Search results for: implicit neural representations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2450

Search results for: implicit neural representations

890 The Formulation of the Mecelle and Other Codified Laws in the Ottoman Empire: Transformation Overturning the Sharia Principles

Authors: Tianqi Yin

Abstract:

The sharia had been the legislative basis in the Ottoman Empire since its emergence. The authority of sharia was superlative in the Islamic society compared to the power of the sulta, the nominal ruler of the nation, regulating essentially every aspect of people’s lives according to an ethical code. In modernity, however, as European sovereignty employed forces to re-engineer the Islamic world to make it more like their own, a society ruled by a state, the Ottoman legislation system encountered a great challenge of adopting codified laws to replace sharia with the formulation of the Mecelle being a prominent case. Interpretations of this transformation have been contentious, with the key debate revolving around whether these codified laws are authentic representations of sharia or alien legal formulations authorized by the modern nation-state under heavy European colonial influence. Because of the difference in methodology of the diverse theories, challenges toward having a universal conclusion on this issue remain. This paper argues that the formulation of the Mecelle and other codified laws is a discontinuity of sharia due to European modernity’s influence and that the emphasis on elements of Islamic laws is a tactic employed to promote this process. These codified laws signals a complete social transformation from the Islamic society ruled by the sharia to a replication of the European society that is ruled by a comprehensive ruling system of the modern state. In addition to advancing the discussion on the characterization of the codification movement in the Ottoman Empire in modernity, the research also promotes the determination of the nature of the modern codification movement globally.

Keywords: codification, mecelle, modernity, sharia, ottoman empire

Procedia PDF Downloads 92
889 Virtue, Truth, Freedom, And The History Of Philosophy

Authors: Ashley DelCorno

Abstract:

GEM Anscombe’s 1958 essay Modern Moral Philosophy and the tradition of virtue ethics that followed has given rise to the restoration (or, more plainly, the resurrection) of Aristotle as something of an authority figure. Alisdair MacIntyre and Martha Nussbaum are proponents, for example, not just of Aristotle’s relevancy but also of his apparent implicit authority. That said, it’s not clear that the schema imagined by virtue ethicists accurately describes moral life or that it does not inadvertently work to impoverish genuine decision-making. If the label ‘virtue’ is categorically denied to some groups (while arbitrarily afforded to others), it can only turn on itself, thus rendering ridiculous its own premise. Likewise, as an inescapable feature of virtue ethics, Aristotelean binaries like ‘virtue/vice’ and ‘voluntary/involuntary’ offer up false dichotomies that may seriously compromise an agent’s ability to conceptualize choices that are truly free and rooted in meaningful criteria. Here, this topic is analyzed through a feminist lens predicated on the known paradoxes of patriarchy. The work of feminist theorists Jacqui Alexander, Katharine Angel, Simone de Beauvoir, bell hooks, Audre Lorde, Imani Perry, and Amia Srinivasan serves as important guideposts, and the argument here is built from a key tenet of black feminist thought regarding scarcity and possibility. Above all, it’s clear that though the philosophical tradition of virtue ethics presents itself as recovering the place of agency in ethics, its premises possess crippling limitations toward the achievement of this goal. These include, most notably, virtue ethics’ binding analysis of history, as well as its axiomatic attachment to obligatory clauses, problematic reading-in of Aristotle and arbitrary commitment to predetermined and competitively patriarchal ideas of what counts as a virtue.

Keywords: feminist history, the limits of utopic imagination, curatorial creation, truth, virtue, freedom

Procedia PDF Downloads 84
888 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques

Authors: Masoomeh Alsadat Mirshafaei

Abstract:

The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.

Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest

Procedia PDF Downloads 41
887 Analysis and Comparison of Prototypes of an Ergometric Step in a Multidisciplinary Design Process

Authors: M. B. Ricardo De Oliveira, A. Borghi-Silva, L. Di Thommazo, D. Braatz

Abstract:

Prototypes can be understood as representations of a product concept. Furthermore, prototyping consists in an important stage in product development and results in better team communication, decision making, testing and problem solving through feedback. Although there are several methods of prototyping suggested by recent studies for designers to choose from, some methods present different advantages, such as cost and time reduction, performance and fidelity, which should be taken in account during a product development project. In this multidisciplinary study, involving areas of physiotherapy, engineering and computer science (hardware and software), we compared four developed prototypes of an ergometric step: a virtual prototype, a 3D printed prototype, a bricolage prototype and a prototype manufactured by a third-party company. These prototypes were evaluated in a comparative-qualitative approach for their contribution to the concept’s maturation of the product, the different prototyping methods used and the advantages and disadvantages of each one based on the product’s design specifications (performance, safety, materials, cost, maintenance, usability, ergonomics and portability). Our results indicated that despite prototypes show overall advantages, all of them have limitations, thus being crucial to have different methods of testing and interacting with the product. Additionally, virtual and 3D printed prototypes were essential at early stages of the project due to their low-cost and high-fidelity representation of the product, while the prototype manufactured by a third-party company and bricolage prototype introduced functional tests in real scenarios, allowing more detailed evaluations. This study also resulted in a patent for an ergometric step.

Keywords: Product Design, Product Development, Prototypes, Step

Procedia PDF Downloads 118
886 Eroticism as a Tool for Addressing Socio-Cultural Inequalities

Authors: Amin Khaksar

Abstract:

The popular music scene is a highly speculative field of cultural production in which eroticism plays an essential role in attracting audiences. The juxtaposition of eroticism and cultural products possibly implies the importance of the representation of cultural values in popular music videos. As with norms in conservative societies, however, there are some types of inequalities, most of which are dominated by institutional inclinations as opposed to socio-cultural inclinations. This paper explores the challenges that increasing structural inequality poses to erotic representations, focusing on Iranian popular music videos. It outlines how eroticism is becoming a leading tool for circumventing institutional inequalities that affect some cultural values. Using the value-based approach, which draws on visual semiotics and content analysis of Iranian popular music videos compared to Western popular music videos, this study contends that the problematic nature of eroticism emerges when sexual representation takes on meaning beyond its commercial purpose. Indeed, erotica has more to say about freedom, social violence, gender discrimination, and, most importantly, values that can be shared and communicated. The concept of eroticism used in this study functions as a shared practice and can be perceived through symbols. Furthermore, the conclusions show that music artists (performers) use eroticism in three ways to represent cultural values: erotic performances, erotic qualities, and erotic narratives. The expected contribution highlights the role that eroticism can play in the encounter with institutional inequality and injustice. Consider a female celebrity whose erotic qualities help her body gain attention.

Keywords: inequality, value- based economics, eroticism, popular music video

Procedia PDF Downloads 125
885 Gender Stereotypes at the Court of Georgia: Perceptions of Attorneys on Gender Bias

Authors: Tatia Kekelia

Abstract:

This paper is part of an ongoing research addressing gender discrimination in the Court of Georgia. The research suggests that gender stereotypes influence the processes at the Court in contemporary Georgia, which causes uneven fights for women and men, not to mention other gender identities. The sub-hypothesis proposes that the gender stereotypes derive from feudal representations, which persisted during the Soviet rule. It is precisely those stereotypes that feed gender-based discrimination today. However, this paper’s main focus is on the main hypothesis, describing the revealed stereotypes, and identifying the Court as a place where their presence is most hindering societal development. First of all, this happens by demotivating people, causing loss of trust in the Court, and therefore potentially encouraging crime. Secondly, it becomes harder to adequately mobilize human resources, since more than a half of the population is female, and under the influence of rigid or more subtle forms of discrimination, they lose not only equal rights, but also the motivation to work or fight for them. Consequently, this paper falls under democracy studies as well – considering that an unbiased Court is one of the most important criteria for assessing the democratic character of a state. As the research crosses the disciplines of sociology, law, and history, a complex of qualitative research methods is applied, among which this paper relies mainly on expert interviews, interviews with attorneys, and desk research. By showcasing and undermining the gender stereotypes that work at the Court of Georgia, this research might assist in rising trust towards it in the long-term. As for the broader relevance, the study of the Georgian case opens the possibility to conduct comparative analyses in the region and the continent, and, presumably, carve the lines of cultural influences.

Keywords: gender, stereotypes, bias, democratization, judiciary

Procedia PDF Downloads 80
884 Sustainable Packaging and Consumer Behavior in a Customer Experience: A Neuromarketing Perspective

Authors: Francesco Pinci

Abstract:

This study focuses on sustainability and consumer behavior in relation to packaging aesthetics. It investigates the significance of product packaging as a potent marketing tool with a specific emphasis on commercially available pasta as a case study. The research delves into the visual components of packaging, encompassing aspects such as color, shape, packaging material, and logo design. The findings of this study hold particular relevance for food and beverage companies as they seek to gain a comprehensive understanding of the factors influencing consumer purchasing decisions. Furthermore, the study places a significant emphasis on the sustainability aspects of packaging, exploring how eco-friendly and environmentally conscious packaging choices can impact consumer preferences and behaviors. The insights generated from this research contribute to a more sustainable approach to packaging practices and inform marketers on the effective integration of sustainability principles in their branding strategies. Overall, this study provides valuable insights into the dynamic interplay between aesthetics, sustainability, and consumer behavior, offering practical implications for businesses seeking to align their packaging practices with sustainable and consumer-centric approaches. In this study, packaging designs and images from the website of Eataly US.Eataly is one of the leading distributors of authentic Italian pasta worldwide, and its website serves as a rich source of packaging visuals and product representations. By analyzing the packaging and images showcased on the Eataly website, the study gained valuable insights into consumer behavior and preferences regarding pasta packaging in the context of sustainability and aesthetics.

Keywords: consumer behaviour, sustainability, food marketing, neuromarketing

Procedia PDF Downloads 116
883 A Network of Nouns and Their Features :A Neurocomputational Study

Authors: Skiker Kaoutar, Mounir Maouene

Abstract:

Neuroimaging studies indicate that a large fronto-parieto-temporal network support nouns and their features, with some areas store semantic knowledge (visual, auditory, olfactory, gustatory,…), other areas store lexical representation and other areas are implicated in general semantic processing. However, it is not well understood how this fronto-parieto-temporal network can be modulated by different semantic tasks and different semantic relations between nouns. In this study, we combine a behavioral semantic network, functional MRI studies involving object’s related nouns and brain network studies to explain how different semantic tasks and different semantic relations between nouns can modulate the activity within the brain network of nouns and their features. We first describe how nouns and their features form a large scale brain network. For this end, we examine the connectivities between areas recruited during the processing of nouns to know which configurations of interaction areas are possible. We can thus identify if, for example, brain areas that store semantic knowledge communicate via functional/structural links with areas that store lexical representations. Second, we examine how this network is modulated by different semantic tasks involving nouns and finally, we examine how category specific activation may result from the semantic relations among nouns. The results indicate that brain network of nouns and their features is highly modulated and flexible by different semantic tasks and semantic relations. At the end, this study can be used as a guide to help neurosientifics to interpret the pattern of fMRI activations detected in the semantic processing of nouns. Specifically; this study can help to interpret the category specific activations observed extensively in a large number of neuroimaging studies and clinical studies.

Keywords: nouns, features, network, category specificity

Procedia PDF Downloads 521
882 Analysis of Gender Budgeting in Healthcare Sector: A Case of Gujarat State of India

Authors: Juhi Pandya, Elekes Zsuzsanna

Abstract:

Health is related to every aspect of human being. Even a quintal change leads to ill-health of an individual. Gender plays an eminent role in determining an individual health exposure. Political implications on health have implicit effects on the individual, societal and economical. The inclusion of gender perspective into policies have plunged enormous attention globally, nationally and locally to detract inequalities and achieve economic growth. Simultaneously, there is an initiation of policies with gender perspective which are named differently but hold similar meaning or objective. They are named gender mainstreaming policies or gender sensitization policies. Gender budgeting acts as a tool for the application of gender mainstreaming policies. It incorporates gender perspective into the budgetary process by restricting the revenues and expenditures at all level of the budget. The current study takes into account the analysis of Gender Budgeting reports in terms of healthcare from the 2014-16 year of Gujarat State, India. The expenditures and literature under the heading of gender budgeting reports named “Health and Family Welfare Department” are discussed in the paper. The data analytics is done with the help of reports published by the Gujarat government on Gender Budgeting. The results discuss upon the expenditure and initiation of new policies as a roadmap for the promotion of gender equality from the path of gender budgeting. It states with the escalation of the budgetary numbers for the health expenditure. Additionally, the paper raises the questions on the hypothetical loopholes pertaining to the gender budgeting in Gujarat. The budget reports do not show a specify explanation to the expenditure use of budget for the schemes mentioned in healthcare. It also does not clarify that how many beneficiaries are benefited through gender budget. The explanation just provides an overlook of theory for healthcare Schemes/Yojana or Abhiyan.

Keywords: gender, gender budgeting, gender equality, healthcare

Procedia PDF Downloads 352
881 Efficient Human Motion Detection Feature Set by Using Local Phase Quantization Method

Authors: Arwa Alzughaibi

Abstract:

Human Motion detection is a challenging task due to a number of factors including variable appearance, posture and a wide range of illumination conditions and background. So, the first need of such a model is a reliable feature set that can discriminate between a human and a non-human form with a fair amount of confidence even under difficult conditions. By having richer representations, the classification task becomes easier and improved results can be achieved. The Aim of this paper is to investigate the reliable and accurate human motion detection models that are able to detect the human motions accurately under varying illumination levels and backgrounds. Different sets of features are tried and tested including Histogram of Oriented Gradients (HOG), Deformable Parts Model (DPM), Local Decorrelated Channel Feature (LDCF) and Aggregate Channel Feature (ACF). However, we propose an efficient and reliable human motion detection approach by combining Histogram of oriented gradients (HOG) and local phase quantization (LPQ) as the feature set, and implementing search pruning algorithm based on optical flow to reduce the number of false positive. Experimental results show the effectiveness of combining local phase quantization descriptor and the histogram of gradient to perform perfectly well for a large range of illumination conditions and backgrounds than the state-of-the-art human detectors. Areaunder th ROC Curve (AUC) of the proposed method achieved 0.781 for UCF dataset and 0.826 for CDW dataset which indicates that it performs comparably better than HOG, DPM, LDCF and ACF methods.

Keywords: human motion detection, histograms of oriented gradient, local phase quantization, local phase quantization

Procedia PDF Downloads 260
880 The Correlation between Air Pollution and Tourette Syndrome

Authors: Mengnan Sun

Abstract:

It is unclear about the association between air pollution and Tourette Syndrome (TS), although people have suspected that air pollution might trigger TS. TS is a type of neural system disease usually found among children. The number of TS patients has significantly increased in recent decades, suggesting an importance and urgency to examine the possible triggers or conditions that are associated with TS. In this study, the correlation between air pollution and three allergic diseases---asthma, allergic conjunctivitis (AC), and allergic rhinitis (AR)---is examined. Then, a correlation between these allergic diseases and TS is proved. In this way, this study establishes a positive correlation between air pollution and TS. Measures the public can take to help TS patients are also analyzed at the end of this article. The article hopes to raise people’s awareness to reduce air pollution for the good of TS patients or people with other disorders that are associated with air pollution.

Keywords: air pollution, allergic diseases, climate change, Tourette Syndrome

Procedia PDF Downloads 64
879 Distributed Leadership and Emergency Response: A Study on Seafarers

Authors: Delna Shroff

Abstract:

Merchant shipping is an occupation with a high rate of fatal injuries caused by organizational accidents and maritime disasters. In most accident investigations, the leader’s actions are under scrutiny and point out the necessity to investigate the leader’s decisions in critical conditions. While several leadership studies have been carried out in the past, there is a tendency for most research to focus on holders of formal positions. The unit of analysis in most studies has been the ‘individual.’ A need is, therefore, felt to adopt a practice-based perspective of leadership, understand how leadership emerges to affect maritime safety. This paper explores the phenomenon of distributed leadership among seafarers more holistically. It further examines the role of one form of distributed leadership, that is, planfully aligned leadership in the emergency response of the team. A mixed design will be applied. In the first phase, the data gathered by way of semi-structured interviews will be used to explore the seafarer’s implicit understanding of leadership. The data will be used to develop a conceptual framework of distributed leadership, specific to the maritime context. This framework will be used to develop a simulation. Experimental design will be used to examine the relationship between planfully aligned leadership and emergency response of the team members during navigation. Findings show that planfully aligned leadership significantly and positively predicts the emergency response of team members. Planfully aligned leadership leads to a better emergency response of the team members as compared to authoritarian leadership. In the third qualitative phase, additional data will be gathered through semi-structured interviews to further validate the findings to gain a more complete understanding of distributed leadership and its relation to emergency response. Above are the predictive results; the study expects to be a cornerstone of safety leadership research and has important implications for leadership development and training within the maritime industry.

Keywords: authoritarian leadership, distributed leadership, emergency response , planfully aligned leadership

Procedia PDF Downloads 177
878 Misconception of the Idea ‘Oshinowoism’ and the Later Development in the ‘Yaba Painting School'

Authors: Irokanulo I. Emmanuel

Abstract:

The idea of ‘Oshinowoism’ is a representational school, which is a concept based on pure and rustic energy in painting. It is described as any painting that depicts the actions of significant through simple illusions. The idea is never to replicate a photographic resemblance with paint but to create an affinity between what one sees and what one artistically intends to create as a representation of that which one beholds in society as an illusion of reality, not as a reality in itself, but as subjective analysis of reality. The disciples of ‘Oshinowoism’ pursue their art from a representational point of view, creating material realities within feels of colours, forms and space, not trying to confuse the art as a substitute for reality nor reality as a substitute for art, but giving each its space and materialism to exist. The depictions of Oshinowo are the constant reminders or perhaps interpretations of those developments that emerged in contemporary African societies because of neocolonialism. This essay has three objectives. First, it examines the misconception around the development of this thought. Secondly, it contextualizes the later contemporary development of painting as art and craft in present-day Lagos, and third, it constructs the misconception and misconstruction of the concept of ‘Oshinowoism’ and offers a correct ideology of this thought with the body of Oshinowo’s work to give the existence to this philosophy. This study looks at the students of Kolade Oshinowo, especially those students who share similar elements and an affinity with the master painting skills, as a way of reconstructing and addressing the misconception in his style. The early works of Olaku, Edosa, and Lara Ige Jacks are plausible evidence of the existential essence of Oshinowo’s artistic philosophy. To this end, therefore, this study would explore the quality of their pictorial techniques and skills in painting as a way of preserving their master’s philosophy.

Keywords: Oshinowoism, colour scheme, drawing, philosophy, representations

Procedia PDF Downloads 44
877 Investigating the Role of Algerian Middle School Teachers in Enhancing Academic Self-Regulation: A Key towards Teaching How to Learn

Authors: Houda Zouar, Hanane Sarnou

Abstract:

In the 21st, century the concept of learners' autonomy is crucial. The concept of self-regulated learning has come forward as a result of enabling learners to direct their learning with autonomy towards academic goals achievement. Academic self-regulation is defined as the process by which learners systematically plan, monitor and asses their learning to achieve their academic established goals. In the field of English as a foreign language, teachers emphasise the role of learners’ autonomy to foster the process of English language learning. Consequently, academic self-regulation is considered as a vehicle to enhance autonomy among English language learners. However, not all learners can be equally self-regulators if not well assisted, mainly those novice pupils of basic education. For this matter, understanding the role of teachers in fostering academic self- regulation must be among the preliminary objectives in searching and developing this area. The present research work targets the role of the Algerian middle school teachers in enhancing academic self-regulation and teaching pupils how to learn, besides their role as models in the trajectory of teaching their pupils to become self-regulators. Despite the considerable endeavours in the field of educational setting on Self-Regulated Learning, the literature of the Algerian context indicates confined endeavours to undertake and divulge this notion. To go deeper into this study, a mixed method approach was employed to confirm our hypothesis. For data collection, teachers were observed and addressed by a questionnaire on their role in enhancing academic self- regulation among their pupils. The result of the research indicates that the attempts of middle school Algerian teachers are implicit and limited. This study emphasises the need to prepare English language teachers with the necessary skills to promote autonomous and self-regulator English learners.

Keywords: Algeria, English as a foreign language, middle school, self-regulation, Teachers' role

Procedia PDF Downloads 150
876 Studying the Linguistics of Hungarian Luxurious Brands: Analysing the Sound Effects from a non-Hungarian Consumer’s Perspective

Authors: Syrine Bassi

Abstract:

Sound symbolism has been able to give us an exciting new tool to target consumers’ brand perception. It acts on a subconscious level making them less likely to reject the implicit message delivered by the sound of the brand name. Most of the research conducted in the field was focused on the English language as it is the language used for international branding campaigns and global companies. However, more research is examining the sound symbolism in other languages and comparing it to the English language findings. Besides, researchers have been able to study luxury brand names and spot out the patterns used in them to provoke luxury and sophistication. It stands to a reason to connect the luxury brand names and the local language’s sound effects since a considerable number of these brands are promoting the origin of the Maison, therefore, have names in foreign languages. This study was established around the Hungarian luxury brand names. It aims to spot out the patterns used in these names that connect to the previous findings of luxury sound effects and also the differences. We worked with a non-Hungarian speaking sample who had some basic knowledge of the language just to make sure they were able to correctly pronounce the names. The results have shown both similarities and differences when it comes to perceiving luxury based on the brand name. As the Hungarian language can be qualified as a saturated language, consonant wise, it was easy to feed the luxury feeling only by using designers' names, however, some complicated names were too difficult and repulsive to consider as luxurious. On the other hand, oversimplifying some names did not convey the desired image as it was too simple and easy. Overall, some sounds have been proved to be linked to luxury as the literature suggests, the difficulty of pronunciation has also proved effective since it highlights the distant feeling consumers crave when looking for luxury. These results suggest that sound symbolism can set up an aura of luxury when used properly, leveraging each languages’ convenient assets.

Keywords: hungarian language, linguistics, luxury brands, sound symbolism

Procedia PDF Downloads 120
875 Auditory and Visual Perceptual Category Learning in Adults with ADHD: Implications for Learning Systems and Domain-General Factors

Authors: Yafit Gabay

Abstract:

Attention deficit hyperactivity disorder (ADHD) has been associated with both suboptimal functioning in the striatum and prefrontal cortex. Such abnormalities may impede the acquisition of perceptual categories, which are important for fundamental abilities such as object recognition and speech perception. Indeed, prior research has supported this possibility, demonstrating that children with ADHD have similar visual category learning performance as their neurotypical peers but use suboptimal learning strategies. However, much less is known about category learning processes in the auditory domain or among adults with ADHD in which prefrontal functions are more mature compared to children. Here, we investigated auditory and visual perceptual category learning in adults with ADHD and neurotypical individuals. Specifically, we examined learning of rule-based categories – presumed to be optimally learned by a frontal cortex-mediated hypothesis testing – and information-integration categories – hypothesized to be optimally learned by a striatally-mediated reinforcement learning system. Consistent with striatal and prefrontal cortical impairments observed in ADHD, our results show that across sensory modalities, both rule-based and information-integration category learning is impaired in adults with ADHD. Computational modeling analyses revealed that individuals with ADHD were slower to shift to optimal strategies than neurotypicals, regardless of category type or modality. Taken together, these results suggest that both explicit, frontally mediated and implicit, striatally mediated category learning are impaired in ADHD. These results suggest impairments across multiple learning systems in young adults with ADHD that extend across sensory modalities and likely arise from domain-general mechanisms.

Keywords: ADHD, category learning, modality, computational modeling

Procedia PDF Downloads 52
874 Optimized Deep Learning-Based Facial Emotion Recognition System

Authors: Erick C. Valverde, Wansu Lim

Abstract:

Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.

Keywords: deep learning, face detection, facial emotion recognition, network optimization methods

Procedia PDF Downloads 120
873 The Extent of Virgin Olive-Oil Prices' Distribution Revealing the Behavior of Market Speculators

Authors: Fathi Abid, Bilel Kaffel

Abstract:

The olive tree, the olive harvest during winter season and the production of olive oil better known by professionals under the name of the crushing operation have interested institutional traders such as olive-oil offices and private companies such as food industry refining and extracting pomace olive oil as well as export-import public and private companies specializing in olive oil. The major problem facing producers of olive oil each winter campaign, contrary to what is expected, it is not whether the harvest will be good or not but whether the sale price will allow them to cover production costs and achieve a reasonable margin of profit or not. These questions are entirely legitimate if we judge by the importance of the issue and the heavy complexity of the uncertainty and competition made tougher by a high level of indebtedness and the experience and expertise of speculators and producers whose objectives are sometimes conflicting. The aim of this paper is to study the formation mechanism of olive oil prices in order to learn about speculators’ behavior and expectations in the market, how they contribute by their industry knowledge and their financial alliances and the size the financial challenge that may be involved for them to build private information hoses globally to take advantage. The methodology used in this paper is based on two stages, in the first stage we study econometrically the formation mechanisms of olive oil price in order to understand the market participant behavior by implementing ARMA, SARMA, GARCH and stochastic diffusion processes models, the second stage is devoted to prediction purposes, we use a combined wavelet- ANN approach. Our main findings indicate that olive oil market participants interact with each other in a way that they promote stylized facts formation. The unstable participant’s behaviors create the volatility clustering, non-linearity dependent and cyclicity phenomena. By imitating each other in some periods of the campaign, different participants contribute to the fat tails observed in the olive oil price distribution. The best prediction model for the olive oil price is based on a back propagation artificial neural network approach with input information based on wavelet decomposition and recent past history.

Keywords: olive oil price, stylized facts, ARMA model, SARMA model, GARCH model, combined wavelet-artificial neural network, continuous-time stochastic volatility mode

Procedia PDF Downloads 340
872 On-Road Text Detection Platform for Driver Assistance Systems

Authors: Guezouli Larbi, Belkacem Soundes

Abstract:

The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.

Keywords: text detection, CNN, PZM, deep learning

Procedia PDF Downloads 85
871 Optimal Image Representation for Linear Canonical Transform Multiplexing

Authors: Navdeep Goel, Salvador Gabarda

Abstract:

Digital images are widely used in computer applications. To store or transmit the uncompressed images requires considerable storage capacity and transmission bandwidth. Image compression is a means to perform transmission or storage of visual data in the most economical way. This paper explains about how images can be encoded to be transmitted in a multiplexing time-frequency domain channel. Multiplexing involves packing signals together whose representations are compact in the working domain. In order to optimize transmission resources each 4x4 pixel block of the image is transformed by a suitable polynomial approximation, into a minimal number of coefficients. Less than 4*4 coefficients in one block spares a significant amount of transmitted information, but some information is lost. Different approximations for image transformation have been evaluated as polynomial representation (Vandermonde matrix), least squares + gradient descent, 1-D Chebyshev polynomials, 2-D Chebyshev polynomials or singular value decomposition (SVD). Results have been compared in terms of nominal compression rate (NCR), compression ratio (CR) and peak signal-to-noise ratio (PSNR) in order to minimize the error function defined as the difference between the original pixel gray levels and the approximated polynomial output. Polynomial coefficients have been later encoded and handled for generating chirps in a target rate of about two chirps per 4*4 pixel block and then submitted to a transmission multiplexing operation in the time-frequency domain.

Keywords: chirp signals, image multiplexing, image transformation, linear canonical transform, polynomial approximation

Procedia PDF Downloads 415
870 The Crossroads of Corruption and Terrorism in the Global South

Authors: Stephen M. Magu

Abstract:

The 9/11 and Christmas bombing attacks in the United States are mostly associated with the inability of intelligence agencies to connect dots based on intelligence that was already available. The 1998, 2002, 2013 and several 2014 terrorist attacks in Kenya, on the other hand, are probably driven by a completely different dynamic: the invisible hand of corruption. The World Bank and Transparency International annually compute the Worldwide Governance Indicators and the Corruption Perception Index respectively. What perhaps is not adequately captured in the corruption metrics is the impact of corruption on terrorism. The World Bank data includes variables such as the control of corruption, (estimates of) government effectiveness, political stability and absence of violence/terrorism, regulatory quality, rule of law and voice and accountability. TI's CPI does not include measures related to terrorism, but it is plausible that there is an expectation of some terrorism impact arising from corruption. This paper, by examining the incidence, frequency and total number of terrorist attacks that have occurred especially since 1990, and further examining the specific cases of Kenya and Nigeria, argues that in addition to having major effects on governance, corruption has an even more frightening impact: that of facilitating and/or violating security mechanisms to the extent that foreign nationals can easily obtain identification that enables them to perpetuate major events, targeting powerful countries' interests in countries with weak corruption-fighting mechanisms. The paper aims to model interactions that demonstrate the cost/benefit analysis and agents' rational calculations as being non-rational calculations, given the ultimate impact. It argues that eradication of corruption is not just a matter of a better business environment, but that it is implicit in national security, and that for anti-corruption crusaders, this is an argument more potent than the economic cost / cost of doing business argument.

Keywords: corruption, global south, identification, passports, terrorism

Procedia PDF Downloads 424
869 Gesture-Controlled Interface Using Computer Vision and Python

Authors: Vedant Vardhan Rathour, Anant Agrawal

Abstract:

The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computer using hand gestures and voice commands. The system leverages advanced computer vision techniques using the MediaPipe framework and OpenCV to detect and interpret real time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the Speech Recognition library allows for seamless execution of tasks like web searches, location navigation and gesture control on the system through voice commands.

Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks

Procedia PDF Downloads 19
868 Application of Signature Verification Models for Document Recognition

Authors: Boris M. Fedorov, Liudmila P. Goncharenko, Sergey A. Sybachin, Natalia A. Mamedova, Ekaterina V. Makarenkova, Saule Rakhimova

Abstract:

In modern economic conditions, the question of the possibility of correct recognition of a signature on digital documents in order to verify the expression of will or confirm a certain operation is relevant. The additional complexity of processing lies in the dynamic variability of the signature for each individual, as well as in the way information is processed because the signature refers to biometric data. The article discusses the issues of using artificial intelligence models in order to improve the quality of signature confirmation in document recognition. The analysis of several possible options for using the model is carried out. The results of the study are given, in which it is possible to correctly determine the authenticity of the signature on small samples.

Keywords: signature recognition, biometric data, artificial intelligence, neural networks

Procedia PDF Downloads 149
867 From Creativity to Innovation: Tracking Rejected Ideas

Authors: Lisete Barlach, Guilherme Ary Plonski

Abstract:

Innovative ideas are not always synonymous with business opportunities. Any idea can be creative and not recognized as a potential project in which money and time will be invested, among other resources. Even in firms that promote and enhance innovation, there are two 'check-points', the first corresponding to the acknowledgment of the idea as creative and the second, its consideration as a business opportunity. Both the recognition of new business opportunities or new ideas involve cognitive and psychological frameworks which provide individuals with a basis for noticing connections between seemingly independent events or trends as if they were 'connecting the dots'. It also involves prototypes-representing the most typical member of a certain category–functioning as 'templates' for this recognition. There is a general assumption that these kinds of evaluation processes develop through experience, explaining why expertise plays a central role in this process: the more experienced a professional, the easier for him (her) to identify new opportunities in business. But, paradoxically, an increase in expertise can lead to the inflexibility of thought due to automation of procedures. And, besides this, other cognitive biases can also be present, because new ideas or business opportunities generally depend on heuristics, rather than on established algorithms. The paper presents a literature review about the Einstellung effect by tracking famous cases of rejected ideas, extracted from historical records. It also presents the results of empirical research, with data upon rejected ideas gathered from two different environments: projects rejected during first semester of 2017 at a large incubator center in Sao Paulo and ideas proposed by employees that were rejected by a well-known business company, at its Brazilian headquarter. There is an implicit assumption that Einstellung effect tends to be more and more present in contemporaneity, due to time pressure upon decision-making and idea generation process. The analysis discusses desirability, viability, and feasibility as elements that affect decision-making.

Keywords: cognitive biases, Einstellung effect, recognition of business opportunities, rejected ideas

Procedia PDF Downloads 206
866 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing

Authors: Tolulope Aremu

Abstract:

This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.

Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving

Procedia PDF Downloads 35
865 Stimulus-Dependent Polyrhythms of Central Pattern Generator Hardware

Authors: Le Zhao, Alain Nogaret

Abstract:

We have built universal Central Pattern Generator (CPG) hardware by interconnecting Hodgkin-Huxley neurons with reciprocally inhibitory synapses. We investigate the dynamics of neuron oscillations as a function of the time delay between current steps applied to individual neurons. We demonstrate stimulus dependent switching between spiking polyrhythms and map the phase portraits of the neuron oscillations to reveal the basins of attraction of the system. We experimentally study the dependence of the attraction basins on the network parameters: the neuron response time and the strength of inhibitory connections.

Keywords: central pattern generator, winnerless competition principle, artificial neural networks, synapses

Procedia PDF Downloads 477
864 Computational Characterization of Electronic Charge Transfer in Interfacial Phospholipid-Water Layers

Authors: Samira Baghbanbari, A. B. P. Lever, Payam S. Shabestari, Donald Weaver

Abstract:

Existing signal transmission models, although undoubtedly useful, have proven insufficient to explain the full complexity of information transfer within the central nervous system. The development of transformative models will necessitate a more comprehensive understanding of neuronal lipid membrane electrophysiology. Pursuant to this goal, the role of highly organized interfacial phospholipid-water layers emerges as a promising case study. A series of phospholipids in neural-glial gap junction interfaces as well as cholesterol molecules have been computationally modelled using high-performance density functional theory (DFT) calculations. Subsequent 'charge decomposition analysis' calculations have revealed a net transfer of charge from phospholipid orbitals through the organized interfacial water layer before ultimately finding its way to cholesterol acceptor molecules. The specific pathway of charge transfer from phospholipid via water layers towards cholesterol has been mapped in detail. Cholesterol is an essential membrane component that is overrepresented in neuronal membranes as compared to other mammalian cells; given this relative abundance, its apparent role as an electronic acceptor may prove to be a relevant factor in further signal transmission studies of the central nervous system. The timescales over which this electronic charge transfer occurs have also been evaluated by utilizing a system design that systematically increases the number of water molecules separating lipids and cholesterol. Memory loss through hydrogen-bonded networks in water can occur at femtosecond timescales, whereas existing action potential-based models are limited to micro or nanosecond scales. As such, the development of future models that attempt to explain faster timescale signal transmission in the central nervous system may benefit from our work, which provides additional information regarding fast timescale energy transfer mechanisms occurring through interfacial water. The study possesses a dataset that includes six distinct phospholipids and a collection of cholesterol. Ten optimized geometric characteristics (features) were employed to conduct binary classification through an artificial neural network (ANN), differentiating cholesterol from the various phospholipids. This stems from our understanding that all lipids within the first group function as electronic charge donors, while cholesterol serves as an electronic charge acceptor.

Keywords: charge transfer, signal transmission, phospholipids, water layers, ANN

Procedia PDF Downloads 75
863 A Comparative Study of Deep Learning Methods for COVID-19 Detection

Authors: Aishrith Rao

Abstract:

COVID 19 is a pandemic which has resulted in thousands of deaths around the world and a huge impact on the global economy. Testing is a huge issue as the test kits have limited availability and are expensive to manufacture. Using deep learning methods on radiology images in the detection of the coronavirus as these images contain information about the spread of the virus in the lungs is extremely economical and time-saving as it can be used in areas with a lack of testing facilities. This paper focuses on binary classification and multi-class classification of COVID 19 and other diseases such as pneumonia, tuberculosis, etc. Different deep learning methods such as VGG-19, COVID-Net, ResNET+ SVM, Deep CNN, DarkCovidnet, etc., have been used, and their accuracy has been compared using the Chest X-Ray dataset.

Keywords: deep learning, computer vision, radiology, COVID-19, ResNet, VGG-19, deep neural networks

Procedia PDF Downloads 162
862 Evaluating the Capability of the Flux-Limiter Schemes in Capturing the Turbulence Structures in a Fully Developed Channel Flow

Authors: Mohamed Elghorab, Vendra C. Madhav Rao, Jennifer X. Wen

Abstract:

Turbulence modelling is still evolving, and efforts are on to improve and develop numerical methods to simulate the real turbulence structures by using the empirical and experimental information. The monotonically integrated large eddy simulation (MILES) is an attractive approach for modelling turbulence in high Re flows, which is based on the solving of the unfiltered flow equations with no explicit sub-grid scale (SGS) model. In the current work, this approach has been used, and the action of the SGS model has been included implicitly by intrinsic nonlinear high-frequency filters built into the convection discretization schemes. The MILES solver is developed using the opensource CFD OpenFOAM libraries. The role of flux limiters schemes namely, Gamma, superBee, van-Albada and van-Leer, is studied in predicting turbulent statistical quantities for a fully developed channel flow with a friction Reynolds number, ReT = 180, and compared the numerical predictions with the well-established Direct Numerical Simulation (DNS) results for studying the wall generated turbulence. It is inferred from the numerical predictions that Gamma, van-Leer and van-Albada limiters produced more diffusion and overpredicted the velocity profiles, while superBee scheme reproduced velocity profiles and turbulence statistical quantities in good agreement with the reference DNS data in the streamwise direction although it deviated slightly in the spanwise and normal to the wall directions. The simulation results are further discussed in terms of the turbulence intensities and Reynolds stresses averaged in time and space to draw conclusion on the flux limiter schemes performance in OpenFOAM context.

Keywords: flux limiters, implicit SGS, MILES, OpenFOAM, turbulence statistics

Procedia PDF Downloads 191
861 Critical Literacy and Multiliteracies in the English Language Teaching at Federal Institute of Mato Grosso, Rondonópolis Campus

Authors: Jordana Lenhardt

Abstract:

This paperwork aims to promote a reflection on the critical literacy and multiliteracies concepts in the English language teaching, under an emancipatory perspective, in the English language classroom at the Federal Institute of Mato Grosso (IFMT), Rondonópolis Campus. Some Authors place the relationship between the world conscience and the self-conscience in a direct reason, compromising one to the other, and others defend that emancipatory teaching practice must be connected in all the spheres of the social context; with this paperwork, we intend to analyze students’ interactions with the English language, in order to verify if they demonstrate critical conscience about language and the world around them. The study is still at a preliminary level and is grounded in discourse critical analysis and systemic-functional linguistics. We understand that text is irremediable, linked to a context, and that the linguistic selection made by the speaker builds social representations. This research foresees the analysis of some students’ speeches in an interview about their classes at the Federal Institute in the city of Rondonópolis and the methodology being used on them. Discourse critical analysis explains that, through the awareness of the language uses, learners can become more conscious of the coercions in their own language practices, the possibilities of risks, and the costs of the individual or collective challenges, to engage themselves in emancipatory linguistic practice. The critical language conscience contributes, on the other hand, to make students more aware of the practices in which they are involved, as producers and consumers of texts, of the social forces, ideologies, and power relations, their effects on the identities and social relations, as well as the discourse role in the social and cultural processes.

Keywords: multiliteracies, critical literacy, emancipation, social transformation

Procedia PDF Downloads 102