Search results for: task replication
783 Effect of Project Control Practices on the Performance of Building Construction Companies in Uganda: A Case Study of Kampala City
Authors: Tukundane Hillary
Abstract:
This research paper analytically evaluates the project control practice levels used by the building construction companies within Kampala, Uganda. The research also assesses the outcome of project control practices on the productivity of the companies. The research was performed to ascertain the current control practices among 160 respondents from various construction companies registered with the Uganda Registration Services Bureau. This research used amalgamation from multiple literature to obtain the variables. The research adopts 34 standard control practices from four vital project control duties: planning, monitoring, analyzing, and reporting. These project control tasks were organized using mean response ratings grounded on their relevance to the construction companies. Results showed that evaluating performance with the use of curves (4.32), timely access to information and encouragement (4.55), report representation using quantitative tools 4.75, and cost value comparison application during analysis (4.76) were rated least among the control practices. On the other hand, the top project control practices included formulation of the project schedule (8.88), Project feasibility validation (8.86), Budgeting for each activity (8.84), Key project route definition (8.81), Team awareness of the budget (8.77), Setting realistic targets for projects (8.50) and Consultation from subcontractors (8.74). From the results obtained by the sample respondents specified, it can be concluded that planning is the most vital project control task practiced in the building construction industry in Uganda. In addition, this research ascertained a substantial relationship between project control practices and the performance of building construction companies. Accordingly, this research recommends that project control practices be effectively observed by both contracting and consulting companies to enhance their overall performance and governance.Keywords: cost value, project control, cost control, time control, project performance, control practices
Procedia PDF Downloads 79782 Digitalisation of the Railway Industry: Recent Advances in the Field of Dialogue Systems: Systematic Review
Authors: Andrei Nosov
Abstract:
This paper discusses the development directions of dialogue systems within the digitalisation of the railway industry, where technologies based on conversational AI are already potentially applied or will be applied. Conversational AI is one of the popular natural language processing (NLP) tasks, as it has great prospects for real-world applications today. At the same time, it is a challenging task as it involves many areas of NLP based on complex computations and deep insights from linguistics and psychology. In this review, we focus on dialogue systems and their implementation in the railway domain. We comprehensively review the state-of-the-art research results on dialogue systems and analyse them from three perspectives: type of problem to be solved, type of model, and type of system. In particular, from the perspective of the type of tasks to be solved, we discuss characteristics and applications. This will help to understand how to prioritise tasks. In terms of the type of models, we give an overview that will allow researchers to become familiar with how to apply them in dialogue systems. By analysing the types of dialogue systems, we propose an unconventional approach in contrast to colleagues who traditionally contrast goal-oriented dialogue systems with open-domain systems. Our view focuses on considering retrieval and generative approaches. Furthermore, the work comprehensively presents evaluation methods and datasets for dialogue systems in the railway domain to pave the way for future research. Finally, some possible directions for future research are identified based on recent research results.Keywords: digitalisation, railway, dialogue systems, conversational AI, natural language processing, natural language understanding, natural language generation
Procedia PDF Downloads 63781 Partnership Oriented Innovation Alliance Strategy Based on Market Feedback
Authors: Victor Romanov, Daria Efimenko
Abstract:
The focus on innovation in modern economy is the main factor in surviving business in a competitive environment. The innovations are based on the search and use of knowledge in a global context. Nowadays consumers and market demand are the main innovation drivers. This leads to build a business as a system with feedback, promptly restructuring production and innovation implementation in response to market demands. In modern knowledge economy, because of speed of technical progress, the product's lifecycle became much shorter, what makes more stringent requirements for innovation implementation on the enterprises of and therefore the possibility for enterprise for receiving extra income is decreasing. This circumstance imposes additional requirements for the replacement of obsolete products and the prompt release of innovative products to the market. The development of information technologies has led to the fact that only in the conditions of partnership and knowledge sharing with partners it is possible to update products quickly for innovative products. Many companies pay attention to updating innovations through the search for new partners, but the task of finding new partners presents some difficulties. The search for a suitable one includes several stages such as: determining the moment of innovation-critical, introducing a search, identifying search criteria, justifying and deciding on the choice of a partner. No less important is the question of how to manage an innovative product in response to a changing market. The article considers the problems of information support for the search for the source of innovation and partnership to decrease the time for implementation of novelty products.Keywords: partnership, novelty, market feedback, alliance
Procedia PDF Downloads 195780 Sustainable Transboundary Water Management: Challenges and Good Practices of Cooperation in International River Basin Districts
Authors: Aleksandra Ibragimow, Moritz Albrecht, Eerika Albrecht
Abstract:
Close international cooperation between all countries within a river basin has become one of the key aspects of sustainable cross-border water management. This is due to the fact that water does not stop at administrative or political boundaries. Therefore, the preferred mode to protect and manage transnational water bodies is close cooperation between all countries and stakeholders within the natural hydrological unit of the river basin. However, past practices have demonstrated that combining interests of different countries and stakeholders with differing political systems and management approaches to environmental issues upstream as well as downstream can be challenging. The study focuses on particular problems and challenges of water management in international river basin districts by the example of the International Oder River Basin District. The Oder River is one of the largest cross-border rivers of the Baltic Sea basin passing through Poland, Germany, and the Czech Republic. Attention is directed towards the activities and the actions that were carried out during the Districts' first management cycle of transnational river basin management (2009-2015). The results show that actions of individual countries have been focused on the National Water Management Plans while a common appointment about identified supra-regional water management problems has not been solved, and conducted actions can be considered as preliminary and merely a basis for future management. This present state raises the question whether the achievement of main objectives of Water Framework Directive (2000/60/EC) can be a realistic task.Keywords: International River Basin Districts, water management, water frameworkdirective, water management plans
Procedia PDF Downloads 316779 Engineering of E-Learning Content Creation: Case Study for African Countries
Authors: María-Dolores Afonso-Suárez, Nayra Pumar-Carreras, Juan Ruiz-Alzola
Abstract:
This research addresses the use of an e-Learning creation methodology for learning objects. Throughout the process, indicators are being gathered, to determine if it responds to the main objectives of an engineering discipline. These parameters will also indicate if it is necessary to review the creation cycle and readjust any phase. Within the project developed for this study, apart from the use of structured methods, there has been a central objective: the establishment of a learning atmosphere. A place where all the professionals involved are able to collaborate, plan, solve problems and determine guides to follow in order to develop creative and innovative solutions. It has been outlined as a blended learning program with an assessment plan that proposes face to face lessons, coaching, collaboration, multimedia and web based learning objects as well as support resources. The project has been drawn as a long term task, the pilot teaching actions designed provide the preliminary results object of study. This methodology is been used in the creation of learning content for the African countries of Senegal, Mauritania and Cape Verde. It has been developed within the framework of the MACbioIDi, an Interreg European project for the International cooperation and development. The educational area of this project is focused in the training and advice of professionals of the medicine as well as engineers in the use of applications of medical imaging technology, specifically the 3DSlicer application and the Open Anatomy Browser.Keywords: teaching contents engineering, e-learning, blended learning, international cooperation, 3dslicer, open anatomy browser
Procedia PDF Downloads 173778 Design of a Virtual Reality System for Children with Developmental Coordination Disorder
Authors: Ya-Ju Ju, Li-Chen Yang, Yi-Chun Du, Rong-Ju Cherng
Abstract:
Introduction: It is estimated that 5-6% of school-aged children may be diagnosed to have developmental coordination disorder (DCD). Children with DCD are characterized with motor skill difficulty which cannot be explained by any medical or intellectual reasons. Such motor difficulties limit children’s participation to sports activity, further affect their physical fitness, cardiopulmonary function and balance, and may lead to obesity. The purpose of the project was to develop an exergaming system for children with DCD aiming to improve their physical fitness, cardiopulmonary function and balance ability. Methods: This study took five steps to build up the system: system planning, tasks selection, tasks programming, system integration and usability test. The system basically adopted virtual reality technique to integrate self-developed training programs. The training programs were developed to brainstorm among team members and after literature review. The selected tasks for training in the system were a combination of fundamental movement tor skill. Results and Discussion: Based on the theory of motor development, we design the training task from easy ones to hard ones, from single tasks to dual tasks. The tasks included walking, sit to stand, jumping, kicking, weight shifting, side jumping and their combination. Preliminary study showed that the tasks presented an order of development. Further study is needed to examine its effect on motor skill and cardiovascular fitness in children with DCD.Keywords: virtual reality, virtual reality system, developmental coordination disorder, children
Procedia PDF Downloads 116777 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals
Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty
Abstract:
A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction
Procedia PDF Downloads 116776 Conceptual Solution and Thermal Analysis of the Final Cooling Process of Biscuits in One Confectionary Factory in Serbia
Authors: Duško Salemović, Aleksandar Dedić, Matilda Lazić, Dragan Halas
Abstract:
The paper presents the conceptual solution for the final cooling of the chocolate dressing of biscuits in one confectionary factory in Serbia. The proposed concept solution was derived from the desired technological process of final cooling of biscuits and the required process parameters that were to be achieved, and which were an integral part of the project task. The desired process parameters for achieving proper hardening and coating formation are the exchanged amount of heat in the time unit between the two media (air and chocolate dressing), the speed of air inside the tunnel cooler, and the surface of all biscuits in contact with the air. These parameters were calculated in the paper. The final cooling of chocolate dressing on biscuits could be optimized by changing process parameters and dimensions of the tunnel cooler and looking for the appropriate values for them. The accurate temperature predictions and fluid flow analysis could be conducted by using heat balance and flow balance equations, having in mind the theory of similarity. Furthermore, some parameters were adopted from previous technology processes, such as the inlet temperature of biscuits and input air temperature. A thermal calculation was carried out, and it was demonstrated that the percentage error between the contact surface of the air and the chocolate biscuit topping, which is obtained from the heat balance and geometrically through the proposed conceptual solution, does not exceed 0.67%, which is a very good agreement. This enabled the quality of the cooling process of chocolate dressing applied on the biscuit and the hardness of its coating.Keywords: chocolate dressing, air, cooling, heat balance
Procedia PDF Downloads 82775 Impact of Education on Levels of Physical Activity and Depression in Taiwanese Vegetarians and Omnivores
Authors: Ya-Lin Chang, Chia Chen Chang, Yu-Ru Liang, Joyce Chen, You-Kang Chang, Tina Chiu
Abstract:
Physical activity and mental health status are important for health. The purpose of this study was to examine levels of physical activities and depression in Taiwanese vegetarians (VEG) and omnivores (OMNI). Sixty-three vegetarians (20 males) and 56 omnivores (23 males) with an average age of 51 years were recruited for a food frequency validation study at Taipei Tzu Chi Hospital from July to September in 2016. Participants filled out a validated Chinese version international physical activity questionnaire-short-form (IPAQ), Beck Depression Inventory-II-Chinese version (BDI), food frequency questionnaire (FFQ) and a questionnaire on demographics and medical history upon recruitment. Total BDI scores were calculated for depression and the metabolic equivalent of task (MET) was calculated for physical activity levels. Mann-Whitney U tests and Chi-square test were used to compare demographics, physical activity levels and depression scores. VEG and OMNI did not differ significantly on MET (1441.9 ± 3387.3 vs. 1605.8 ± 2486.1. p=0.2652, respectively). VEG scored slightly lower on BDI compared to OMNI without statistical significance (5.6 ± 5.7 vs. 7.4 ± 6.3. p=0.06). In addition, we found that regardless of diet practice, those who held a college degree and above scored better on MET (1788.1 ± 2532.6 vs. 1215.5 ± 3425.5. p=0.0014) and BDI (5.2 ± 5.1 vs. 7.8 ± 6.7. p=0.03). In this cross-sectional study, Taiwanese vegetarians and omnivores scored comparatively on physical activity levels and depression. However, education is a significant determinant of physical activity and depression.Keywords: BDI, diet, education, physical activity
Procedia PDF Downloads 391774 Multi-Stream Graph Attention Network for Recommendation with Knowledge Graph
Abstract:
In recent years, Graph neural network has been widely used in knowledge graph recommendation. The existing recommendation methods based on graph neural network extract information from knowledge graph through entity and relation, which may not be efficient in the way of information extraction. In order to better propose useful entity information for the current recommendation task in the knowledge graph, we propose an end-to-end Neural network Model based on multi-stream graph attentional Mechanism (MSGAT), which can effectively integrate the knowledge graph into the recommendation system by evaluating the importance of entities from both users and items. Specifically, we use the attention mechanism from the user's perspective to distil the domain nodes information of the predicted item in the knowledge graph, to enhance the user's information on items, and generate the feature representation of the predicted item. Due to user history, click items can reflect the user's interest distribution, we propose a multi-stream attention mechanism, based on the user's preference for entities and relationships, and the similarity between items to be predicted and entities, aggregate user history click item's neighborhood entity information in the knowledge graph and generate the user's feature representation. We evaluate our model on three real recommendation datasets: Movielens-1M (ML-1M), LFM-1B 2015 (LFM-1B), and Amazon-Book (AZ-book). Experimental results show that compared with the most advanced models, our proposed model can better capture the entity information in the knowledge graph, which proves the validity and accuracy of the model.Keywords: graph attention network, knowledge graph, recommendation, information propagation
Procedia PDF Downloads 119773 An Examination of the Impact of Sand Dunes on Soils, Vegetation and Water Resources as the Major Means of Livelihood in Gada Local Government Area of Sokoto State, Nigeria
Authors: Abubakar Aminu
Abstract:
Sand dunes, as a major product of desertification, is well known to affect soil resources, water resources and vegetation, especially in arid and semi-arid region; this scenario disrupt the livelihood security of people in the affected areas. The research assessed the episode of sand dune accumulation on water resources, soil and vegetation in Gada local government of Sokoto State, Nigeria. In this paper, both qualitative and quantitative methods were used to generate data which was analyzed and discussed. The finding of the paper shows that livelihood was affected by accumulations of sand dunes as water resources and soils were affected negatively thereby reducing crop yields and making livestock domestication a very difficult and expensive task; the finding also shows that 60% of the respondents agreed to planting of trees as the major solution to combat sand dunes accumulation. However, the soil parameters tested indicated low Organic carbon, low Nitrogen, low Potassium, Calcium and Phosphorus but higher values were recorded in Sodium and Cation exchange capacity which served as evidence of the high or strong aridity nature of the soil in the area. In line with the above, the researcher recommended a massive tree planting campaign to curtail desertification as well as using organic manures for higher agricultural yield and as such, improvement in livelihood security.Keywords: soils, vegetatio, water, desertification
Procedia PDF Downloads 73772 LanE-change Path Planning of Autonomous Driving Using Model-Based Optimization, Deep Reinforcement Learning and 5G Vehicle-to-Vehicle Communications
Authors: William Li
Abstract:
Lane-change path planning is a crucial and yet complex task in autonomous driving. The traditional path planning approach based on a system of carefully-crafted rules to cover various driving scenarios becomes unwieldy as more and more rules are added to deal with exceptions and corner cases. This paper proposes to divide the entire path planning to two stages. In the first stage the ego vehicle travels longitudinally in the source lane to reach a safe state. In the second stage the ego vehicle makes lateral lane-change maneuver to the target lane. The paper derives the safe state conditions based on lateral lane-change maneuver calculation to ensure collision free in the second stage. To determine the acceleration sequence that minimizes the time to reach a safe state in the first stage, the paper proposes three schemes, namely, kinetic model based optimization, deep reinforcement learning, and 5G vehicle-to-vehicle (V2V) communications. The paper investigates these schemes via simulation. The model-based optimization is sensitive to the model assumptions. The deep reinforcement learning is more flexible in handling scenarios beyond the model assumed by the optimization. The 5G V2V eliminates uncertainty in predicting future behaviors of surrounding vehicles by sharing driving intents and enabling cooperative driving.Keywords: lane change, path planning, autonomous driving, deep reinforcement learning, 5G, V2V communications, connected vehicles
Procedia PDF Downloads 256771 Application of Griddization Management to Construction Hazard Management
Authors: Lingzhi Li, Jiankun Zhang, Tiantian Gu
Abstract:
Hazard management that can prevent fatal accidents and property losses is a fundamental process during the buildings’ construction stage. However, due to lack of safety supervision resources and operational pressures, the conduction of hazard management is poor and ineffective in China. In order to improve the quality of construction safety management, it is critical to explore the use of information technologies to ensure that the process of hazard management is efficient and effective. After exploring the existing problems of construction hazard management in China, this paper develops the griddization management model for construction hazard management. First, following the knowledge grid infrastructure, the griddization computing infrastructure for construction hazards management is designed which includes five layers: resource entity layer, information management layer, task management layer, knowledge transformation layer and application layer. This infrastructure will be as the technical support for realizing grid management. Second, this study divides the construction hazards into grids through city level, district level and construction site level according to grid principles. Last, a griddization management process including hazard identification, assessment and control is developed. Meanwhile, all stakeholders of construction safety management, such as owners, contractors, supervision organizations and government departments, should take the corresponding responsibilities in this process. Finally, a case study based on actual construction hazard identification, assessment and control is used to validate the effectiveness and efficiency of the proposed griddization management model. The advantage of this designed model is to realize information sharing and cooperative management between various safety management departments.Keywords: construction hazard, griddization computing, grid management, process
Procedia PDF Downloads 278770 Mobile Augmented Reality for Collaboration in Operation
Authors: Chong-Yang Qiao
Abstract:
Mobile augmented reality (MAR) tracking targets from the surroundings and aids operators for interactive data and procedures visualization, potential equipment and system understandably. Operators remotely communicate and coordinate with each other for the continuous tasks, information and data exchange between control room and work-site. In the routine work, distributed control system (DCS) monitoring and work-site manipulation require operators interact in real-time manners. The critical question is the improvement of user experience in cooperative works through applying Augmented Reality in the traditional industrial field. The purpose of this exploratory study is to find the cognitive model for the multiple task performance by MAR. In particular, the focus will be on the comparison between different tasks and environment factors which influence information processing. Three experiments use interface and interaction design, the content of start-up, maintenance and stop embedded in the mobile application. With the evaluation criteria of time demands and human errors, and analysis of the mental process and the behavior action during the multiple tasks, heuristic evaluation was used to find the operators performance with different situation factors, and record the information processing in recognition, interpretation, judgment and reasoning. The research will find the functional properties of MAR and constrain the development of the cognitive model. Conclusions can be drawn that suggest MAR is easy to use and useful for operators in the remote collaborative works.Keywords: mobile augmented reality, remote collaboration, user experience, cognition model
Procedia PDF Downloads 198769 Plant Identification Using Convolution Neural Network and Vision Transformer-Based Models
Authors: Virender Singh, Mathew Rees, Simon Hampton, Sivaram Annadurai
Abstract:
Plant identification is a challenging task that aims to identify the family, genus, and species according to plant morphological features. Automated deep learning-based computer vision algorithms are widely used for identifying plants and can help users narrow down the possibilities. However, numerous morphological similarities between and within species render correct classification difficult. In this paper, we tested custom convolution neural network (CNN) and vision transformer (ViT) based models using the PyTorch framework to classify plants. We used a large dataset of 88,000 provided by the Royal Horticultural Society (RHS) and a smaller dataset of 16,000 images from the PlantClef 2015 dataset for classifying plants at genus and species levels, respectively. Our results show that for classifying plants at the genus level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420 and other state-of-the-art CNN-based models suggested in previous studies on a similar dataset. ViT model achieved top accuracy of 83.3% for classifying plants at the genus level. For classifying plants at the species level, ViT models perform better compared to CNN-based models ResNet50 and ResNet-RS-420, with a top accuracy of 92.5%. We show that the correct set of augmentation techniques plays an important role in classification success. In conclusion, these results could help end users, professionals and the general public alike in identifying plants quicker and with improved accuracy.Keywords: plant identification, CNN, image processing, vision transformer, classification
Procedia PDF Downloads 105768 Reinforcement Learning for Robust Missile Autopilot Design: TRPO Enhanced by Schedule Experience Replay
Authors: Bernardo Cortez, Florian Peter, Thomas Lausenhammer, Paulo Oliveira
Abstract:
Designing missiles’ autopilot controllers have been a complex task, given the extensive flight envelope and the nonlinear flight dynamics. A solution that can excel both in nominal performance and in robustness to uncertainties is still to be found. While Control Theory often debouches into parameters’ scheduling procedures, Reinforcement Learning has presented interesting results in ever more complex tasks, going from videogames to robotic tasks with continuous action domains. However, it still lacks clearer insights on how to find adequate reward functions and exploration strategies. To the best of our knowledge, this work is a pioneer in proposing Reinforcement Learning as a framework for flight control. In fact, it aims at training a model-free agent that can control the longitudinal non-linear flight dynamics of a missile, achieving the target performance and robustness to uncertainties. To that end, under TRPO’s methodology, the collected experience is augmented according to HER, stored in a replay buffer and sampled according to its significance. Not only does this work enhance the concept of prioritized experience replay into BPER, but it also reformulates HER, activating them both only when the training progress converges to suboptimal policies, in what is proposed as the SER methodology. The results show that it is possible both to achieve the target performance and to improve the agent’s robustness to uncertainties (with low damage on nominal performance) by further training it in non-nominal environments, therefore validating the proposed approach and encouraging future research in this field.Keywords: Reinforcement Learning, flight control, HER, missile autopilot, TRPO
Procedia PDF Downloads 266767 Using an Empathy Intervention Model to Enhance Empathy and Socially Shared Regulation in Youth with Autism Spectrum Disorder
Authors: Yu-Chi Chou
Abstract:
The purpose of this study was to establish a logical path of an instructional model of empathy and social regulation, providing feasibility evidence on the model implementation in students with autism spectrum disorder (ASD). This newly developed Emotional Bug-Out Bag (BoB) curriculum was designed to enhance the empathy and socially shared regulation of students with ASD. The BoB model encompassed three instructional phases of basic theory lessons (BTL), action plan practices (APP), and final theory practices (FTP) during implementation. Besides, a learning flow (teacher-directed instruction, student self-directed problem-solving, group-based task completion, group-based reflection) was infused into the progress of instructional phases to deliberately promote the social regulatory process in group-working activities. A total of 23 junior high school students with ASD were implemented with the BoB curriculum. To examine the logical path for model implementation, data was collected from the participating students’ self-report scores on the learning nodes and understanding questions. Path analysis using structural equation modeling (SEM) was utilized for analyzing scores on 10 learning nodes and 41 understanding questions through the three phases of the BoB model. Results showed (a) all participants progressed throughout the implementation of the BoB model, and (b) the models of learning nodes and phases were positive and significant as expected, confirming the hypothesized logic path of this curriculum.Keywords: autism spectrum disorder, empathy, regulation, socially shared regulation
Procedia PDF Downloads 66766 Classifier for Liver Ultrasound Images
Authors: Soumya Sajjan
Abstract:
Liver cancer is the most common cancer disease worldwide in men and women, and is one of the few cancers still on the rise. Liver disease is the 4th leading cause of death. According to new NHS (National Health Service) figures, deaths from liver diseases have reached record levels, rising by 25% in less than a decade; heavy drinking, obesity, and hepatitis are believed to be behind the rise. In this study, we focus on Development of Diagnostic Classifier for Ultrasound liver lesion. Ultrasound (US) Sonography is an easy-to-use and widely popular imaging modality because of its ability to visualize many human soft tissues/organs without any harmful effect. This paper will provide an overview of underlying concepts, along with algorithms for processing of liver ultrasound images Naturaly, Ultrasound liver lesion images are having more spackle noise. Developing classifier for ultrasound liver lesion image is a challenging task. We approach fully automatic machine learning system for developing this classifier. First, we segment the liver image by calculating the textural features from co-occurrence matrix and run length method. For classification, Support Vector Machine is used based on the risk bounds of statistical learning theory. The textural features for different features methods are given as input to the SVM individually. Performance analysis train and test datasets carried out separately using SVM Model. Whenever an ultrasonic liver lesion image is given to the SVM classifier system, the features are calculated, classified, as normal and diseased liver lesion. We hope the result will be helpful to the physician to identify the liver cancer in non-invasive method.Keywords: segmentation, Support Vector Machine, ultrasound liver lesion, co-occurance Matrix
Procedia PDF Downloads 413765 Simulation of Utility Accrual Scheduling and Recovery Algorithm in Multiprocessor Environment
Authors: A. Idawaty, O. Mohamed, A. Z. Zuriati
Abstract:
This paper presents the development of an event based Discrete Event Simulation (DES) for a recovery algorithm known Backward Recovery Global Preemptive Utility Accrual Scheduling (BR_GPUAS). This algorithm implements the Backward Recovery (BR) mechanism as a fault recovery solution under the existing Time/Utility Function/ Utility Accrual (TUF/UA) scheduling domain for multiprocessor environment. The BR mechanism attempts to take the faulty tasks back to its initial safe state and then proceeds to re-execute the affected section of the faulty tasks to enable recovery. Considering that faults may occur in the components of any system; a fault tolerance system that can nullify the erroneous effect is necessary to be developed. Current TUF/UA scheduling algorithm uses the abortion recovery mechanism and it simply aborts the erroneous task as their fault recovery solution. None of the existing algorithm in TUF/UA scheduling domain in multiprocessor scheduling environment have considered the transient fault and implement the BR mechanism as a fault recovery mechanism to nullify the erroneous effect and solve the recovery problem in this domain. The developed BR_GPUAS simulator has derived the set of parameter, events and performance metrics according to a detailed analysis of the base model. Simulation results revealed that BR_GPUAS algorithm can saved almost 20-30% of the accumulated utilities making it reliable and efficient for the real-time application in the multiprocessor scheduling environment.Keywords: real-time system (RTS), time utility function/ utility accrual (TUF/UA) scheduling, backward recovery mechanism, multiprocessor, discrete event simulation (DES)
Procedia PDF Downloads 306764 Study and Solving High Complex Non-Linear Differential Equations Applied in the Engineering Field by Analytical New Approach AGM
Authors: Mohammadreza Akbari, Sara Akbari, Davood Domiri Ganji, Pooya Solimani, Reza Khalili
Abstract:
In this paper, three complicated nonlinear differential equations(PDE,ODE) in the field of engineering and non-vibration have been analyzed and solved completely by new method that we have named it Akbari-Ganji's Method (AGM) . As regards the previous published papers, investigating this kind of equations is a very hard task to do and the obtained solution is not accurate and reliable. This issue will be emerged after comparing the achieved solutions by Numerical Method. Based on the comparisons which have been made between the gained solutions by AGM and Numerical Method (Runge-Kutta 4th), it is possible to indicate that AGM can be successfully applied for various differential equations particularly for difficult ones. Furthermore, It is necessary to mention that a summary of the excellence of this method in comparison with the other approaches can be considered as follows: It is noteworthy that these results have been indicated that this approach is very effective and easy therefore it can be applied for other kinds of nonlinear equations, And also the reasons of selecting the mentioned method for solving differential equations in a wide variety of fields not only in vibrations but also in different fields of sciences such as fluid mechanics, solid mechanics, chemical engineering, etc. Therefore, a solution with high precision will be acquired. With regard to the afore-mentioned explanations, the process of solving nonlinear equation(s) will be very easy and convenient in comparison with the other methods. And also one of the important position that is explored in this paper is: Trigonometric and exponential terms in the differential equation (the method AGM) , is no need to use Taylor series Expansion to enhance the precision of the result.Keywords: new method (AGM), complex non-linear partial differential equations, damping ratio, energy lost per cycle
Procedia PDF Downloads 470763 Judicial Review of Indonesia's Position as the First Archipelagic State to implement the Traffic Separation Scheme to Establish Maritime Safety and Security
Authors: Rosmini Yanti, Safira Aviolita, Marsetio
Abstract:
Indonesia has several straits that are very important as a shipping lane, including the Sunda Strait and the Lombok Strait, which are the part of the Indonesian Archipelagic Sea Lane (IASL). An increase in traffic on the Marine Archipelago makes the task of monitoring sea routes increasingly difficult. Indonesia has proposed the establishment of a Traffic Separation Scheme (TSS) in the Sunda Strait and the Lombok Strait and the country now has the right to be able to conceptualize the TSS as well as the obligation to regulate it. Indonesia has the right to maintain national safety and sovereignty. In setting the TSS, Indonesia needs to issue national regulations that are in accordance with international law and the general provisions of the IMO (International Maritime Organization) can then be used as guidelines for maritime safety and security in the Sunda Strait and the Lombok Strait. The research method used is a qualitative method with the concept of linguistic and visual data collection. The source of the data is the analysis of documents and regulations. The results show that the determination of TSS was justified by International Law, in accordance with article 22, article 41, and article 53 of the United Nations Convention on the Law of the Sea (UNCLOS) 1982. The determination of TSS by the Indonesian government would be in accordance with COLREG (International Convention on Preventing Collisions at Sea) 10, which has been designed to follow IASL. Thus, TSS can provide a function as a safety and monitoring medium to minimize ship accidents or collisions, including the warship and aircraft of other countries that cross the IASL.Keywords: archipelago state, maritime law, maritime security, traffic separation scheme
Procedia PDF Downloads 129762 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station
Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner
Abstract:
A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.Keywords: radio base station, maintenance, classification, detection, deep learning, automation
Procedia PDF Downloads 203761 A Framework for Secure Information Flow Analysis in Web Applications
Authors: Ralph Adaimy, Wassim El-Hajj, Ghassen Ben Brahim, Hazem Hajj, Haidar Safa
Abstract:
Huge amounts of data and personal information are being sent to and retrieved from web applications on daily basis. Every application has its own confidentiality and integrity policies. Violating these policies can have broad negative impact on the involved company’s financial status, while enforcing them is very hard even for the developers with good security background. In this paper, we propose a framework that enforces security-by-construction in web applications. Minimal developer effort is required, in a sense that the developer only needs to annotate database attributes by a security class. The web application code is then converted into an intermediary representation, called Extended Program Dependence Graph (EPDG). Using the EPDG, the provided annotations are propagated to the application code and run against generic security enforcement rules that were carefully designed to detect insecure information flows as early as they occur. As a result, any violation in the data’s confidentiality or integrity policies is reported. As a proof of concept, two PHP web applications, Hotel Reservation and Auction, were used for testing and validation. The proposed system was able to catch all the existing insecure information flows at their source. Moreover and to highlight the simplicity of the suggested approaches vs. existing approaches, two professional web developers assessed the annotation tasks needed in the presented case studies and provided a very positive feedback on the simplicity of the annotation task.Keywords: web applications security, secure information flow, program dependence graph, database annotation
Procedia PDF Downloads 471760 Localization of Geospatial Events and Hoax Prediction in the UFO Database
Authors: Harish Krishnamurthy, Anna Lafontant, Ren Yi
Abstract:
Unidentified Flying Objects (UFOs) have been an interesting topic for most enthusiasts and hence people all over the United States report such findings online at the National UFO Report Center (NUFORC). Some of these reports are a hoax and among those that seem legitimate, our task is not to establish that these events confirm that they indeed are events related to flying objects from aliens in outer space. Rather, we intend to identify if the report was a hoax as was identified by the UFO database team with their existing curation criterion. However, the database provides a wealth of information that can be exploited to provide various analyses and insights such as social reporting, identifying real-time spatial events and much more. We perform analysis to localize these time-series geospatial events and correlate with known real-time events. This paper does not confirm any legitimacy of alien activity, but rather attempts to gather information from likely legitimate reports of UFOs by studying the online reports. These events happen in geospatial clusters and also are time-based. We look at cluster density and data visualization to search the space of various cluster realizations to decide best probable clusters that provide us information about the proximity of such activity. A random forest classifier is also presented that is used to identify true events and hoax events, using the best possible features available such as region, week, time-period and duration. Lastly, we show the performance of the scheme on various days and correlate with real-time events where one of the UFO reports strongly correlates to a missile test conducted in the United States.Keywords: time-series clustering, feature extraction, hoax prediction, geospatial events
Procedia PDF Downloads 378759 Micro-Rest: Extremely Short Breaks in Post-Learning Interference Support Memory Retention over the Long Term
Authors: R. Marhenke, M. Martini
Abstract:
The distraction of attentional resources after learning hinders long-term memory consolidation compared to several minutes of post-encoding inactivity in form of wakeful resting. We tested whether an 8-minute period of wakeful resting, compared to performing an adapted version of the d2 test of attention after learning, supports memory retention. Participants encoded and immediately recalled a word list followed by either an 8 minute period of wakeful resting (eyes closed, relaxed) or by performing an adapted version of the d2 test of attention (scanning and selecting specific characters while ignoring others). At the end of the experimental session (after 12-24 min) and again after 7 days, participants were required to complete a surprise free recall test of both word lists. Our results showed no significant difference in memory retention between the experimental conditions. However, we found that participants who completed the first lines of the d2 test in less than the given time limit of 20 seconds and thus had short unfilled intervals before switching to the next test line, remembered more words over the 12-24 minute and over the 7 days retention interval than participants who did not complete the first lines. This interaction occurred only for the first test lines, with the highest temporal proximity to the encoding task and not for later test lines. Differences in retention scores between groups (completed first line vs. did not complete) seem to be widely independent of the general performance in the d2 test. Implications and limitations of these exploratory findings are discussed.Keywords: long-term memory, retroactive interference, attention, forgetting
Procedia PDF Downloads 133758 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration
Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith
Abstract:
Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.Keywords: cycle consistency, deformable multimodal image registration, deep learning, GAN
Procedia PDF Downloads 132757 The Construction of the Bridge between Mrs Dalloway and to the Lighthouse: The Combination of Codes and Metaphors in the Structuring of the Plot in the Work of Virginia Woolf
Authors: María Rosa Mucci
Abstract:
Tzvetan Todorov (1971) designs a model of narrative transformation where the plot is constituted by difference and resemblance. This binary opposition is a synthesis of a central figure within narrative discourse: metaphor. Narrative operates as a metaphor since it combines different actions through similarities within a common plot. However, it sounds paradoxical that metonymy and not metaphor should be the key figure within the narrative. It is a metonymy that keeps the movement of actions within the story through syntagmatic relations. By the same token, this articulation of verbs makes it possible for the reader to engage in a dynamic interaction with the text, responding to the plot and mediating meanings with the contradictory external world. As Roland Barthes (1957) points out, there are two codes that are irreversible within the process: the codes of actions and the codes of enigmas. Virginia Woolf constructs her plots through a process of symbolism; a scene is always enduring, not only because it stands for something else but also because it connotes it. The reader is forced to elaborate the meaning at a mythological level beyond the lines. In this research, we follow a qualitative content analysis to code language through the proairetic (actions) and hermeneutic (enigmas) codes in terms of Barthes. There are two novels in particular that engage the reader in this process of construction: Mrs Dalloway (1925) and To the Lighthouse (1927). The bridge from the first to the second brings memories of childhood, allowing for the discovery of these enigmas hidden between the lines. What survives? Who survives? It is the reader's task to unravel these codes and rethink this dialogue between plot and reader to contribute to the predominance of texts and the textuality of narratives.Keywords: metonymy, code, metaphor, myth, textuality
Procedia PDF Downloads 59756 A Neurofeedback Learning Model Using Time-Frequency Analysis for Volleyball Performance Enhancement
Authors: Hamed Yousefi, Farnaz Mohammadi, Niloufar Mirian, Navid Amini
Abstract:
Investigating possible capacities of visual functions where adapted mechanisms can enhance the capability of sports trainees is a promising area of research, not only from the cognitive viewpoint but also in terms of unlimited applications in sports training. In this paper, the visual evoked potential (VEP) and event-related potential (ERP) signals of amateur and trained volleyball players in a pilot study were processed. Two groups of amateur and trained subjects are asked to imagine themselves in the state of receiving a ball while they are shown a simulated volleyball field. The proposed method is based on a set of time-frequency features using algorithms such as Gabor filter, continuous wavelet transform, and a multi-stage wavelet decomposition that are extracted from VEP signals that can be indicative of being amateur or trained. The linear discriminant classifier achieves the accuracy, sensitivity, and specificity of 100% when the average of the repetitions of the signal corresponding to the task is used. The main purpose of this study is to investigate the feasibility of a fast, robust, and reliable feature/model determination as a neurofeedback parameter to be utilized for improving the volleyball players’ performance. The proposed measure has potential applications in brain-computer interface technology where a real-time biomarker is needed.Keywords: visual evoked potential, time-frequency feature extraction, short-time Fourier transform, event-related spectrum potential classification, linear discriminant analysis
Procedia PDF Downloads 139755 Identification of High-Rise Buildings Using Object Based Classification and Shadow Extraction Techniques
Authors: Subham Kharel, Sudha Ravindranath, A. Vidya, B. Chandrasekaran, K. Ganesha Raj, T. Shesadri
Abstract:
Digitization of urban features is a tedious and time-consuming process when done manually. In addition to this problem, Indian cities have complex habitat patterns and convoluted clustering patterns, which make it even more difficult to map features. This paper makes an attempt to classify urban objects in the satellite image using object-oriented classification techniques in which various classes such as vegetation, water bodies, buildings, and shadows adjacent to the buildings were mapped semi-automatically. Building layer obtained as a result of object-oriented classification along with already available building layers was used. The main focus, however, lay in the extraction of high-rise buildings using spatial technology, digital image processing, and modeling, which would otherwise be a very difficult task to carry out manually. Results indicated a considerable rise in the total number of buildings in the city. High-rise buildings were successfully mapped using satellite imagery, spatial technology along with logical reasoning and mathematical considerations. The results clearly depict the ability of Remote Sensing and GIS to solve complex problems in urban scenarios like studying urban sprawl and identification of more complex features in an urban area like high-rise buildings and multi-dwelling units. Object-Oriented Technique has been proven to be effective and has yielded an overall efficiency of 80 percent in the classification of high-rise buildings.Keywords: object oriented classification, shadow extraction, high-rise buildings, satellite imagery, spatial technology
Procedia PDF Downloads 156754 Pragmatic Competence in Pakistani English Language Learners
Authors: Ghazala Kausar
Abstract:
This study investigates Pakistani first year university students’ perception of the role of pragmatics in their general approach to learning English. The research is triggered by National Curriculum’s initiative to provide holistic opportunities to the students for language development and to equip them with competencies to use English language in academic and social contexts (New English National Curriculum for I-XII). The traditional grammar translation and examination oriented method is believed to reduce learners to silent listener (Zhang, 2008: Zhao 2009). This lead to the inability of the students to interpret discourse by relating utterances to their meaning, understanding the intentions of the users and how language is used in specific setting (Bachman & Palmer, 1996, 2010). Pragmatic competence is a neglected area as far as teaching and learning English in Pakistan is concerned. This study focuses on the different types of pragmatic knowledge, learners perception of such knowledge and learning strategies employed by different learners to process the learning in general and pragmatic in particular. This study employed three data collecting tools; a questionnaire, discourse completion task and interviews to elicit data from first year university students regarding their perception of pragmatic competence. Results showed that Pakistani first year university learners have limited pragmatic knowledge. Although they acknowledged the importance of linguistic knowledge for linguistic competence in the students but argued that insufficient English proficiency, limited knowledge of pragmatics, insufficient language material and tasks were major reasons of pragmatic failure.Keywords: pragmatic competence, Pakistani college learners, linguistic competence
Procedia PDF Downloads 740