the extent to which inland thermodynamics influence coastal tundra geomorphology and connected landfast sea ice has not been extensively investigated in relation to small-scale Arctic river systems. The Sagavanirktok River is a small-to-midsized river system that flows south-to-north on the Alaskan North Slope from the Brooks mountain range to the Beaufort Sea at Prudhoe Bay. Seasonal warming in the spring rapidly melts snow and ice in a northwards progression from the Brooks Range and transitional tundra highlands towards the coast and when coupled with seasonal precipitation, results in a pulsed freshet that propagates through the Sagavanirktok River. The concentrated presence of newly exposed vegetation in the transitional tundra region due to spring melting results in higher absorption of solar radiation due to a lower albedo relative to snow-covered tundra and/or landfast sea ice. This results in spring flood runoff that advances over impermeable early-season permafrost soils with elevated temperatures relative to landfast sea ice and sub-ice flow. We examine the extent to which interannual temporal variability influences the onset and magnitude of river discharge by analyzing field measurements from the United States Geological Survey (USGS) river and meteorological observation sites. Rapid influx of heat to the Arctic Ocean via riverine systems results in a noticeable decay of landfast sea ice independent of ice breakup seaward of the shear zone. Utilizing MODIS imagery from NASA’s Terra satellite, interannual variability of river discharge is visualized, allowing for optical validation that the discharge flow is interacting with landfast sea ice. Thermal erosion experienced by sediment fast ice at the arrival of warm overflow preconditions the ice regime for rapid thawing. We investigate the extent to which interannual heat flux from the Sagavanirktok River’s freshet significantly influences the onset of local landfast sea ice breakup. The early-season warming of atmospheric temperatures is evidenced by the presence of storms which introduce liquid, rather than frozen, precipitation into the system. The resultant decreased albedo of the transitional tundra supports the positive relationship between early-season precipitation events, inland thermodynamic cycling, and degradation of landfast sea ice. Early removal of landfast sea ice increases coastal erosion in these regions and has implications for coastline geomorphology which stress industrial, ecological, and humanitarian infrastructure.

Keywords: Albedo, freshet, landfast sea ice, riverine heat flux, seasonal heat cycling

Procedia PDF Downloads 129
3237 Enhancing Vehicle Efficiency Through Vapor Absorption Refrigeration Systems

Authors: Yoftahe Nigussie Worku

Abstract:

This paper explores the utilization of vapor absorption refrigeration systems (VARS) as an alternative to the conventional vapor compression refrigerant systems (VCRS) in vehicle air conditioning (AC) systems. Currently, most vehicles employ VCRS, which relies on engine power to drive the compressor, leading to additional fuel consumption. In contrast, VARS harnesses low-grade heat, specifically from the exhaust of high-power internal combustion engines, reducing the burden on the vehicle's engine. The historical development of vapor absorption technology is outlined, dating back to Michael Faraday's discovery in 1824 and the subsequent creation of the first vapor absorption refrigeration machine by Ferdinand Carre in 1860. The paper delves into the fundamental principles of VARS, emphasizing the replacement of mechanical processes with physicochemical interactions, utilizing heat rather than mechanical work. The study compares the basic concepts of the current vapor compression systems with the proposed vapor absorption systems, highlighting the efficiency gains achieved by eliminating the need for engine-driven compressors. The vapor absorption refrigeration cycle (VARC) is detailed, focusing on the generator's role in separating and vaporizing ammonia, chosen for its low-temperature evaporation characteristics. The project's statement underscores the need for increased efficiency in vehicle AC systems beyond the limitations of VCRS. By introducing VARS, driven by low-grade heat, the paper advocates for a reduction in engine power consumption and, consequently, a decrease in fuel usage. This research contributes to the ongoing efforts to enhance sustainability and efficiency in automotive climate control systems.

Keywords: VCRS, VARS, efficiency, sustainability

Procedia PDF Downloads 74
3236 Process Modified Geopolymer Concrete: A Sustainable Material for Green Construction Technology

Authors: Dibyendu Adak, Saroj Mandal

Abstract:

The fly ash based geopolymer concrete generally requires heat activation after casting, which has been considered as an important limitation for its practical application. Such limitation can be overcome by a modification in the process at the time of mixing of ingredients (fly and activator fluid) for geopolymer concrete so that curing can be made at ambient temperature. This process modified geopolymer concrete shows an appreciable improvement in structural performance compared to conventional heat cured geopolymer concrete and control cement concrete. The improved durability performance based on water absorption, sulphate test, and RCPT is also noted. The microstructural properties analyzed through Field Emission Scanning Electron Microscope (FESEM) with Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD) techniques show the better interaction of fly ash and activator solution at early ages for the process modified geopolymer concrete. This accelerates the transformation of the amorphous phase of fly ash to the crystalline phase.

Keywords: fly ash, geopolymer concrete, process modification, structural properties, durability, micro-structures

Procedia PDF Downloads 163
3235 The Gradient Complex Protective Coatings for Single Crystal Nickel Alloys

Authors: Evgeniya Popova, Vladimir Lesnikov, Nikolay Popov

Abstract:

High yield complex coatings have been designed for thermally stressed cooled HP turbine blades from single crystal alloys ZHS32-VI-VI and ZHS36 with crystallographic orientation [001]. These coatings provide long-term protection of single crystal blades during operation. The three-layer coatings were prepared as follows: the diffusion barrier layer formation on the alloy surface, the subsequent deposition of the condensed bilayer coatings consisting of an inner layer based on Ni-Cr-Al-Y systems and an outer layer based on the alloyed β-phase. The structure, phase composition of complex coatings and reaction zone interaction with the single-crystal alloys ZHS32-VI and ZHS36-VI were investigated using scanning electron microscope (SEM). The effect of complex protective coatings on the properties of heat-resistant nickel alloys was studied.

Keywords: single crystal nickel alloys, complex heat-resistant coatings, structure, phase composition, properties

Procedia PDF Downloads 418
3234 Aerothermal Analysis of the Brazilian 14-X Hypersonic Aerospace Vehicle at Mach Number 7

Authors: Felipe J. Costa, João F. A. Martos, Ronaldo L. Cardoso, Israel S. Rêgo, Marco A. S. Minucci, Antonio C. Oliveira, Paulo G. P. Toro

Abstract:

The Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, at the Institute for Advanced Studies designed the Brazilian 14-X Hypersonic Aerospace Vehicle, which is a technological demonstrator endowed with two innovative technologies: waverider technology, to obtain lift from conical shockwave during the hypersonic flight; and uses hypersonic airbreathing propulsion system called scramjet that is based on supersonic combustion, to perform flights on Earth's atmosphere at 30 km altitude at Mach numbers 7 and 10. The scramjet is an aeronautical engine without moving parts that promote compression and deceleration of freestream atmospheric air at the inlet through the conical/oblique shockwaves generated during the hypersonic flight. During high speed flight, the shock waves and the viscous forces yield the phenomenon called aerodynamic heating, where this physical meaning is the friction between the fluid filaments and the body or compression at the stagnation regions of the leading edge that converts the kinetic energy into heat within a thin layer of air which blankets the body. The temperature of this layer increases with the square of the speed. This high temperature is concentrated in the boundary-layer, where heat will flow readily from the boundary-layer to the hypersonic aerospace vehicle structure. Fay and Riddell and Eckert methods are applied to the stagnation point and to the flat plate segments in order to calculate the aerodynamic heating. On the understanding of the aerodynamic heating it is important to analyze the heat conduction transfer to the 14-X waverider internal structure. ANSYS Workbench software provides the Thermal Numerical Analysis, using Finite Element Method of the 14-X waverider unpowered scramjet at 30 km altitude at Mach number 7 and 10 in terms of temperature and heat flux. Finally, it is possible to verify if the internal temperature complies with the requirements for embedded systems, and, if is necessary to do modifications on the structure in terms of wall thickness and materials.

Keywords: aerodynamic heating, hypersonic, scramjet, thermal analysis

Procedia PDF Downloads 452
3233 Innovative Fabric Integrated Thermal Storage Systems and Applications

Authors: Ahmed Elsayed, Andrew Shea, Nicolas Kelly, John Allison

Abstract:

In northern European climates, domestic space heating and hot water represents a significant proportion of total primary total primary energy use and meeting these demands from a national electricity grid network supplied by renewable energy sources provides an opportunity for a significant reduction in EU CO2 emissions. However, in order to adapt to the intermittent nature of renewable energy generation and to avoid co-incident peak electricity usage from consumers that may exceed current capacity, the demand for heat must be decoupled from its generation. Storage of heat within the fabric of dwellings for use some hours, or days, later provides a route to complete decoupling of demand from supply and facilitates the greatly increased use of renewable energy generation into a local or national electricity network. The integration of thermal energy storage into the building fabric for retrieval at a later time requires much evaluation of the many competing thermal, physical, and practical considerations such as the profile and magnitude of heat demand, the duration of storage, charging and discharging rate, storage media, space allocation, etc. In this paper, the authors report investigations of thermal storage in building fabric using concrete material and present an evaluation of several factors that impact upon performance including heating pipe layout, heating fluid flow velocity, storage geometry, thermo-physical material properties, and also present an investigation of alternative storage materials and alternative heat transfer fluids. Reducing the heating pipe spacing from 200 mm to 100 mm enhances the stored energy by 25% and high-performance Vacuum Insulation results in heat loss flux of less than 3 W/m2, compared to 22 W/m2 for the more conventional EPS insulation. Dense concrete achieved the greatest storage capacity, relative to medium and light-weight alternatives, although a material thickness of 100 mm required more than 5 hours to charge fully. Layers of 25 mm and 50 mm thickness can be charged in 2 hours, or less, facilitating a fast response that could, aggregated across multiple dwellings, provide significant and valuable reduction in demand from grid-generated electricity in expected periods of high demand and potentially eliminate the need for additional new generating capacity from conventional sources such as gas, coal, or nuclear.

Keywords: fabric integrated thermal storage, FITS, demand side management, energy storage, load shifting, renewable energy integration

Procedia PDF Downloads 166
3232 Consumer Behaviour Model for Apparel E-Tailers Using Structural Equation Modelling

Authors: Halima Akhtar, Abhijeet Chandra

Abstract:

The paper attempts to analyze the factors that influence the Consumer Behavior to purchase apparel through the internet. The intentions to buy apparels online were based on in terms of user style, orientation, size and reputation of the merchant, social influence, perceived information utility, perceived ease of use, perceived pleasure and attractiveness and perceived trust and risk. The basic framework used was Technology acceptance model to explain apparels acceptance. A survey was conducted to gather the data from 200 people. The measures and hypotheses were analyzed using Correlation testing and would be further validated by the Structural Equation Modelling. The implications of the findings for theory and practice could be used by marketers of online apparel websites. Based on the values obtained, we can conclude that the factors such as social influence, Perceived information utility, attractiveness and trust influence the decision for a user to buy apparels online. The major factors which are found to influence an online apparel buying decision are ease of use, attractiveness that a website can offer and the trust factor which a user shares with the website.

Keywords: E-tailers, consumer behaviour, technology acceptance model, structural modelling

Procedia PDF Downloads 186
3231 Consumer Preferences for Low-Carbon Futures: A Structural Equation Model Based on the Domestic Hydrogen Acceptance Framework

Authors: Joel A. Gordon, Nazmiye Balta-Ozkan, Seyed Ali Nabavi

Abstract:

Hydrogen-fueled technologies are rapidly advancing as a critical component of the low-carbon energy transition. In countries historically reliant on natural gas for home heating, such as the UK, hydrogen may prove fundamental for decarbonizing the residential sector, alongside other technologies such as heat pumps and district heat networks. While the UK government is set to take a long-term policy decision on the role of domestic hydrogen by 2026, there are considerable uncertainties regarding consumer preferences for ‘hydrogen homes’ (i.e., hydrogen-fueled appliances for space heating, hot water, and cooking. In comparison to other hydrogen energy technologies, such as road transport applications, to date, few studies have engaged with the social acceptance aspects of the domestic hydrogen transition, resulting in a stark knowledge deficit and pronounced risk to policymaking efforts. In response, this study aims to safeguard against undesirable policy measures by revealing the underlying relationships between the factors of domestic hydrogen acceptance and their respective dimensions: attitudinal, socio-political, community, market, and behavioral acceptance. The study employs an online survey (n=~2100) to gauge how different UK householders perceive the proposition of switching from natural gas to hydrogen-fueled appliances. In addition to accounting for housing characteristics (i.e., housing tenure, property type and number of occupants per dwelling) and several other socio-structural variables (e.g. age, gender, and location), the study explores the impacts of consumer heterogeneity on hydrogen acceptance by recruiting respondents from across five distinct groups: (1) fuel poor householders, (2) technology engaged householders, (3) environmentally engaged householders, (4) technology and environmentally engaged householders, and (5) a baseline group (n=~700) which filters out each of the smaller targeted groups (n=~350). This research design reflects the notion that supporting a socially fair and efficient transition to hydrogen will require parallel engagement with potential early adopters and demographic groups impacted by fuel poverty while also accounting strongly for public attitudes towards net zero. Employing a second-order multigroup confirmatory factor analysis (CFA) in Mplus, the proposed hydrogen acceptance model is tested to fit the data through a partial least squares (PLS) approach. In addition to testing differences between and within groups, the findings provide policymakers with critical insights regarding the significance of knowledge and awareness, safety perceptions, perceived community impacts, cost factors, and trust in key actors and stakeholders as potential explanatory factors of hydrogen acceptance. Preliminary results suggest that knowledge and awareness of hydrogen are positively associated with support for domestic hydrogen at the household, community, and national levels. However, with the exception of technology and/or environmentally engaged citizens, much of the population remains unfamiliar with hydrogen and somewhat skeptical of its application in homes. Knowledge and awareness present as critical to facilitating positive safety perceptions, alongside higher levels of trust and more favorable expectations for community benefits, appliance performance, and potential cost savings. Based on these preliminary findings, policymakers should be put on red alert about diffusing hydrogen into the public consciousness in alignment with energy security, fuel poverty, and net-zero agendas.

Keywords: hydrogen homes, social acceptance, consumer heterogeneity, heat decarbonization

Procedia PDF Downloads 114
3230 Mathematical Model for Flow and Sediment Yield Estimation on Tel River Basin, India

Authors: Santosh Kumar Biswal, Ramakar Jha

Abstract:

Soil erosion is a slow and continuous process and one of the prominent problems across the world leading to many serious problems like loss of soil fertility, loss of soil structure, poor internal drainage, sedimentation deposits etc. In this paper remote sensing and GIS based methods have been applied for the determination of soil erosion and sediment yield. Tel River basin which is the second largest tributary of the river Mahanadi laying between latitude 19° 15' 32.4"N and, 20° 45' 0"N and longitude 82° 3' 36"E and 84° 18' 18"E chosen for the present study. The catchment was discretized into approximately homogeneous sub-areas (grid cells) to overcome the catchment heterogeneity. The gross soil erosion in each cell was computed using Universal Soil Loss Equation (USLE). Various parameters for USLE was determined as a function of land topography, soil texture, land use/land cover, rainfall, erosivity and crop management and practice in the watershed. The concept of transport limited accumulation was formulated and the transport capacity maps were generated. The gross soil erosion was routed to the catchment outlet. This study can help in recognizing critical erosion prone areas of the study basin so that suitable control measures can be implemented.

Keywords: Universal Soil Loss Equation (USLE), GIS, land use, sediment yield,

Procedia PDF Downloads 308
3229 Dynamical Relation of Poisson Spike Trains in Hodkin-Huxley Neural Ion Current Model and Formation of Non-Canonical Bases, Islands, and Analog Bases in DNA, mRNA, and RNA at or near the Transcription

Authors: Michael Fundator

Abstract:

Groundbreaking application of biomathematical and biochemical research in neural networks processes to formation of non-canonical bases, islands, and analog bases in DNA and mRNA at or near the transcription that contradicts the long anticipated statistical assumptions for the distribution of bases and analog bases compounds is implemented through statistical and stochastic methods apparatus with addition of quantum principles, where the usual transience of Poisson spike train becomes very instrumental tool for finding even almost periodical type of solutions to Fokker-Plank stochastic differential equation. Present article develops new multidimensional methods of finding solutions to stochastic differential equations based on more rigorous approach to mathematical apparatus through Kolmogorov-Chentsov continuity theorem that allows the stochastic processes with jumps under certain conditions to have γ-Holder continuous modification that is used as basis for finding analogous parallels in dynamics of neutral networks and formation of analog bases and transcription in DNA.

Keywords: Fokker-Plank stochastic differential equation, Kolmogorov-Chentsov continuity theorem, neural networks, translation and transcription

Procedia PDF Downloads 406
3228 Numerical Approach of RC Structural MembersExposed to Fire and After-Cooling Analysis

Authors: Ju-young Hwang, Hyo-Gyoung Kwak, Hong Jae Yim

Abstract:

This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical non-linearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, Prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC structures, heat transfer analysis, nonlinear analysis, after-cooling concrete model

Procedia PDF Downloads 368
3227 Numerical Investigation of the Needle Opening Process in a High Pressure Gas Injector

Authors: Matthias Banholzer, Hagen Müller, Michael Pfitzner

Abstract:

Gas internal combustion engines are widely used as propulsion systems or in power plants to generate heat and electricity. While there are different types of injection methods including the manifold port fuel injection and the direct injection, the latter has more potential to increase the specific power by avoiding air displacement in the intake and to reduce combustion anomalies such as backfire or pre-ignition. During the opening process of the injector, multiple flow regimes occur: subsonic, transonic and supersonic. To cover the wide range of Mach numbers a compressible pressure-based solver is used. While the standard Pressure Implicit with Splitting of Operators (PISO) method is used for the coupling between velocity and pressure, a high-resolution non-oscillatory central scheme established by Kurganov and Tadmor calculates the convective fluxes. A blending function based on the local Mach- and CFL-number switches between the compressible and incompressible regimes of the developed model. As the considered operating points are well above the critical state of the used fluids, the ideal gas assumption is not valid anymore. For the real gas thermodynamics, the models based on the Soave-Redlich-Kwong equation of state were implemented. The caloric properties are corrected using a departure formalism, for the viscosity and the thermal conductivity the empirical correlation of Chung is used. For the injector geometry, the dimensions of a diesel injector were adapted. Simulations were performed using different nozzle and needle geometries and opening curves. It can be clearly seen that there is a significant influence of all three parameters.

Keywords: high pressure gas injection, hybrid solver, hydrogen injection, needle opening process, real-gas thermodynamics

Procedia PDF Downloads 461
3226 Determination of Optimum Parameters for Thermal Stress Distribution in Composite Plate Containing a Triangular Cutout by Optimization Method

Authors: Mohammad Hossein Bayati Chaleshtari, Hadi Khoramishad

Abstract:

Minimizing the stress concentration around triangular cutout in infinite perforated plates subjected to a uniform heat flux induces thermal stresses is an important consideration in engineering design. Furthermore, understanding the effective parameters on stress concentration and proper selection of these parameters enables the designer to achieve a reliable design. In the analysis of thermal stress, the effective parameters on stress distribution around cutout include fiber angle, flux angle, bluntness and rotation angle of the cutout for orthotropic materials. This paper was tried to examine effect of these parameters on thermal stress analysis of infinite perforated plates with central triangular cutout. In order to achieve the least amount of thermal stress around a triangular cutout using a novel swarm intelligence optimization technique called dragonfly optimizer that inspired by the life method and hunting behavior of dragonfly in nature. In this study, using the two-dimensional thermoelastic theory and based on the Likhnitskiiʼ complex variable technique, the stress analysis of orthotropic infinite plate with a circular cutout under a uniform heat flux was developed to the plate containing a quasi-triangular cutout in thermal steady state condition. To achieve this goal, a conformal mapping function was used to map an infinite plate containing a quasi- triangular cutout into the outside of a unit circle. The plate is under uniform heat flux at infinity and Neumann boundary conditions and thermal-insulated condition at the edge of the cutout were considered.

Keywords: infinite perforated plate, complex variable method, thermal stress, optimization method

Procedia PDF Downloads 147
3225 Centrifuge Testing to Determine the Effect of Temperature on the Adhesion Strength of Ice

Authors: Zaid A. Janjua, Barbara Turnbull, Kwing-So Choi

Abstract:

The adhesion of glaze ice on power infrastructure, ships and aerofoils cause monetary and structural damage. Here we investigate the influence of temperature as an important parameter affecting adhesion strength of ice. Two terms are defined to investigate this: 'freezing temperature', the temperature at which glaze ice forms; and 'ambient temperature', the temperature of the surrounding during the test. Using three metal surfaces, the adhesion strength of ice has been calculated as a value of shear stress at the point of detachment on a spinning centrifuge. Findings show that the ambient temperature has a greater influence than the freezing temperature on the adhesion strength of ice. This is because there exists an amorphous liquid-like layer at the ice-surface interface, whose bond with the surface increases in strength at lower ambient temperatures when the substrate conducts heat much faster than the ice and acts as a heat sink. The results will help us to measure the actual adhesion strength of ice to metal surfaces based on data from weather monitoring devices. Future tests envisaged focus on thermally non-conducting substrates and their influence on adhesion strength.

Keywords: ice adhesion, centrifuge, glaze ice, freezing temperature, ambient temperature

Procedia PDF Downloads 343
3224 Stagnation-Point Flow towards a Stretching/Shrinking Sheet in a Nanofluid: A Stability Analysis

Authors: Anuar Ishak

Abstract:

The characteristics of stagnation point flow of a nanofluid towards a stretching/shrinking sheet are investigated. The governing partial differential equations are transformed into a set of ordinary differential equations, which are then solved numerically using MATLAB routine boundary value problem solver bvp4c. The numerical results show that dual (upper and lower branch) solutions exist for the shrinking case, while for the stretching case, the solution is unique. A stability analysis is performed to determine the stability of the dual solutions. It is found that the skin friction decreases when the sheet is stretched, but increases when the suction effect is increased. It is also found that increasing the thermophoresis parameter reduces the heat transfer rate at the surface, while increasing the Brownian motion parameter increases the mass transfer rate at the surface.

Keywords: dual solutions, heat transfer, forced convection, nanofluid, stability analysis

Procedia PDF Downloads 418
3223 Effect of Instructional Materials on Academic Performance in Heat Transfer Concept among Secondary School Physics Students in Fagge Educational Zone, Kano State, Nigeria

Authors: Shehu Aliyu

Abstract:

This study investigated the effects of instructional materials on academic achievement among senior secondary school students on the concept of Heat Transfer in physics in Fagge Educational Zone, Kano State Nigeria. The population consisted of SSII students from 10 public schools. Out of this, 87 students were randomly selected from which 24 males and 22 females formed the experimental group and 41 students as control group. A quasi experiential design with pretest and post-test for both the groups was adopted. Two research questions and null hypotheses guided the conduct of the study. The experimental group was exposed to teaching using instructional materials while the control group was taught using the normal lecture mode. Head Transfer Performance Test (HTPT) was used for data collection. The instrument was validated by experts in the science education field. A Pearson Product Moment Correlation (PPMC) was used to determine the reliability co-efficient and was found to be r=0.83. The research questions were answered using descriptive statistics while the hypotheses were tested at p≤ 0.05 level of significance using t-test. The result obtained from the data analysis showed that students in experimental group performed significantly better than those in the control group and that there was no significant difference in the academic performance between male and female students in the experimental group. Based on the findings of this study, it was recommended among others that the physics teachers should be receiving regular training on the importance of using instructional materials whether ready made or improved in their teaching.

Keywords: heat transfer, physics, instructional materials, academic performance

Procedia PDF Downloads 182
3222 Impact of Nanoparticles in Enhancement of Thermal Conductivity of Phase Change Materials in Thermal Energy Storage and Cooling of Concentrated Photovoltaics

Authors: Ismaila H. Zarma, Mahmoud Ahmed, Shinichi Ookawara, Hamdi Abo-Ali

Abstract:

Phase change materials (PCM) are an ideal thermal storage medium. They are characterized by a high latent heat, which allows them to store large amounts of energy when the material transitions into different physical states. Concentrated photovoltaic (CPV) systems are widely recognized as the most efficient form of Photovoltaic (PV) for thermal energy which can be stored in Phase Change Materials (PCM). However, PCMs often have a low thermal conductivity which leads to a slow transient response. This makes it difficult to quickly store and access the energy stored within the PCM based systems, so there is need to improve transient responses and increase the thermal conductivity. The present study aims to investigate and analyze the melting and solidification process of phase change materials (PCMs) enhanced by nanoparticle contained in a container. Heat flux from concentrated photovoltaic is applied in an attempt to analyze the thermal performance and the impact of nanoparticles. The work will be realized by using a two dimensional model which take into account the phase change phenomena based on the principle of enthalpy method. Numerical simulations have been performed to investigate heat and flow characteristics by using governing equations, to ascertain the impacts of the nanoparticle loading. The Rayleigh number, sub-cooling as well as the unsteady evolution of the melting front and the velocity and temperature fields were also observed. The predicted results exhibited a good agreement, showing thermal enhancement due to present of nanoparticle which leads to decreasing the melting time.

Keywords: thermal energy storage, phase-change material, nanoparticle, concentrated photovoltaic

Procedia PDF Downloads 203
3221 An Object-Oriented Modelica Model of the Water Level Swell during Depressurization of the Reactor Pressure Vessel of the Boiling Water Reactor

Authors: Rafal Bryk, Holger Schmidt, Thomas Mull, Ingo Ganzmann, Oliver Herbst

Abstract:

Prediction of the two-phase water mixture level during fast depressurization of the Reactor Pressure Vessel (RPV) resulting from an accident scenario is an important issue from the view point of the reactor safety. Since the level swell may influence the behavior of some passive safety systems, it has been recognized that an assumption which at the beginning may be considered as a conservative one, not necessary leads to a conservative result. This paper discusses outcomes obtained during simulations of the water dynamics and heat transfer during sudden depressurization of a vessel filled up to a certain level with liquid water under saturation conditions and with the rest of the vessel occupied by saturated steam. In case of the pressure decrease e.g. due to the main steam line break, the liquid water evaporates abruptly, being a reason thereby, of strong transients in the vessel. These transients and the sudden emergence of void in the region occupied at the beginning by liquid, cause elevation of the two-phase mixture. In this work, several models calculating the water collapse and swell levels are presented and validated against experimental data. Each of the models uses different approach to calculate void fraction. The object-oriented models were developed with the Modelica modelling language and the OpenModelica environment. The models represent the RPV of the Integral Test Facility Karlstein (INKA) – a dedicated test rig for simulation of KERENA – a new Boiling Water Reactor design of Framatome. The models are based on dynamic mass and energy equations. They are divided into several dynamic volumes in each of which, the fluid may be single-phase liquid, steam or a two-phase mixture. The heat transfer between the wall of the vessel and the fluid is taken into account. Additional heat flow rate may be applied to the first volume of the vessel in order to simulate the decay heat of the reactor core in a similar manner as it is simulated at INKA. The comparison of the simulations results against the reference data shows a good agreement.

Keywords: boiling water reactor, level swell, Modelica, RPV depressurization, thermal-hydraulics

Procedia PDF Downloads 210
3220 Modelling of Phase Transformation Kinetics in Post Heat-Treated Resistance Spot Weld of AISI 1010 Mild Steel

Authors: B. V. Feujofack Kemda, N. Barka, M. Jahazi, D. Osmani

Abstract:

Automobile manufacturers are constantly seeking means to reduce the weight of car bodies. The usage of several steel grades in auto body assembling has been found to be a good technique to enlighten vehicles weight. This few years, the usage of dual phase (DP) steels, transformation induced plasticity (TRIP) steels and boron steels in some parts of the auto body have become a necessity because of their lightweight. However, these steels are martensitic, when they undergo a fast heat treatment, the resultant microstructure is essential, made of martensite. Resistance spot welding (RSW), one of the most used techniques in assembling auto bodies, becomes problematic in the case of these steels. RSW being indeed a process were steel is heated and cooled in a very short period of time, the resulting weld nugget is mostly fully martensitic, especially in the case of DP, TRIP and boron steels but that also holds for plain carbon steels as AISI 1010 grade which is extensively used in auto body inner parts. Martensite in its turn must be avoided as most as possible when welding steel because it is the principal source of brittleness and it weakens weld nugget. Thus, this work aims to find a mean to reduce martensite fraction in weld nugget when using RSW for assembling. The prediction of phase transformation kinetics during RSW has been done. That phase transformation kinetics prediction has been made possible through the modelling of the whole welding process, and a technique called post weld heat treatment (PWHT) have been applied in order to reduce martensite fraction in the weld nugget. Simulation has been performed for AISI 1010 grade, and results show that the application of PWHT leads to the formation of not only martensite but also ferrite, bainite and pearlite during the cooling of weld nugget. Welding experiments have been done in parallel and micrographic analyses show the presence of several phases in the weld nugget. Experimental weld geometry and phase proportions are in good agreement with simulation results, showing here the validity of the model.

Keywords: resistance spot welding, AISI 1010, modeling, post weld heat treatment, phase transformation, kinetics

Procedia PDF Downloads 118
3219 Laser-TIG Welding-Brazing for Dissimilar Metals between Aluminum Alloy and Steel

Authors: Xiangfang Xu, Bintao Wu, Yugang Miao, Duanfeng Han

Abstract:

Experiments were conducted on 5A06 aluminum alloy and Q235 steel using the laser-TIG hybrid heat source welding-brazing method to realize the reliable connection of Al/Fe dissimilar metals and the welding characteristics were analyzed. It was found that the joints with uniform seam and high tensile strength could be obtained using such a method, while the welding process demanded special welding parameters. Spectrum measurements showed that the Al and Fe atoms diffused more thoroughly at the brazing interface and formed a 3μm-thick intermetallic compound layer at the Al/Fe joints brazed connection interface. Shearing tests indicated that the shearing strength of the Al/Fe welding-brazed joint was 165MPa. The fracture occurred near the melting zone of aluminum alloy, which belonged to the mixed mode with the ductile fracture as the base and the brittle fracture as the supplement.

Keywords: Al/Fe dissimilar metals, laser-TIG hybrid heat source, shearing strength, welding-brazing method

Procedia PDF Downloads 403
3218 Utilizing Waste Heat from Thermal Power Plants to Generate Power by Modelling an Atmospheric Vortex Engine

Authors: Mohammed Nabeel Khan, C. Perisamy

Abstract:

Convective vortices are normal highlights of air that ingest lower-entropy-energy at higher temperatures than they dismiss higher-entropy-energy to space. By means of the thermodynamic proficiency, it has been anticipated that the force of convective vortices relies upon the profundity of the convective layer. The atmospheric vortex engine is proposed as a gadget for delivering mechanical energy by methods for artificially produced vortex. The task of the engine is in view of the certainties that the environment is warmed from the base and cooled from the top. By generation of the artificial vortex, it is planned to take out the physical solar updraft tower and decrease the capital of the solar chimney power plants. The study shows the essentials of the atmospheric vortex engine, furthermore, audits the cutting edge in subject. Moreover, the study talks about a thought on using the solar energy as heat source to work the framework. All in all, the framework is attainable and promising for electrical power production.

Keywords: AVE, atmospheric vortex engine, atmosphere, updraft, vortex

Procedia PDF Downloads 161
3217 Rural Households’ Resilience to Food Insecurity in Niger

Authors: Aboubakr Gambo, Adama Diaw, Tobias Wunscher

Abstract:

This study attempts to identify factors affecting rural households’ resilience to food insecurity in Niger. For this, we first create a resilience index by using Principal Component Analysis on the following five variables at the household level: income, food expenditure, duration of grain held in stock, livestock in Tropical Livestock Units and number of farms exploited and second apply Structural Equation Modelling to identify the determinants. Data from the 2010 National Survey on Households’ Vulnerability to Food Insecurity done by the National Institute of Statistics is used. The study shows that asset and social safety nets indicators are significant and have a positive impact on households’ resilience. Climate change approximated by long-term mean rainfall has a negative and significant effect on households’ resilience to food insecurity. The results indicate that to strengthen households’ resilience to food insecurity, there is a need to increase assistance to households through social safety nets and to help them gather more resources in order to acquire more assets. Furthermore, early warning of climatic events could alert households especially farmers to be prepared and avoid important losses that they experience anytime an uneven climatic event occur.

Keywords: food insecurity, principal component analysis, structural equation modelling, resilience

Procedia PDF Downloads 361