Search results for: well data integration
25239 Efficient Use of Energy through Incorporation of a Gas Turbine in Methanol Plant
Authors: M. Azadi, N. Tahouni, M. H. Panjeshahi
Abstract:
A techno-economic evaluation for efficient use of energy in a large scale industrial plant of methanol is carried out. This assessment is based on integration of a gas turbine with an existing plant of methanol in which the outlet gas products of exothermic reactor is expanded to power generation. Also, it is decided that methanol production rate is constant through addition of power generation system to the existing methanol plant. Having incorporated a gas turbine with the existing plant, the economic results showed total investment of MUSD 16.9, energy saving of 3.6 MUSD/yr with payback period of approximately 4.7 years.Keywords: energy saving, methanol, gas turbine, power generation
Procedia PDF Downloads 46925238 Use of In-line Data Analytics and Empirical Model for Early Fault Detection
Authors: Hyun-Woo Cho
Abstract:
Automatic process monitoring schemes are designed to give early warnings for unusual process events or abnormalities as soon as possible. For this end, various techniques have been developed and utilized in various industrial processes. It includes multivariate statistical methods, representation skills in reduced spaces, kernel-based nonlinear techniques, etc. This work presents a nonlinear empirical monitoring scheme for batch type production processes with incomplete process measurement data. While normal operation data are easy to get, unusual fault data occurs infrequently and thus are difficult to collect. In this work, noise filtering steps are added in order to enhance monitoring performance by eliminating irrelevant information of the data. The performance of the monitoring scheme was demonstrated using batch process data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.Keywords: batch process, monitoring, measurement, kernel method
Procedia PDF Downloads 32325237 The Impact of the General Data Protection Regulation on Human Resources Management in Schools
Authors: Alexandra Aslanidou
Abstract:
The General Data Protection Regulation (GDPR), concerning the protection of natural persons within the European Union with regard to the processing of personal data and on the free movement of such data, became applicable in the European Union (EU) on 25 May 2018 and transformed the way personal data were being treated under the Data Protection Directive (DPD) regime, generating sweeping organizational changes to both public sector and business. A social practice that is considerably influenced in the way of its day-to-day operations is Human Resource (HR) management, for which the importance of GDPR cannot be underestimated. That is because HR processes personal data coming in all shapes and sizes from many different systems and sources. The significance of the proper functioning of an HR department, specifically in human-centered, service-oriented environments such as the education field, is decisive due to the fact that HR operations in schools, conducted effectively, determine the quality of the provided services and consequently have a considerable impact on the success of the educational system. The purpose of this paper is to analyze the decisive role that GDPR plays in HR departments that operate in schools and in order to practically evaluate the aftermath of the Regulation during the first months of its applicability; a comparative use cases analysis in five highly dynamic schools, across three EU Member States, was attempted.Keywords: general data protection regulation, human resource management, educational system
Procedia PDF Downloads 10025236 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data
Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz
Abstract:
In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.Keywords: real-time spatial big data, quality of service, vertical partitioning, horizontal partitioning, matching algorithm, hamming distance, stream query
Procedia PDF Downloads 15725235 A Hybrid Data-Handler Module Based Approach for Prioritization in Quality Function Deployment
Authors: P. Venu, Joeju M. Issac
Abstract:
Quality Function Deployment (QFD) is a systematic technique that creates a platform where the customer responses can be positively converted to design attributes. The accuracy of a QFD process heavily depends on the data that it is handling which is captured from customers or QFD team members. Customized computer programs that perform Quality Function Deployment within a stipulated time have been used by various companies across the globe. These programs heavily rely on storage and retrieval of the data on a common database. This database must act as a perfect source with minimum missing values or error values in order perform actual prioritization. This paper introduces a missing/error data handler module which uses Genetic Algorithm and Fuzzy numbers. The prioritization of customer requirements of sesame oil is illustrated and a comparison is made between proposed data handler module-based deployment and manual deployment.Keywords: hybrid data handler, QFD, prioritization, module-based deployment
Procedia PDF Downloads 29725234 Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study
Authors: Faisal Aburub, Wael Hadi
Abstract:
Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Naïve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation.Keywords: classification, data mining, evaluation measures, groundwater
Procedia PDF Downloads 27925233 Jurisdictional Issues between Competition Law and Data Protection Law in Protection of Privacy of Online Consumers
Authors: Pankhudi Khandelwal
Abstract:
The revenue models of digital giants such as Facebook and Google, use targeted advertising for revenues. Such a model requires huge amounts of consumer data. While the data protection law deals with the protection of personal data, however, this data is acquired by the companies on the basis of consent, performance of a contract, or legitimate interests. This paper analyses the role that competition law can play in evading these loopholes for the protection of data and privacy of online consumers. Digital markets have certain distinctive features such as network effects and feedback loop, which gives incumbents of these markets a first-mover advantage. This creates a situation where the winner takes it all, thus creating entry barriers and concentration in the market. It has been also seen that this dominant position is then used by the undertakings for leveraging in other markets. This can be harmful to the consumers in form of less privacy, less choice, and stifling innovation, as seen in the cases of Facebook Cambridge Analytica, Google Shopping, and Google Android. Therefore, the article aims to provide a legal framework wherein the data protection law and competition law can come together to provide a balance in regulating digital markets. The issue has become more relevant in light of the Facebook decision by German competition authority, where it was held that Facebook had abused its dominant position by not complying with data protection rules, which constituted an exploitative practice. The paper looks into the jurisdictional boundaries that the data protection and competition authorities can work from and suggests ex ante regulation through data protection law and ex post regulation through competition law. It further suggests a change in the consumer welfare standard where harm to privacy should be considered as an indicator of low quality.Keywords: data protection, dominance, ex ante regulation, ex post regulation
Procedia PDF Downloads 18325232 Application of Knowledge Discovery in Database Techniques in Cost Overruns of Construction Projects
Authors: Mai Ghazal, Ahmed Hammad
Abstract:
Cost overruns in construction projects are considered as worldwide challenges since the cost performance is one of the main measures of success along with schedule performance. To overcome this problem, studies were conducted to investigate the cost overruns' factors, also projects' historical data were analyzed to extract new and useful knowledge from it. This research is studying and analyzing the effect of some factors causing cost overruns using the historical data from completed construction projects. Then, using these factors to estimate the probability of cost overrun occurrence and predict its percentage for future projects. First, an intensive literature review was done to study all the factors that cause cost overrun in construction projects, then another review was done for previous researcher papers about mining process in dealing with cost overruns. Second, a proposed data warehouse was structured which can be used by organizations to store their future data in a well-organized way so it can be easily analyzed later. Third twelve quantitative factors which their data are frequently available at construction projects were selected to be the analyzed factors and suggested predictors for the proposed model.Keywords: construction management, construction projects, cost overrun, cost performance, data mining, data warehousing, knowledge discovery, knowledge management
Procedia PDF Downloads 37025231 Sampling Error and Its Implication for Capture Fisheries Management in Ghana
Authors: Temiloluwa J. Akinyemi, Denis W. Aheto, Wisdom Akpalu
Abstract:
Capture fisheries in developing countries provide significant animal protein and directly supports the livelihoods of several communities. However, the misperception of biophysical dynamics owing to a lack of adequate scientific data has contributed to the suboptimal management in marine capture fisheries. This is because yield and catch potentials are sensitive to the quality of catch and effort data. Yet, studies on fisheries data collection practices in developing countries are hard to find. This study investigates the data collection methods utilized by fisheries technical officers within the four fishing regions of Ghana. We found that the officers employed data collection and sampling procedures which were not consistent with the technical guidelines curated by FAO. For example, 50 instead of 166 landing sites were sampled, while 290 instead of 372 canoes were sampled. We argue that such sampling errors could result in the over-capitalization of capture fish stocks and significant losses in resource rents.Keywords: Fisheries data quality, fisheries management, Ghana, Sustainable Fisheries
Procedia PDF Downloads 9225230 Improvement of Data Transfer over Simple Object Access Protocol (SOAP)
Authors: Khaled Ahmed Kadouh, Kamal Ali Albashiri
Abstract:
This paper presents a designed algorithm involves improvement of transferring data over Simple Object Access Protocol (SOAP). The aim of this work is to establish whether using SOAP in exchanging XML messages has any added advantages or not. The results showed that XML messages without SOAP take longer time and consume more memory, especially with binary data.Keywords: JAX-WS, SMTP, SOAP, web service, XML
Procedia PDF Downloads 49525229 Enhancing Healthcare Data Protection and Security
Authors: Joseph Udofia, Isaac Olufadewa
Abstract:
Everyday, the size of Electronic Health Records data keeps increasing as new patients visit health practitioner and returning patients fulfil their appointments. As these data grow, so is their susceptibility to cyber-attacks from criminals waiting to exploit this data. In the US, the damages for cyberattacks were estimated at $8 billion (2018), $11.5 billion (2019) and $20 billion (2021). These attacks usually involve the exposure of PII. Health data is considered PII, and its exposure carry significant impact. To this end, an enhancement of Health Policy and Standards in relation to data security, especially among patients and their clinical providers, is critical to ensure ethical practices, confidentiality, and trust in the healthcare system. As Clinical accelerators and applications that contain user data are used, it is expedient to have a review and revamp of policies like the Payment Card Industry Data Security Standard (PCI DSS), the Health Insurance Portability and Accountability Act (HIPAA), the Fast Healthcare Interoperability Resources (FHIR), all aimed to ensure data protection and security in healthcare. FHIR caters for healthcare data interoperability, FHIR caters to healthcare data interoperability, as data is being shared across different systems from customers to health insurance and care providers. The astronomical cost of implementation has deterred players in the space from ensuring compliance, leading to susceptibility to data exfiltration and data loss on the security accuracy of protected health information (PHI). Though HIPAA hones in on the security accuracy of protected health information (PHI) and PCI DSS on the security of payment card data, they intersect with the shared goal of protecting sensitive information in line with industry standards. With advancements in tech and the emergence of new technology, it is necessary to revamp these policies to address the complexity and ambiguity, cost barrier, and ever-increasing threats in cyberspace. Healthcare data in the wrong hands is a recipe for disaster, and we must enhance its protection and security to protect the mental health of the current and future generations.Keywords: cloud security, healthcare, cybersecurity, policy and standard
Procedia PDF Downloads 9025228 Analyzing Global User Sentiments on Laptop Features: A Comparative Study of Preferences Across Economic Contexts
Authors: Mohammadreza Bakhtiari, Mehrdad Maghsoudi, Hamidreza Bakhtiari
Abstract:
The widespread adoption of laptops has become essential to modern lifestyles, supporting work, education, and entertainment. Social media platforms have emerged as key spaces where users share real-time feedback on laptop performance, providing a valuable source of data for understanding consumer preferences. This study leverages aspect-based sentiment analysis (ABSA) on 1.5 million tweets to examine how users from developed and developing countries perceive and prioritize 16 key laptop features. The analysis reveals that consumers in developing countries express higher satisfaction overall, emphasizing affordability, durability, and reliability. Conversely, users in developed countries demonstrate more critical attitudes, especially toward performance-related aspects such as cooling systems, battery life, and chargers. The study employs a mixed-methods approach, combining ABSA using the PyABSA framework with expert insights gathered through a Delphi panel of ten industry professionals. Data preprocessing included cleaning, filtering, and aspect extraction from tweets. Universal issues such as battery efficiency and fan performance were identified, reflecting shared challenges across markets. However, priorities diverge between regions, while users in developed countries demand high-performance models with advanced features, those in developing countries seek products that offer strong value for money and long-term durability. The findings suggest that laptop manufacturers should adopt a market-specific strategy by developing differentiated product lines. For developed markets, the focus should be on cutting-edge technologies, enhanced cooling solutions, and comprehensive warranty services. In developing markets, emphasis should be placed on affordability, versatile port options, and robust designs. Additionally, the study highlights the importance of universal charging solutions and continuous sentiment monitoring to adapt to evolving consumer needs. This research offers practical insights for manufacturers seeking to optimize product development and marketing strategies for global markets, ensuring enhanced user satisfaction and long-term competitiveness. Future studies could explore multi-source data integration and conduct longitudinal analyses to capture changing trends over time.Keywords: consumer behavior, durability, laptop industry, sentiment analysis, social media analytics
Procedia PDF Downloads 1525227 Channels Splitting Strategy for Optical Local Area Networks of Passive Star Topology
Authors: Peristera Baziana
Abstract:
In this paper, we present a network configuration for a WDM LANs of passive star topology that assume that the set of data WDM channels is split into two separate sets of channels, with different access rights over them. Especially, a synchronous transmission WDMA access algorithm is adopted in order to increase the probability of successful transmission over the data channels and consequently to reduce the probability of data packets transmission cancellation in order to avoid the data channels collisions. Thus, a control pre-transmission access scheme is followed over a separate control channel. An analytical Markovian model is studied and the average throughput is mathematically derived. The performance is studied for several numbers of data channels and various values of control phase duration.Keywords: access algorithm, channels division, collisions avoidance, wavelength division multiplexing
Procedia PDF Downloads 29625226 Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Mixed Integration Method: Stability Aspects and Computational Efficiency
Authors: Nicolò Vaiana, Filip C. Filippou, Giorgio Serino
Abstract:
In order to reduce numerical computations in the nonlinear dynamic analysis of seismically base-isolated structures, a Mixed Explicit-Implicit time integration Method (MEIM) has been proposed. Adopting the explicit conditionally stable central difference method to compute the nonlinear response of the base isolation system, and the implicit unconditionally stable Newmark’s constant average acceleration method to determine the superstructure linear response, the proposed MEIM, which is conditionally stable due to the use of the central difference method, allows to avoid the iterative procedure generally required by conventional monolithic solution approaches within each time step of the analysis. The main aim of this paper is to investigate the stability and computational efficiency of the MEIM when employed to perform the nonlinear time history analysis of base-isolated structures with sliding bearings. Indeed, in this case, the critical time step could become smaller than the one used to define accurately the earthquake excitation due to the very high initial stiffness values of such devices. The numerical results obtained from nonlinear dynamic analyses of a base-isolated structure with a friction pendulum bearing system, performed by using the proposed MEIM, are compared to those obtained adopting a conventional monolithic solution approach, i.e. the implicit unconditionally stable Newmark’s constant acceleration method employed in conjunction with the iterative pseudo-force procedure. According to the numerical results, in the presented numerical application, the MEIM does not have stability problems being the critical time step larger than the ground acceleration one despite of the high initial stiffness of the friction pendulum bearings. In addition, compared to the conventional monolithic solution approach, the proposed algorithm preserves its computational efficiency even when it is adopted to perform the nonlinear dynamic analysis using a smaller time step.Keywords: base isolation, computational efficiency, mixed explicit-implicit method, partitioned solution approach, stability
Procedia PDF Downloads 27825225 Measuring the Effect of Continuous Performance Test-3 Administration on Regional Cerebral Blood Flow with Single-Photon Emission Computed Tomography in Adult ADHD
Authors: Claire Stafford, Charles Golden, Daniel Amen, Kristen Willeumier
Abstract:
The aim of this study is to investigate the effect of the administration of the Conners Continuous Performance Test (CPT-3) on cerebral blood flow (CBF) in adults with ADHD. The data for this study was derived from a large SPECT database. Participants in the ADHD group (n=81, Mage=37.97) were similar to those in the healthy control group (n=8503, Mage=41.86). All participants were assessed for cerebral blood flow levels before and after CPT-3 administration. Both age and gender were considered covariates. Multiple 2-by-2 ANCOVAs with repeated measures were conducted with sphericity assumed. The main effects of CPT-3 administration on CBF levels were significant in the left and right side of the frontal and occipital, and right temporal lobe. The main effects of ADHD diagnosis were significant in all brain areas assessed. The interaction between CPT-3 administration and ADHD diagnosis was significant in the left and right side of the limbic system, basal ganglia, the frontal lobe, and occipital lobe. Post hoc tests with a Bonferroni adjustment revealed that CBF levels increased following CPT-3 administration but less so in the ADHD group. Individuals had higher levels of CBF following the administration of CPT-3. Due to a significant interaction, we can infer that ADHD diagnosis changes the effect of CPT-3 administration on CBF levels. This is consistent with our hypothesis considering that CPT-3 is a test of sustained attention, a common challenge for children with ADHD. The aforementioned interaction was not found to be significant in the parietal lobe. This may be due to the nature of CPT- 3 which does not require an integration of sensory information.Keywords: SPECT, ADHD, conners continuous performance test, cerebral blood flow
Procedia PDF Downloads 10125224 Analyzing Tools and Techniques for Classification In Educational Data Mining: A Survey
Authors: D. I. George Amalarethinam, A. Emima
Abstract:
Educational Data Mining (EDM) is one of the newest topics to emerge in recent years, and it is concerned with developing methods for analyzing various types of data gathered from the educational circle. EDM methods and techniques with machine learning algorithms are used to extract meaningful and usable information from huge databases. For scientists and researchers, realistic applications of Machine Learning in the EDM sectors offer new frontiers and present new problems. One of the most important research areas in EDM is predicting student success. The prediction algorithms and techniques must be developed to forecast students' performance, which aids the tutor, institution to boost the level of student’s performance. This paper examines various classification techniques in prediction methods and data mining tools used in EDM.Keywords: classification technique, data mining, EDM methods, prediction methods
Procedia PDF Downloads 11725223 Improving Security in Healthcare Applications Using Federated Learning System With Blockchain Technology
Authors: Aofan Liu, Qianqian Tan, Burra Venkata Durga Kumar
Abstract:
Data security is of the utmost importance in the healthcare area, as sensitive patient information is constantly sent around and analyzed by many different parties. The use of federated learning, which enables data to be evaluated locally on devices rather than being transferred to a central server, has emerged as a potential solution for protecting the privacy of user information. To protect against data breaches and unauthorized access, federated learning alone might not be adequate. In this context, the application of blockchain technology could provide the system extra protection. This study proposes a distributed federated learning system that is built on blockchain technology in order to enhance security in healthcare. This makes it possible for a wide variety of healthcare providers to work together on data analysis without raising concerns about the confidentiality of the data. The technical aspects of the system, including as the design and implementation of distributed learning algorithms, consensus mechanisms, and smart contracts, are also investigated as part of this process. The technique that was offered is a workable alternative that addresses concerns about the safety of healthcare while also fostering collaborative research and the interchange of data.Keywords: data privacy, distributed system, federated learning, machine learning
Procedia PDF Downloads 13325222 A Concept of Data Mining with XML Document
Authors: Akshay Agrawal, Anand K. Srivastava
Abstract:
The increasing amount of XML datasets available to casual users increases the necessity of investigating techniques to extract knowledge from these data. Data mining is widely applied in the database research area in order to extract frequent correlations of values from both structured and semi-structured datasets. The increasing availability of heterogeneous XML sources has raised a number of issues concerning how to represent and manage these semi structured data. In recent years due to the importance of managing these resources and extracting knowledge from them, lots of methods have been proposed in order to represent and cluster them in different ways.Keywords: XML, similarity measure, clustering, cluster quality, semantic clustering
Procedia PDF Downloads 37925221 Speed-Up Data Transmission by Using Bluetooth Module on Gas Sensor Node of Arduino Board
Authors: Hiesik Kim, YongBeum Kim
Abstract:
Internet of Things (IoT) applications are widely serviced and spread worldwide. Local wireless data transmission technique must be developed to speed up with some technique. Bluetooth wireless data communication is wireless technique is technique made by Special Inter Group(SIG) using the frequency range 2.4 GHz, and it is exploiting Frequency Hopping to avoid collision with different device. To implement experiment, equipment for experiment transmitting measured data is made by using Arduino as Open source hardware, Gas sensor, and Bluetooth Module and algorithm controlling transmission speed is demonstrated. Experiment controlling transmission speed also is progressed by developing Android Application receiving measured data, and controlling this speed is available at the experiment result. it is important that in the future, improvement for communication algorithm be needed because few error occurs when data is transferred or received.Keywords: Arduino, Bluetooth, gas sensor, internet of things, transmission Speed
Procedia PDF Downloads 48325220 Evaluating the Total Costs of a Ransomware-Resilient Architecture for Healthcare Systems
Authors: Sreejith Gopinath, Aspen Olmsted
Abstract:
This paper is based on our previous work that proposed a risk-transference-based architecture for healthcare systems to store sensitive data outside the system boundary, rendering the system unattractive to would-be bad actors. This architecture also allows a compromised system to be abandoned and a new system instance spun up in place to ensure business continuity without paying a ransom or engaging with a bad actor. This paper delves into the details of various attacks we simulated against the prototype system. In the paper, we discuss at length the time and computational costs associated with storing and retrieving data in the prototype system, abandoning a compromised system, and setting up a new instance with existing data. Lastly, we simulate some analytical workloads over the data stored in our specialized data storage system and discuss the time and computational costs associated with running analytics over data in a specialized storage system outside the system boundary. In summary, this paper discusses the total costs of data storage, access, and analytics incurred with the proposed architecture.Keywords: cybersecurity, healthcare, ransomware, resilience, risk transference
Procedia PDF Downloads 13225219 Interactive Garments: Flexible Technologies for Textile Integration
Authors: Anupam Bhatia
Abstract:
Upon reviewing the literature and the pragmatic work done in the field of E- textiles, it is observed that the applications of wearable technologies have found a steady growth in the field of military, medical, industrial, sports; whereas fashion is at a loss to know how to treat this technology and bring it to market. The purpose of this paper is to understand the practical issues of integration of electronics in garments; cutting patterns for mass production, maintaining the basic properties of textiles and daily maintenance of garments that hinder the wide adoption of interactive fabric technology within Fashion and leisure wear. To understand the practical hindrances an experimental and laboratory approach is taken. “Techno Meets Fashion” has been an interactive fashion project where sensor technologies have been embedded with textiles that result in set of ensembles that are light emitting garments, sound sensing garments, proximity garments, shape memory garments etc. Smart textiles, especially in the form of textile interfaces, are drastically underused in fashion and other lifestyle product design. Clothing and some other textile products must be washable, which subjects to the interactive elements to water and chemical immersion, physical stress, and extreme temperature. The current state of the art tends to be too fragile for this treatment. The process for mass producing traditional textiles becomes difficult in interactive textiles. As cutting patterns from larger rolls of cloth and sewing them together to make garments breaks and reforms electronic connections in an uncontrolled manner. Because of this, interactive fabric elements are integrated by hand into textiles produced by standard methods. The Arduino has surely made embedding electronics into textiles much easier than before; even then electronics are not integral to the daily wear garments. Soft and flexible interfaces of MEMS (micro sensors and Micro actuators) can be an option to make this possible by blending electronics within E-textiles in a way that’s seamless and still retains functions of the circuits as well as the garment. Smart clothes, which offer simultaneously a challenging design and utility value, can be only mass produced if the demands of the body are taken care of i.e. protection, anthropometry, ergonomics of human movement, thermo- physiological regulation.Keywords: ambient intelligence, proximity sensors, shape memory materials, sound sensing garments, wearable technology
Procedia PDF Downloads 39325218 Investigating the Impact of Knowledge Management Components on Employee Productivity
Authors: Javad Moghtader Kargaran
Abstract:
Today, attention to knowledge and management Knowledge as a strategy is very important has taken with economy becoming knowledge-oriented, how and knowing the effective management and integration of different types Knowledge (obvious-implicit) to preserve and create advantage. Competition has become very important. Knowledge is a valuable resource for empowering organizations in the direction of innovation and competition. Due to the importance of human resources in the survival of organizations, extensive efforts are made to empower them. This knowledge can lead to awareness among employees. Employees and the knowledge that is in their minds are very valuable resources for the organization, which must be managed and developed. In fact, the ultimate goal of knowledge management is to increase the intelligence and productivity of employees and the organization.Keywords: knowledge, management, productivity, human
Procedia PDF Downloads 9525217 Multi-Agent Approach for Monitoring and Control of Biotechnological Processes
Authors: Ivanka Valova
Abstract:
This paper is aimed at using a multi-agent approach to monitor and diagnose a biotechnological system in order to validate certain control actions depending on the process development and the operating conditions. A multi-agent system is defined as a network of interacting software modules that collectively solve complex tasks. Remote monitoring and control of biotechnological processes is a necessity when automated and reliable systems operating with no interruption of certain activities are required. The advantage of our approach is in its flexibility, modularity and the possibility of improving by acquiring functionalities through the integration of artificial intelligence.Keywords: multi-agent approach, artificial intelligence, biotechnological processes, anaerobic biodegradation
Procedia PDF Downloads 8725216 Exploring the Capabilities of Sentinel-1A and Sentinel-2A Data for Landslide Mapping
Authors: Ismayanti Magfirah, Sartohadi Junun, Samodra Guruh
Abstract:
Landslides are one of the most frequent and devastating natural disasters in Indonesia. Many studies have been conducted regarding this phenomenon. However, there is a lack of attention in the landslide inventory mapping. The natural condition (dense forest area) and the limited human and economic resources are some of the major problems in building landslide inventory in Indonesia. Considering the importance of landslide inventory data in susceptibility, hazard, and risk analysis, it is essential to generate landslide inventory based on available resources. In order to achieve this, the first thing we have to do is identify the landslides' location. The presence of Sentinel-1A and Sentinel-2A data gives new insights into land monitoring investigation. The free access, high spatial resolution, and short revisit time, make the data become one of the most trending open sources data used in landslide mapping. Sentinel-1A and Sentinel-2A data have been used broadly for landslide detection and landuse/landcover mapping. This study aims to generate landslide map by integrating Sentinel-1A and Sentinel-2A data use change detection method. The result will be validated by field investigation to make preliminary landslide inventory in the study area.Keywords: change detection method, landslide inventory mapping, Sentinel-1A, Sentinel-2A
Procedia PDF Downloads 17125215 A DEA Model in a Multi-Objective Optimization with Fuzzy Environment
Authors: Michael Gidey Gebru
Abstract:
Most DEA models operate in a static environment with input and output parameters that are chosen by deterministic data. However, due to ambiguity brought on shifting market conditions, input and output data are not always precisely gathered in real-world scenarios. Fuzzy numbers can be used to address this kind of ambiguity in input and output data. Therefore, this work aims to expand crisp DEA into DEA with fuzzy environment. In this study, the input and output data are regarded as fuzzy triangular numbers. Then, the DEA model with fuzzy environment is solved using a multi-objective method to gauge the Decision Making Units’ efficiency. Finally, the developed DEA model is illustrated with an application on real data 50 educational institutions.Keywords: efficiency, DEA, fuzzy, decision making units, higher education institutions
Procedia PDF Downloads 5225214 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques
Authors: Masoomeh Alsadat Mirshafaei
Abstract:
The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest
Procedia PDF Downloads 3725213 Integrating a Security Operations Centre with an Organization’s Existing Procedures, Policies and Information Technology Systems
Authors: M. Mutemwa
Abstract:
A Cybersecurity Operation Centre (SOC) is a centralized hub for network event monitoring and incident response. SOCs are critical when determining an organization’s cybersecurity posture because they can be used to detect, analyze and report on various malicious activities. For most organizations, a SOC is not part of the initial design and implementation of the Information Technology (IT) environment but rather an afterthought. As a result, it is not natively a plug and play component; therefore, there are integration challenges when a SOC is introduced into an organization. A SOC is an independent hub that needs to be integrated with existing procedures, policies and IT systems of an organization such as the service desk, ticket logging system, reporting, etc. This paper discussed the challenges of integrating a newly developed SOC to an organization’s existing IT environment. Firstly, the paper begins by looking at what data sources should be incorporated into the Security Information and Event Management (SIEM) such as which host machines, servers, network end points, software, applications, web servers, etc. for security posture monitoring. That is which systems need to be monitored first and the order by which the rest of the systems follow. Secondly, the paper also describes how to integrate the organization’s ticket logging system with the SOC SIEM. That is how the cybersecurity related incidents should be logged by both analysts and non-technical employees of an organization. Also the priority matrix for incident types and notifications of incidents. Thirdly, the paper looks at how to communicate awareness campaigns from the SOC and also how to report on incidents that are found inside the SOC. Lastly, the paper looks at how to show value for the large investments that are poured into designing, building and running a SOC.Keywords: cybersecurity operation centre, incident response, priority matrix, procedures and policies
Procedia PDF Downloads 15325212 Data-Driven Decision Making: Justification of Not Leaving Class without It
Authors: Denise Hexom, Judith Menoher
Abstract:
Teachers and administrators across America are being asked to use data and hard evidence to inform practice as they begin the task of implementing Common Core State Standards. Yet, the courses they are taking in schools of education are not preparing teachers or principals to understand the data-driven decision making (DDDM) process nor to utilize data in a much more sophisticated fashion. DDDM has been around for quite some time, however, it has only recently become systematically and consistently applied in the field of education. This paper discusses the theoretical framework of DDDM; empirical evidence supporting the effectiveness of DDDM; a process a department in a school of education has utilized to implement DDDM; and recommendations to other schools of education who attempt to implement DDDM in their decision-making processes and in their students’ coursework.Keywords: data-driven decision making, institute of higher education, special education, continuous improvement
Procedia PDF Downloads 38725211 Quantile Coherence Analysis: Application to Precipitation Data
Authors: Yaeji Lim, Hee-Seok Oh
Abstract:
The coherence analysis measures the linear time-invariant relationship between two data sets and has been studied various fields such as signal processing, engineering, and medical science. However classical coherence analysis tends to be sensitive to outliers and focuses only on mean relationship. In this paper, we generalized cross periodogram to quantile cross periodogram and provide richer inter-relationship between two data sets. This is a general version of Laplace cross periodogram. We prove its asymptotic distribution under the long range process and compare them with ordinary coherence through numerical examples. We also present real data example to confirm the usefulness of quantile coherence analysis.Keywords: coherence, cross periodogram, spectrum, quantile
Procedia PDF Downloads 39025210 The Need for Innovation Management in the Context of Integrated Management Systems
Authors: Adela Mariana Vadastreanu, Adrian Bot, Andreea Maier, Dorin Maier
Abstract:
This paper approaches the need for innovation management in the context of an existing integrated management system implemented in an organization. The road to success for companies in today’s economic environment is more demanding than ever and the capacity of adapting to the rapid changes is compensatory in order to resist on the market. The managers struggle, daily, with increasingly complex problems, caused by fierce competition in the market but also from the rising demands of customers. Innovation seems to be the solution for these problems. During the last decade almost all companies have been certificated according to various management systems, like quality management system, environmental management system, health and safety management system and others; furthermore many companies have implemented an integrated management system, by integrating two or more management systems. The problem rising today is how to integrate innovation in this integrated management systems. The challenge of the problem is that the development of an innovation management system is in the early phase. In this paper we have studied the possibility of integrating some of the innovation request in an existing management system, we have identify the innovation performance request and we proposed some recommendations regarding innovation management and its implementation as a part of an integrated management system. This paper lies down the bases for developing an model of integration management systems that include innovation as a main part of it. Organizations are becoming more aware of the importance of Integrated Management Systems (IMS). Integrating two or more management systems into an integrated management system can have much advantages.This paper examines various models of management systems integration in accordance with professional references ISO 9001, ISO 18001 and OHSAS 18001, highlighting strengths and weaknesses, creating a basis for future development of integrated management systems, and their involvement in various other processes within the organization, such as innovation management. The more and more demanding economic context emphasizes the awareness of the importance of innovation for organizations. This paper highlights the importance of the innovation for an organization and also gives some practical solution in order to improve the overall success of the business through a better approach of innovation. Various standards have been developed in order to certificate organizations that they respect the requirements. Applying an integrated standards model is shown to be a more effective way then applying the standards independently. The problem that arises is that in order to adopt the integrated version of standards there have to be made some changes at the organizational level. Every change that needs to be done has an effect on its activity, and in this sense the paper tries to deal with the changes needed for adopting an integrated management system and if those changes have an influence over the performance. After the analysis of the results, we can conclude that in order to improve the performance a necessary step is the implementation of innovation in the existing integrated management system.Keywords: innovation, integrated management systems, innovation management, quality
Procedia PDF Downloads 315