Search results for: data mining applications and discovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30840

Search results for: data mining applications and discovery

29280 Reductions of Control Flow Graphs

Authors: Robert Gold

Abstract:

Control flow graphs are a well-known representation of the sequential control flow structure of programs with a multitude of applications. Not only single functions but also sets of functions or complete programs can be modelled by control flow graphs. In this case the size of the graphs can grow considerably and thus makes it difficult for software engineers to analyse the control flow. Graph reductions are helpful in this situation. In this paper we define reductions to subsets of nodes. Since executions of programs are represented by paths through the control flow graphs, paths should be preserved. Furthermore, the composition of reductions makes a stepwise analysis approach possible.

Keywords: control flow graph, graph reduction, software engineering, software applications

Procedia PDF Downloads 553
29279 Applying AI and IoT to Enhance Eye Vision Assessment, Early Detection of Eye Diseases, and Personalised Vision Correction

Authors: Gasim Alandjani

Abstract:

This research paper investigates the use of artificial intelligence (AI) and the Internet of Things (IoT) to improve eye healthcare; it concentrates on eye vision assessment, early discovery of eye ailments, and individualised vision correction. The study offers a broad review of literature and methodology; it features vital findings and inferences for advancing patient results, boosting admittance to care, elevating resource apportionment, and directing future research and practice. The study concluded that the assimilation of AI and IoT advancements provides progressive answers to traditional hurdles in eye healthcare, guaranteeing more precise, comprehensive, and individualised interventions for patients globally. The study emphasizes the significance of sustained innovation and the application of AI and IoT-driven methodologies to improve eye healthcare and vision for forthcoming generations.

Keywords: AI, IoT, eye vision assessment, computer engineering

Procedia PDF Downloads 9
29278 Transforming Data Science Curriculum Through Design Thinking

Authors: Samar Swaid

Abstract:

Today, corporates are moving toward the adoption of Design-Thinking techniques to develop products and services, putting their consumer as the heart of the development process. One of the leading companies in Design-Thinking, IDEO (Innovation, Design, Engineering Organization), defines Design-Thinking as an approach to problem-solving that relies on a set of multi-layered skills, processes, and mindsets that help people generate novel solutions to problems. Design thinking may result in new ideas, narratives, objects or systems. It is about redesigning systems, organizations, infrastructures, processes, and solutions in an innovative fashion based on the users' feedback. Tim Brown, president and CEO of IDEO, sees design thinking as a human-centered approach that draws from the designer's toolkit to integrate people's needs, innovative technologies, and business requirements. The application of design thinking has been witnessed to be the road to developing innovative applications, interactive systems, scientific software, healthcare application, and even to utilizing Design-Thinking to re-think business operations, as in the case of Airbnb. Recently, there has been a movement to apply design thinking to machine learning and artificial intelligence to ensure creating the "wow" effect on consumers. The Association of Computing Machinery task force on Data Science program states that" Data scientists should be able to implement and understand algorithms for data collection and analysis. They should understand the time and space considerations of algorithms. They should follow good design principles developing software, understanding the importance of those principles for testability and maintainability" However, this definition hides the user behind the machine who works on data preparation, algorithm selection and model interpretation. Thus, the Data Science program includes design thinking to ensure meeting the user demands, generating more usable machine learning tools, and developing ways of framing computational thinking. Here, describe the fundamentals of Design-Thinking and teaching modules for data science programs.

Keywords: data science, design thinking, AI, currculum, transformation

Procedia PDF Downloads 84
29277 Fabrication and Assessment of Poly (Butylene Succinate)/Poly (ԑ-Caprolactone)/Eucomis autumnalis Cellulose Bio-Composites for Tissue Engineering Applications

Authors: Kumalo F. I., Malimabe M. A., Gumede T. P., Mosoabisane M. F. T.

Abstract:

This study investigates the fabrication and characterization of bio-nanocomposites consisting of poly (butylene succinate) (PBS) and poly (ԑ-caprolactone) (PCL), reinforced with cellulose extracted from Eucomis autumnalis, a medicinal plant. Bio-nanocomposite films were prepared using the solvent casting method, with cellulose content ranging from 1 to 3 wt%. During the solution casting method, 15 ml of chloroform was used to dissolve an overall mass of 0.5g of each polymer as well as the combination of their bio-nanocomposites. Comprehensive analysis was conducted using FTIR, SEM, TEM, DSC, TGA, and XRD to assess morphological, thermal, and structural properties. Mechanical properties were not investigated due to the thin nature of the films. The results indicated significant improvements in the thermal stability and morphological properties with increasing cellulose content, showcasing the potential of these materials for tissue engineering applications. The use of cellulose extracted from a medicinal plant highlights the potential for sustainable and biocompatible materials in biomedical applications.

Keywords: bio-nanocomposites, poly (butylene succinate), poly(ԑ-caprolactone), Eucomis autumnalis, medicinal plant

Procedia PDF Downloads 54
29276 Semantic Data Schema Recognition

Authors: Aïcha Ben Salem, Faouzi Boufares, Sebastiao Correia

Abstract:

The subject covered in this paper aims at assisting the user in its quality approach. The goal is to better extract, mix, interpret and reuse data. It deals with the semantic schema recognition of a data source. This enables the extraction of data semantics from all the available information, inculding the data and the metadata. Firstly, it consists of categorizing the data by assigning it to a category and possibly a sub-category, and secondly, of establishing relations between columns and possibly discovering the semantics of the manipulated data source. These links detected between columns offer a better understanding of the source and the alternatives for correcting data. This approach allows automatic detection of a large number of syntactic and semantic anomalies.

Keywords: schema recognition, semantic data profiling, meta-categorisation, semantic dependencies inter columns

Procedia PDF Downloads 419
29275 Conductivity and Selection of Copper Clad Steel Wires for Grounding Applications

Authors: George Eduful, Kingsford J. A. Atanga

Abstract:

Copper clad steel wire (CCS) is primarily used for grounding applications to reduce the high incidence of copper ground conductor theft in electrical installations. The cross sectional area of the CCS is selected by relating the diameter equivalence to a copper conductor. The main difficulty is how to use a simple analytical relation to determine the right conductivity of CCS for a particular application. The use of Eddy-Current instrument for measuring conductivity is known but in most cases, the instrument is not readily available. The paper presents a simplified approach on how to size and determine CCS conductivity for a given application.

Keywords: copper clad steel wire, conductivity, grounding, skin effect

Procedia PDF Downloads 287
29274 MCD-017: Potential Candidate from the Class of Nitroimidazoles to Treat Tuberculosis

Authors: Gurleen Kour, Mowkshi Khullar, B. K. Chandan, Parvinder Pal Singh, Kushalava Reddy Yumpalla, Gurunadham Munagala, Ram A. Vishwakarma, Zabeer Ahmed

Abstract:

New chemotherapeutic compounds against multidrug-resistant Mycobacterium tuberculosis (Mtb) are urgently needed to combat drug resistance in tuberculosis (TB). Apart from in-vitro potency against the target, physiochemical properties and pharmacokinetic properties play an imperative role in the process of drug discovery. We have identified novel nitroimidazole derivatives with potential activity against mycobacterium tuberculosis. One lead candidates, MCD-017, which showed potent activity against H37Rv strain (MIC=0.5µg/ml) and was further evaluated in the process of drug development. Methods: Basic physicochemical parameters like solubility and lipophilicity (LogP) were evaluated. Thermodynamic solubility was determined in PBS buffer (pH 7.4) using LC/MS-MS. The partition coefficient (Log P) of the compound was determined between octanol and phosphate buffered saline (PBS at pH 7.4) at 25°C by the microscale shake flask method. The compound followed Lipinski’s rule of five, which is predictive of good oral bioavailability and was further evaluated for metabolic stability. In-vitro metabolic stability was determined in rat liver microsomes. The hepatotoxicity of the compound was also determined in HepG2 cell line. In vivo pharmacokinetic profile of the compound after oral dosing was also obtained using balb/c mice. Results: The compound exhibited favorable solubility and lipophilicity. The physical and chemical properties of the compound were made use of as the first determination of drug-like properties. The compound obeyed Lipinski’s rule of five, with molecular weight < 500, number of hydrogen bond donors (HBD) < 5 and number of hydrogen bond acceptors(HBA) not more then 10. The log P of the compound was less than 5 and therefore the compound is predictive of exhibiting good absorption and permeation. Pooled rat liver microsomes were prepared from rat liver homogenate for measuring the metabolic stability. 99% of the compound was not metabolized and remained intact. The compound did not exhibit cytoxicity in hepG2 cells upto 40 µg/ml. The compound revealed good pharmacokinetic profile at a dose of 5mg/kg administered orally with a half life (t1/2) of 1.15 hours, Cmax of 642ng/ml, clearance of 4.84 ml/min/kg and a volume of distribution of 8.05 l/kg. Conclusion : The emergence of multi drug resistance (MDR) and extensively drug resistant (XDR) Tuberculosis emphasize the requirement of novel drugs active against tuberculosis. Thus, the need to evaluate physicochemical and pharmacokinetic properties in the early stages of drug discovery is required to reduce the attrition associated with poor drug exposure. In summary, it can be concluded that MCD-017 may be considered a good candidate for further preclinical and clinical evaluations.

Keywords: mycobacterium tuberculosis, pharmacokinetics, physicochemical properties, hepatotoxicity

Procedia PDF Downloads 460
29273 Prospects of Acellular Organ Scaffolds for Drug Discovery

Authors: Inna Kornienko, Svetlana Guryeva, Natalia Danilova, Elena Petersen

Abstract:

Drug toxicity often goes undetected until clinical trials, the most expensive and dangerous phase of drug development. Both human cell culture and animal studies have limitations that cannot be overcome by improvements in drug testing protocols. Tissue engineering is an emerging alternative approach to creating models of human malignant tumors for experimental oncology, personalized medicine, and drug discovery studies. This new generation of bioengineered tumors provides an opportunity to control and explore the role of every component of the model system including cell populations, supportive scaffolds, and signaling molecules. An area that could greatly benefit from these models is cancer research. Recent advances in tissue engineering demonstrated that decellularized tissue is an excellent scaffold for tissue engineering. Decellularization of donor organs such as heart, liver, and lung can provide an acellular, naturally occurring three-dimensional biologic scaffold material that can then be seeded with selected cell populations. Preliminary studies in animal models have provided encouraging results for the proof of concept. Decellularized Organs preserve organ microenvironment, which is critical for cancer metastasis. Utilizing 3D tumor models results greater proximity of cell culture morphological characteristics in a model to its in vivo counterpart, allows more accurate simulation of the processes within a functioning tumor and its pathogenesis. 3D models allow study of migration processes and cell proliferation with higher reliability as well. Moreover, cancer cells in a 3D model bear closer resemblance to living conditions in terms of gene expression, cell surface receptor expression, and signaling. 2D cell monolayers do not provide the geometrical and mechanical cues of tissues in vivo and are, therefore, not suitable to accurately predict the responses of living organisms. 3D models can provide several levels of complexity from simple monocultures of cancer cell lines in liquid environment comprised of oxygen and nutrient gradients and cell-cell interaction to more advanced models, which include co-culturing with other cell types, such as endothelial and immune cells. Following this reasoning, spheroids cultivated from one or multiple patient-derived cell lines can be utilized to seed the matrix rather than monolayer cells. This approach furthers the progress towards personalized medicine. As an initial step to create a new ex vivo tissue engineered model of a cancer tumor, optimized protocols have been designed to obtain organ-specific acellular matrices and evaluate their potential as tissue engineered scaffolds for cultures of normal and tumor cells. Decellularized biomatrix was prepared from animals’ kidneys, urethra, lungs, heart, and liver by two decellularization methods: perfusion in a bioreactor system and immersion-agitation on an orbital shaker with the use of various detergents (SDS, Triton X-100) in different concentrations and freezing. Acellular scaffolds and tissue engineered constructs have been characterized and compared using morphological methods. Models using decellularized matrix have certain advantages, such as maintaining native extracellular matrix properties and biomimetic microenvironment for cancer cells; compatibility with multiple cell types for cell culture and drug screening; utilization to culture patient-derived cells in vitro to evaluate different anticancer therapeutics for developing personalized medicines.

Keywords: 3D models, decellularization, drug discovery, drug toxicity, scaffolds, spheroids, tissue engineering

Procedia PDF Downloads 301
29272 Transcriptomics Analysis on Comparing Non-Small Cell Lung Cancer versus Normal Lung, and Early Stage Compared versus Late-Stages of Non-Small Cell Lung Cancer

Authors: Achitphol Chookaew, Paramee Thongsukhsai, Patamarerk Engsontia, Narongwit Nakwan, Pritsana Raugrut

Abstract:

Lung cancer is one of the most common malignancies and primary cause of death due to cancer worldwide. Non-small cell lung cancer (NSCLC) is the main subtype in which majority of patients present with advanced-stage disease. Herein, we analyzed differentially expressed genes to find potential biomarkers for lung cancer diagnosis as well as prognostic markers. We used transcriptome data from our 2 NSCLC patients and public data (GSE81089) composing of 8 NSCLC and 10 normal lung tissues. Differentially expressed genes (DEGs) between NSCLC and normal tissue and between early-stage and late-stage NSCLC were analyzed by the DESeq2. Pairwise correlation was used to find the DEGs with false discovery rate (FDR) adjusted p-value £ 0.05 and |log2 fold change| ³ 4 for NSCLC versus normal and FDR adjusted p-value £ 0.05 with |log2 fold change| ³ 2 for early versus late-stage NSCLC. Bioinformatic tools were used for functional and pathway analysis. Moreover, the top ten genes in each comparison group were verified the expression and survival analysis via GEPIA. We found 150 up-regulated and 45 down-regulated genes in NSCLC compared to normal tissues. Many immnunoglobulin-related genes e.g., IGHV4-4, IGHV5-10-1, IGHV4-31, IGHV4-61, and IGHV1-69D were significantly up-regulated. 22 genes were up-regulated, and five genes were down-regulated in late-stage compared to early-stage NSCLC. The top five DEGs genes were KRT6B, SPRR1A, KRT13, KRT6A and KRT5. Keratin 6B (KRT6B) was the most significantly increased gene in the late-stage NSCLC. From GEPIA analysis, we concluded that IGHV4-31 and IGKV1-9 might be used as diagnostic biomarkers, while KRT6B and KRT6A might be used as prognostic biomarkers. However, further clinical validation is needed.

Keywords: differentially expressed genes, early and late-stages, gene ontology, non-small cell lung cancer transcriptomics

Procedia PDF Downloads 118
29271 Design of Circular Patch Antenna in Terahertz Band for Medical Applications

Authors: Moulfi Bouchra, Ferouani Souheyla, Ziani Kerarti Djalal, Moulessehoul Wassila

Abstract:

The wireless body network (WBAN) is the most interesting network these days and especially with the appearance of contagious illnesses such as covid 19, which require surveillance in the house. In this article, we have designed a circular microstrip antenna. Gold is the material used respectively for the patch and the ground plane and Gallium (εr=12.94) is chosen as the dielectric substrate. The dimensions of the antenna are 82.10*62.84 μm2 operating at a frequency of 3.85 THz. The proposed, designed antenna has a return loss of -46.046 dB and a gain of 3.74 dBi, and it can measure various physiological parameters and sensors that help in the overall monitoring of an individual's health condition.

Keywords: circular patch antenna, Terahertz transmission, WBAN applications, real-time monitoring

Procedia PDF Downloads 308
29270 Motion of an Infinitesimal Particle in Binary Stellar Systems: Kepler-34, Kepler-35, Kepler-16, Kepler-413

Authors: Rajib Mia, Badam Singh Kushvah

Abstract:

The present research was motivated by the recent discovery of the binary star systems. In this paper, we use the restricted three-body problem in the binary stellar systems, considering photogravitational effects of both the stars. The aim of this study is to investigate the motion of the infinitesimal mass in the vicinity of the Lagrangian points. The stability and periodic orbits of collinear points and the stability and trajectories of the triangular points are studied in stellar binary systems Kepler-34, Kepler-35, Kepler-413 and Kepler-16 systems. A detailed comparison is made among periodic orbits and trajectories.

Keywords: exoplanetary systems, lagrangian points, periodic orbit, restricted three body problem, stability

Procedia PDF Downloads 436
29269 Hexahydropyrimidine-2,4-Diones: Synthesis and Cytotoxic Activity

Authors: M. Koksal, T. Ozyazici, E. Gurdal, M. Yarım, E. Demirpolat, M. B. Y. Aycan

Abstract:

The discovery of new drugs in cancer chemotherapy is still a major topic because of severe side effects, selectivity problems and resistance development potential of existing drugs. In recent years, combined anticancer therapies or multi-acting drugs are clinically preferred over traditional cytotoxic treatment, with the aim of avoiding resistance and toxic side effects. Arrangement of multi-acting targets can be carried out either by combination of several drugs with different mechanisms or by usage of a single chemical compound capable of regulating several targets of a disease with multiple factors. In literature, several pyrimidine and piperazine derivatives have been involved in the structure of many compounds which have been used as chemotherapeutic agents along with wide clinical applications. The aim of this study is to combine pyrimidine and piperazine core structures to research and develop novel piperazinylpyrimidine derivatives with selective cytotoxicity over cancer cells. In this study, a group of novel 6-fluorophenyl-3-[2-(substitutedpiperazinyl)ethyl] hexahydropyrimidine-2,4-dione derivatives designed to observe the desired anticancer activity due to pyrimidine and piperazine based scaffolds. Target compounds were obtained by the reaction of appropriate piperazine derivatives and 6-(2/4-fluorophenyl)-3-(2-chloroethyl)hexahydropyrimidine-2,4-dione. The synthetic pathway of 6-(2/4-fluorophenyl)-3-(2-chloroethyl)hexahydropyrimidine-2,4-dione was started with Rodionov reaction using aldehyde, malonic acid and ammonium acetate in ethanol. Isolated β-fluorophenyl-β-amino acids were treated with 2-chloroethylisocyanate in the presence of an aqueous sodium hydroxide solution at room temperature to yield the sodium salts of the corresponding ureido acids. By addition of a mineral acid, ureido acids were precipitated. Later, these ureido acids were refluxed in thionyl chloride to give the 6-(2/4-fluorophenyl)-3-(2-chloroethyl)hexahydropyrimidine-2,4-di-one which were furthermore treated with secondary amines. Structures of purified compounds were characterized with IR, 1H-NMR, 13C-NMR, mass spectroscopies and elemental analysis. All of the compounds gave satisfactory analytical and spectroscopic data, which were in full accordance with their depicted structures. In IR spectra of the compounds, N-H group was seen at 3230-3213 cm⁻¹. C-H was seen at 3100-2820 cm⁻¹ and C=O vibrational peaks were observed approximately at 1725 and 1665 cm⁻¹ in accordance with literature. In the NMR spectra of target compounds, the methylene protons of piperazine give two separate multiplet peaks around 3.5 and 4.5 ppm representing the successful N-alkylation of the structure. The cytotoxic activity of the synthesized compounds was investigated on human bronchial epithelial (BEAS 2B), lung (A549), colon adenocarcinoma (COLO205) and breast (MCF7) cell lines, by means of sulphorhodamine B (SRB) assays in triplicate. IC₅₀ values of the screened derivatives were found in range of 11.8-78 µM. This project was supported by The Scientific and Technological Research Council of Turkey (TUBITAK, Project no: 215S157).

Keywords: cytotoxicity, hexahydropyrimidine, piperazine, sulphorhodamine B assay

Procedia PDF Downloads 154
29268 Access Control System for Big Data Application

Authors: Winfred Okoe Addy, Jean Jacques Dominique Beraud

Abstract:

Access control systems (ACs) are some of the most important components in safety areas. Inaccuracies of regulatory frameworks make personal policies and remedies more appropriate than standard models or protocols. This problem is exacerbated by the increasing complexity of software, such as integrated Big Data (BD) software for controlling large volumes of encrypted data and resources embedded in a dedicated BD production system. This paper proposes a general access control strategy system for the diffusion of Big Data domains since it is crucial to secure the data provided to data consumers (DC). We presented a general access control circulation strategy for the Big Data domain by describing the benefit of using designated access control for BD units and performance and taking into consideration the need for BD and AC system. We then presented a generic of Big Data access control system to improve the dissemination of Big Data.

Keywords: access control, security, Big Data, domain

Procedia PDF Downloads 137
29267 Design of Bacterial Pathogens Identification System Based on Scattering of Laser Beam Light and Classification of Binned Plots

Authors: Mubashir Hussain, Mu Lv, Xiaohan Dong, Zhiyang Li, Bin Liu, Nongyue He

Abstract:

Detection and classification of microbes have a vast range of applications in biomedical engineering especially in detection, characterization, and quantification of bacterial contaminants. For identification of pathogens, different techniques are emerging in the field of biomedical engineering. Latest technology uses light scattering, capable of identifying different pathogens without any need for biochemical processing. Bacterial Pathogens Identification System (BPIS) which uses a laser beam, passes through the sample and light scatters off. An assembly of photodetectors surrounded by the sample at different angles to detect the scattering of light. The algorithm of the system consists of two parts: (a) Library files, and (b) Comparator. Library files contain data of known species of bacterial microbes in the form of binned plots, while comparator compares data of unknown sample with library files. Using collected data of unknown bacterial species, highest voltage values stored in the form of peaks and arranged in 3D histograms to find the frequency of occurrence. Resulting data compared with library files of known bacterial species. If sample data matching with any library file of known bacterial species, sample identified as a matched microbe. An experiment performed to identify three different bacteria particles: Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli. By applying algorithm using library files of given samples, results were compromising. This system is potentially applicable to several biomedical areas, especially those related to cell morphology.

Keywords: microbial identification, laser scattering, peak identification, binned plots classification

Procedia PDF Downloads 152
29266 Physics-Informed Machine Learning for Displacement Estimation in Solid Mechanics Problem

Authors: Feng Yang

Abstract:

Machine learning (ML), especially deep learning (DL), has been extensively applied to many applications in recently years and gained great success in solving different problems, including scientific problems. However, conventional ML/DL methodologies are purely data-driven which have the limitations, such as need of ample amount of labelled training data, lack of consistency to physical principles, and lack of generalizability to new problems/domains. Recently, there is a growing consensus that ML models need to further take advantage of prior knowledge to deal with these limitations. Physics-informed machine learning, aiming at integration of physics/domain knowledge into ML, has been recognized as an emerging area of research, especially in the recent 2 to 3 years. In this work, physics-informed ML, specifically physics-informed neural network (NN), is employed and implemented to estimate the displacements at x, y, z directions in a solid mechanics problem that is controlled by equilibrium equations with boundary conditions. By incorporating the physics (i.e. the equilibrium equations) into the learning process of NN, it is showed that the NN can be trained very efficiently with a small set of labelled training data. Experiments with different settings of the NN model and the amount of labelled training data were conducted, and the results show that very high accuracy can be achieved in fulfilling the equilibrium equations as well as in predicting the displacements, e.g. in setting the overall displacement of 0.1, a root mean square error (RMSE) of 2.09 × 10−4 was achieved.

Keywords: deep learning, neural network, physics-informed machine learning, solid mechanics

Procedia PDF Downloads 152
29265 Constructing a Probabilistic Ontology from a DBLP Data

Authors: Emna Hlel, Salma Jamousi, Abdelmajid Ben Hamadou

Abstract:

Every model for knowledge representation to model real-world applications must be able to cope with the effects of uncertain phenomena. One of main defects of classical ontology is its inability to represent and reason with uncertainty. To remedy this defect, we try to propose a method to construct probabilistic ontology for integrating uncertain information in an ontology modeling a set of basic publications DBLP (Digital Bibliography & Library Project) using a probabilistic model.

Keywords: classical ontology, probabilistic ontology, uncertainty, Bayesian network

Procedia PDF Downloads 350
29264 Treatment and Diagnostic Imaging Methods of Fetal Heart Function in Radiology

Authors: Mahdi Farajzadeh Ajirlou

Abstract:

Prior evidence of normal cardiac anatomy is desirable to relieve the anxiety of cases with a family history of congenital heart disease or to offer the option of early gestation termination or close follow-up should a cardiac anomaly be proved. Fetal heart discovery plays an important part in the opinion of the fetus, and it can reflect the fetal heart function of the fetus, which is regulated by the central nervous system. Acquisition of ventricular volume and inflow data would be useful to quantify more valve regurgitation and ventricular function to determine the degree of cardiovascular concession in fetal conditions at threat for hydrops fetalis. This study discusses imaging the fetal heart with transvaginal ultrasound, Doppler ultrasound, three-dimensional ultrasound (3DUS) and four-dimensional (4D) ultrasound, spatiotemporal image correlation (STIC), glamorous resonance imaging and cardiac catheterization. Doppler ultrasound (DUS) image is a kind of real- time image with a better imaging effect on blood vessels and soft tissues. DUS imaging can observe the shape of the fetus, but it cannot show whether the fetus is hypoxic or distressed. Spatiotemporal image correlation (STIC) enables the acquisition of a volume of data concomitant with the beating heart. The automated volume accession is made possible by the array in the transducer performing a slow single reach, recording a single 3D data set conforming to numerous 2D frames one behind the other. The volume accession can be done in a stationary 3D, either online 4D (direct volume scan, live 3D ultrasound or a so-called 4D (3D/ 4D)), or either spatiotemporal image correlation-STIC (off-line 4D, which is a circular volume check-up). Fetal cardiovascular MRI would appear to be an ideal approach to the noninvasive disquisition of the impact of abnormal cardiovascular hemodynamics on antenatal brain growth and development. Still, there are practical limitations to the use of conventional MRI for fetal cardiovascular assessment, including the small size and high heart rate of the mortal fetus, the lack of conventional cardiac gating styles to attend data accession, and the implicit corruption of MRI data due to motherly respiration and unpredictable fetal movements. Fetal cardiac MRI has the implicit to complement ultrasound in detecting cardiovascular deformations and extracardiac lesions. Fetal cardiac intervention (FCI), minimally invasive catheter interventions, is a new and evolving fashion that allows for in-utero treatment of a subset of severe forms of congenital heart deficiency. In special cases, it may be possible to modify the natural history of congenital heart disorders. It's entirely possible that future generations will ‘repair’ congenital heart deficiency in utero using nanotechnologies or remote computer-guided micro-robots that work in the cellular layer.

Keywords: fetal, cardiac MRI, ultrasound, 3D, 4D, heart disease, invasive, noninvasive, catheter

Procedia PDF Downloads 44
29263 Tuning Nanomechanical Properties of Stimuli-Responsive Hydrogel Nanocomposite Thin Films for Biomedical Applications

Authors: Mallikarjunachari Gangapuram

Abstract:

The design of stimuli-responsive hydrogel nanocomposite thin films is gaining significant attention in these days due to its wide variety of applications. Soft microrobots, drug delivery, biosensors, regenerative medicine, bacterial adhesion, energy storage and wound dressing are few advanced applications in different fields. In this research work, the nanomechanical properties of composite thin films of 20 microns were tuned by applying homogeneous external DC, and AC magnetic fields of magnitudes 0.05 T and 0.1 T. Polyvinyl alcohol (PVA) used as a matrix material and elliptical hematite nanoparticles (ratio of the length of the major axis to the length of the minor axis is 140.59 ± 1.072 nm/52.84 ± 1.072 nm) used as filler materials to prepare the nanocomposite thin films. Both quasi-static nanoindentation, Nano Dynamic Mechanical Analysis (Nano-DMA) tests were performed to characterize the viscoelastic properties of PVA, PVA+Hematite (0.1% wt, 2% wt and 4% wt) nanocomposites. Different properties such as storage modulus, loss modulus, hardness, and Er/H were carefully analyzed. The increase in storage modulus, hardness, Er/H and a decrease in loss modulus were observed with increasing concentration and DC magnetic field followed by AC magnetic field. Contact angle and ATR-FTIR experiments were conducted to understand the molecular mechanisms such as hydrogen bond formation, crosslinking density, and particle-particle interactions. This systematic study is helpful in design and modeling of magnetic responsive hydrogel nanocomposite thin films for biomedical applications.

Keywords: hematite, hydrogel, nanoindentation, nano-DMA

Procedia PDF Downloads 195
29262 Artificial Intelligence Aided Improvement in Canada's Supply Chain Management

Authors: Mohammad Talebi

Abstract:

Supply chain administration could be a concern for all the countries within the world, whereas there's no special approach towards supportability. Generally, for one decade, manufactured insights applications in keen supply chains have found a key part. In this paper, applications of artificial intelligence in supply chain management have been clarified, and towards Canadian plans for smart supply chain management (SCM), a few notes have been suggested. A hierarchical framework for smart SCM might provide a great roadmap for decision-makers to find the most appropriate approach toward smart SCM. Within the system of decision-making, all the levels included in the accomplishment of smart SCM are included. In any case, more considerations are got to be paid to available and needed infrastructures.

Keywords: smart SCM, AI, SSCM, procurement

Procedia PDF Downloads 90
29261 Rapid Building Detection in Population-Dense Regions with Overfitted Machine Learning Models

Authors: V. Mantey, N. Findlay, I. Maddox

Abstract:

The quality and quantity of global satellite data have been increasing exponentially in recent years as spaceborne systems become more affordable and the sensors themselves become more sophisticated. This is a valuable resource for many applications, including disaster management and relief. However, while more information can be valuable, the volume of data available is impossible to manually examine. Therefore, the question becomes how to extract as much information as possible from the data with limited manpower. Buildings are a key feature of interest in satellite imagery with applications including telecommunications, population models, and disaster relief. Machine learning tools are fast becoming one of the key resources to solve this problem, and models have been developed to detect buildings in optical satellite imagery. However, by and large, most models focus on affluent regions where buildings are generally larger and constructed further apart. This work is focused on the more difficult problem of detection in populated regions. The primary challenge with detecting small buildings in densely populated regions is both the spatial and spectral resolution of the optical sensor. Densely packed buildings with similar construction materials will be difficult to separate due to a similarity in color and because the physical separation between structures is either non-existent or smaller than the spatial resolution. This study finds that training models until they are overfitting the input sample can perform better in these areas than a more robust, generalized model. An overfitted model takes less time to fine-tune from a generalized pre-trained model and requires fewer input data. The model developed for this study has also been fine-tuned using existing, open-source, building vector datasets. This is particularly valuable in the context of disaster relief, where information is required in a very short time span. Leveraging existing datasets means that little to no manpower or time is required to collect data in the region of interest. The training period itself is also shorter for smaller datasets. Requiring less data means that only a few quality areas are necessary, and so any weaknesses or underpopulated regions in the data can be skipped over in favor of areas with higher quality vectors. In this study, a landcover classification model was developed in conjunction with the building detection tool to provide a secondary source to quality check the detected buildings. This has greatly reduced the false positive rate. The proposed methodologies have been implemented and integrated into a configurable production environment and have been employed for a number of large-scale commercial projects, including continent-wide DEM production, where the extracted building footprints are being used to enhance digital elevation models. Overfitted machine learning models are often considered too specific to have any predictive capacity. However, this study demonstrates that, in cases where input data is scarce, overfitted models can be judiciously applied to solve time-sensitive problems.

Keywords: building detection, disaster relief, mask-RCNN, satellite mapping

Procedia PDF Downloads 172
29260 A Data Envelopment Analysis Model in a Multi-Objective Optimization with Fuzzy Environment

Authors: Michael Gidey Gebru

Abstract:

Most of Data Envelopment Analysis models operate in a static environment with input and output parameters that are chosen by deterministic data. However, due to ambiguity brought on shifting market conditions, input and output data are not always precisely gathered in real-world scenarios. Fuzzy numbers can be used to address this kind of ambiguity in input and output data. Therefore, this work aims to expand crisp Data Envelopment Analysis into Data Envelopment Analysis with fuzzy environment. In this study, the input and output data are regarded as fuzzy triangular numbers. Then, the Data Envelopment Analysis model with fuzzy environment is solved using a multi-objective method to gauge the Decision Making Units' efficiency. Finally, the developed Data Envelopment Analysis model is illustrated with an application on real data 50 educational institutions.

Keywords: efficiency, Data Envelopment Analysis, fuzzy, higher education, input, output

Procedia PDF Downloads 65
29259 The Views of Teachers over the Father Involvement to Preschool Education Programs

Authors: Fatma Tezel Sahin, Zeynep Nur Aydin Kilic, Aysegul Akinci Cosgun

Abstract:

Family involvement activities are a significant place in increasing the success in preschool education and maintaining the education. It is necessary that both of the parents be in the family involvement activities. However, while mother involvement is obtained in the family involvement activities, father involvement is neglected. For that reason, the current study aims at determining the views of teachers with regard to father involvement in the preschool education programs. The working group of the study consisted of 23 preschool teachers. The study is a descriptive survey. The data were obtained through individual interviews. As a data collection instrument, “Teacher Interview Form” was used. The data were analysed through content analysis method. The data regarding the views of the teachers were given as frequency and percentage values. At the end of the research, a great majority of the teachers stated that they were proficient in applying family involvement studies. They also pointed out that they held more family meetings in order to obtain family involvement and then they implemented involvement activities both in the class and out of the class for parents. They expressed that they observed more mother involvement in these activities that fathers. Parents expressed that the reasons why fathers involved in these activities less compared to mothers were the working conditions of fathers and that it was regarded as a task of mothers. Depending on the results of the research, it is likely to recommend that fathers should be informed about the involvement in family activities and that some applications and opportunities should be supplied for the fathers in preschool education institutions in order to encourage them.

Keywords: preschool education, parent involvement, father involvement, teacher views

Procedia PDF Downloads 329
29258 Manganese Contamination Exacerbates Reproductive Stress in a Suicidally-Breeding Marsupial

Authors: Ami Fadhillah Amir Abdul Nasir, Amanda C. Niehaus, Skye F. Cameron, Frank A. Von Hippel, John Postlethwait​, Robbie S. Wilson

Abstract:

For suicidal breeders, the physiological stresses and energetic costs of breeding are fatal. Environmental stressors such as pollution should compound these costs, yet suicidal breeding is so rare among mammals that this is unknown. Here, we explored the consequences of metal contamination to the health, aging and performance of endangered, suicidally-breeding northern quolls (Dasyurus hallucatus) living near an active manganese mine on Groote Eylandt, Northern Territory, Australia. We found respirable manganese dust at levels exceeding international recommendations even 20km from mining sites and substantial accumulation of manganese within quolls’ hair, testes, and in two brain regions—the neocortex and cerebellum, responsible for sensory perception and motor function, respectively. Though quolls did not differ in sprint speeds, motor skill, or manoeuvrability, those with higher accumulation of manganese crashed at lower speeds during manoeuvrability tests, indicating a potential effect on sight or cognition. Immune function and telomere length declined over the breeding season, as expected with ageing, but manganese contamination exacerbated immune declines and suppressed cortisol. Unexpectedly, male quolls with higher levels of manganese had longer telomeres, supporting evidence of unusual telomere dynamics among Dasyurids—though whether this affects their lifespan is unknown. We posit that sublethal contamination via pollution, mining, or urbanisation imposes physiological costs on wildlife that may diminish reproductive success or survival.

Keywords: ecotoxicology, heavy metal, manganese, telomere length, cortisol, locomotor

Procedia PDF Downloads 321
29257 The Role and Impact of Cold Spray Technology on Surface Engineering

Authors: Ionel Botef

Abstract:

Studies show that, for viable product realisation and maintenance, a spectrum of novel processing technologies and materials to improve performance and reduce costs and environmental impact must constantly be addressed. One of these technologies, namely the cold spray process, has enabled a broad range of coatings and applications, including many that have not been previously possible or commercially practical, hence its potential for new aerospace, electronics, or medical applications. Therefore, the purpose of this paper is to summarise the state of the art of this technology alongside its theoretical and experimental studies, and explore the role and impact of cold spraying on surface engineering.

Keywords: surface engineering, cold spray, ageing aircrafts, corrosion, microchannels, maintenance

Procedia PDF Downloads 606
29256 Transverse Testicular Ectopia: A Case Report with Review of Literature

Authors: Rida Ahmad, Areej S. Habib, Sohail A. Dogar, Saqib H. Qazi

Abstract:

Transverse testicular ectopia is a rare congenital disorder involving mal descent and mal-positioning of the testes, reported in the medical literature about 300 times. Many theories attempt to explain the failure of the testes to migrate to their correct location. While the age at presentation can vary; most cases present in early adolescents or late adulthood. It is often an incidental discovery made during an operative intervention, most commonly during hernia exploration. It can be isolated or present with a plethora of anomalies. We present the case of a 2-year-old male with transverse testicular ectopia who presented with vague abdominal pain. He was managed successfully with the Modified Ombredanne procedure and good outcome 6 months after the procedure.

Keywords: cryptorchidism, persistent Mullerian duct syndrome, transverse testicular ectopia, testicular mal-descent

Procedia PDF Downloads 344
29255 Review of Hydrologic Applications of Conceptual Models for Precipitation-Runoff Process

Authors: Oluwatosin Olofintoye, Josiah Adeyemo, Gbemileke Shomade

Abstract:

The relationship between rainfall and runoff is an important issue in surface water hydrology therefore the understanding and development of accurate rainfall-runoff models and their applications in water resources planning, management and operation are of paramount importance in hydrological studies. This paper reviews some of the previous works on the rainfall-runoff process modeling. The hydrologic applications of conceptual models and artificial neural networks (ANNs) for the precipitation-runoff process modeling were studied. Gradient training methods such as error back-propagation (BP) and evolutionary algorithms (EAs) are discussed in relation to the training of artificial neural networks and it is shown that application of EAs to artificial neural networks training could be an alternative to other training methods. Therefore, further research interest to exploit the abundant expert knowledge in the area of artificial intelligence for the solution of hydrologic and water resources planning and management problems is needed.

Keywords: artificial intelligence, artificial neural networks, evolutionary algorithms, gradient training method, rainfall-runoff model

Procedia PDF Downloads 457
29254 Energy Efficient Routing Protocol with Ad Hoc On-Demand Distance Vector for MANET

Authors: K. Thamizhmaran, Akshaya Devi Arivazhagan, M. Anitha

Abstract:

On the case of most important systematic issue that must need to be solved in means of implementing a data transmission algorithm on the source of Mobile adhoc networks (MANETs). That is, how to save mobile nodes energy on meeting the requirements of applications or users as the mobile nodes are with battery limited. On while satisfying the energy saving requirement, hence it is also necessary of need to achieve the quality of service. In case of emergency work, it is necessary to deliver the data on mean time. Achieving quality of service in MANETs is also important on while. In order to achieve this requirement, Hence, we further implement the Energy-Aware routing protocol for system of Mobile adhoc networks were it being proposed, that on which saves the energy as on every node by means of efficiently selecting the mode of energy efficient path in the routing process by means of Enhanced AODV routing protocol.

Keywords: Ad-Hoc networks, MANET, routing, AODV, EAODV

Procedia PDF Downloads 373
29253 Understanding Evolutionary Algorithms through Interactive Graphical Applications

Authors: Javier Barrachina, Piedad Garrido, Manuel Fogue, Julio A. Sanguesa, Francisco J. Martinez

Abstract:

It is very common to observe, especially in Computer Science studies that students have difficulties to correctly understand how some mechanisms based on Artificial Intelligence work. In addition, the scope and limitations of most of these mechanisms are usually presented by professors only in a theoretical way, which does not help students to understand them adequately. In this work, we focus on the problems found when teaching Evolutionary Algorithms (EAs), which imitate the principles of natural evolution, as a method to solve parameter optimization problems. Although this kind of algorithms can be very powerful to solve relatively complex problems, students often have difficulties to understand how they work, and how to apply them to solve problems in real cases. In this paper, we present two interactive graphical applications which have been specially designed with the aim of making Evolutionary Algorithms easy to be understood by students. Specifically, we present: (i) TSPS, an application able to solve the ”Traveling Salesman Problem”, and (ii) FotEvol, an application able to reconstruct a given image by using Evolution Strategies. The main objective is that students learn how these techniques can be implemented, and the great possibilities they offer.

Keywords: education, evolutionary algorithms, evolution strategies, interactive learning applications

Procedia PDF Downloads 340
29252 Re-Constructing the Research Design: Dealing with Problems and Re-Establishing the Method in User-Centered Research

Authors: Kerem Rızvanoğlu, Serhat Güney, Emre Kızılkaya, Betül Aydoğan, Ayşegül Boyalı, Onurcan Güden

Abstract:

This study addresses the re-construction and implementation process of the methodological framework developed to evaluate how locative media applications accompany the urban experiences of international students coming to Istanbul with exchange programs in 2022. The research design was built on a three-stage model. The research team conducted a qualitative questionnaire in the first stage to gain exploratory data. These data were then used to form three persona groups representing the sample by applying cluster analysis. In the second phase, a semi-structured digital diary study was carried out on a gamified task list with a sample selected from the persona groups. This stage proved to be the most difficult to obtaining valid data from the participant group. The research team re-evaluated the design of this second phase to reach the participants who will perform the tasks given by the research team while sharing their momentary city experiences, to ensure the daily data flow for two weeks, and to increase the quality of the obtained data. The final stage, which follows to elaborate on the findings, is the “Walk & Talk,” which is completed with face-to-face and in-depth interviews. It has been seen that the multiple methods used in the research process contribute to the depth and data diversity of the research conducted in the context of urban experience and locative technologies. In addition, by adapting the research design to the experiences of the users included in the sample, the differences and similarities between the initial research design and the research applied are shown.

Keywords: digital diary study, gamification, multi-model research, persona analysis, research design for urban experience, user-centered research, “Walk & Talk”

Procedia PDF Downloads 173
29251 The Systems Biology Verification Endeavor: Harness the Power of the Crowd to Address Computational and Biological Challenges

Authors: Stephanie Boue, Nicolas Sierro, Julia Hoeng, Manuel C. Peitsch

Abstract:

Systems biology relies on large numbers of data points and sophisticated methods to extract biologically meaningful signal and mechanistic understanding. For example, analyses of transcriptomics and proteomics data enable to gain insights into the molecular differences in tissues exposed to diverse stimuli or test items. Whereas the interpretation of endpoints specifically measuring a mechanism is relatively straightforward, the interpretation of big data is more complex and would benefit from comparing results obtained with diverse analysis methods. The sbv IMPROVER project was created to implement solutions to verify systems biology data, methods, and conclusions. Computational challenges leveraging the wisdom of the crowd allow benchmarking methods for specific tasks, such as signature extraction and/or samples classification. Four challenges have already been successfully conducted and confirmed that the aggregation of predictions often leads to better results than individual predictions and that methods perform best in specific contexts. Whenever the scientific question of interest does not have a gold standard, but may greatly benefit from the scientific community to come together and discuss their approaches and results, datathons are set up. The inaugural sbv IMPROVER datathon was held in Singapore on 23-24 September 2016. It allowed bioinformaticians and data scientists to consolidate their ideas and work on the most promising methods as teams, after having initially reflected on the problem on their own. The outcome is a set of visualization and analysis methods that will be shared with the scientific community via the Garuda platform, an open connectivity platform that provides a framework to navigate through different applications, databases and services in biology and medicine. We will present the results we obtained when analyzing data with our network-based method, and introduce a datathon that will take place in Japan to encourage the analysis of the same datasets with other methods to allow for the consolidation of conclusions.

Keywords: big data interpretation, datathon, systems toxicology, verification

Procedia PDF Downloads 279