Search results for: problem-based learning approach
17635 Practices of Self-Directed Professional Development of Teachers in South African Public Schools
Authors: Rosaline Govender
Abstract:
This research study is an exploration of the self-directed professional development of teachers who teach in public schools in an era of democracy and educational change in South Africa. Amidst an ever-changing educational system, the teachers in this study position themselves as self-directed teacher-learners where they adopt particular learning practices which enable change within the broader discourses of public schooling. Life-story interviews were used to enter into the private and public spaces of five teachers which offer glimpses of how particular systems shaped their identities, and how the meanings of self-directed teacher-learner shaped their learning practices. Through the Multidimensional framework of analysis and interpretation the teachers’ stories were analysed through three lenses: restorying the field texts - the self through story; the teacher-learner in relation to social contexts, and practices of self-directed learning.This study shows that as teacher-learners learn for change through self-directed learning practices, they develop their agency as transformative intellectuals, which is necessary for the reworking of South African public schools.Keywords: professional development, professionality, professionalism, self-directed learning
Procedia PDF Downloads 43017634 Neural Network based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children
Authors: Budhvin T. Withana, Sulochana Rupasinghe
Abstract:
The educational system faces a significant concern with regards to Dyslexia and Dysgraphia, which are learning disabilities impacting reading and writing abilities. This is particularly challenging for children who speak the Sinhala language due to its complexity and uniqueness. Commonly used methods to detect the risk of Dyslexia and Dysgraphia rely on subjective assessments, leading to limited coverage and time-consuming processes. Consequently, delays in diagnoses and missed opportunities for early intervention can occur. To address this issue, the project developed a hybrid model that incorporates various deep learning techniques to detect the risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16, and YOLOv8 models were integrated to identify handwriting issues. The outputs of these models were then combined with other input data and fed into an MLP model. Hyperparameters of the MLP model were fine-tuned using Grid Search CV, enabling the identification of optimal values for the model. This approach proved to be highly effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention. The Resnet50 model exhibited a training accuracy of 0.9804 and a validation accuracy of 0.9653. The VGG16 model achieved a training accuracy of 0.9991 and a validation accuracy of 0.9891. The MLP model demonstrated impressive results with a training accuracy of 0.99918, a testing accuracy of 0.99223, and a loss of 0.01371. These outcomes showcase the high accuracy achieved by the proposed hybrid model in predicting the risk of Dyslexia and Dysgraphia.Keywords: neural networks, risk detection system, dyslexia, dysgraphia, deep learning, learning disabilities, data science
Procedia PDF Downloads 6617633 Information and Cooperativity in Fiction: The Pragmatics of David Baboulene’s “Knowledge Gaps”
Authors: Cara DiGirolamo
Abstract:
In his 2017 Ph.D. thesis, script doctor David Baboulene presented a theory of fiction in which differences in the knowledge states between participants in a literary experience, including reader, author, and characters, create many story elements, among them suspense, expectations, subtext, theme, metaphor, and allegory. This theory can be adjusted and modeled by incorporating a formal pragmatic approach that understands narrative as a speech act with a conversational function. This approach requires both the Speaker and the Listener to be understood as participants in the discourse. It also uses theories of cooperativity and the QUD to identify the existence of implicit questions. This approach predicts that what an effective literary narrative must do: provide a conversational context early in the story so the reader can engage with the text as a conversational participant. In addition, this model incorporates schema theory. Schema theory is a cognitive model for learning and processing information about the world and transforming it into functional knowledge. Using this approach can extend the QUD model. Instead of describing conversation as a form of information gathering restricted to question-answer sets, the QUD can include knowledge modeling and understanding as a possible outcome of a conversation. With this model, Baboulene’s “Knowledge Gaps” can provide real insight into storytelling as a conversational move, and extend the QUD to be able to simply and effectively apply to a more diverse set of conversational interactions and also to narrative texts.Keywords: literature, speech acts, QUD, literary theory
Procedia PDF Downloads 1917632 Big Classes, Bigger Ambitions: A Participatory Approach to the Multiple-Choice Exam
Authors: Melanie Adrian, Elspeth McCulloch, Emily-Jean Gallant
Abstract:
Resources -financial, physical, and human- are increasingly constrained in higher education. University classes are getting bigger, and the concomitant grading burden on faculty is growing rapidly. Multiple-choice exams are seen by some as one solution to these changes. How much students retain, however, and what their testing experience is, continues to be debated. Are multiple-choice exams serving students well, or are they bearing the burden of these developments? Is there a way to address both the resource constraints and make these types of exams more meaningful? In short, how do we engender evaluation methods for large-scale classes that provide opportunities for heightened student learning and enrichment? The following article lays out a testing approach we have employed in four iterations of the same third-year law class. We base our comments in this paper on our initial observations as well as data gathered from an ethics-approved study looking at student experiences. This testing approach provides students with multiple opportunities for revision (thus increasing chances for long term retention), is both individually and collaboratively driven (thus reflecting the individual effort and group effort) and is automatically graded (thus draining limited institutional resources). We found that overall students appreciated the approach and found it more ‘humane’, that it notably reduced pre-exam and intra-exam stress levels, increased ease, and lowered nervousness.Keywords: exam, higher education, multiple-choice, law
Procedia PDF Downloads 12817631 An Evaluation Framework for Virtual Reality Learning Environments in Sports Education
Authors: Jonathan J. Foo, Keng Hao Chew
Abstract:
Interest in virtual reality (VR) technologies as virtual learning environments have been on the rise in recent years. With thanks to the aggressively competitive consumer electronics environment, VR technology has been made affordable and accessible to the average person with developments like Google Cardboard and Oculus Go. While the promise of virtual access to unique virtual learning environments with the benefits of experiential learning sounds extremely attractive, there are still concerns over user comfort in the psychomotor, cognitive, and affective domains. Reports of motion sickness and short durations create doubt and have stunted its growth. In this paper, a multidimensional framework is proposed for the evaluation of VR learning environments within the three dimensions: tactual quality, didactic quality, and autodidactic quality. This paper further proposes a mixed-methods experimental research plan that sets out to evaluate a virtual reality training simulator in the context of amateur sports fencing. The study will investigate if an immersive VR learning environment can effectively simulate an authentic learning environment suitable for instruction, practice, and assessment while providing the user comfort in the tactual, didactic, and autodidactic dimensions. The models and recommendations developed for this study are designed in the context of fencing, but the potential impact is a guide for the future design and evaluation of all VR developments across sports and technical classroom education.Keywords: autodidactic quality, didactic quality, tactual quality, virtual reality
Procedia PDF Downloads 13517630 Machine Learning Approach for Stress Detection Using Wireless Physical Activity Tracker
Authors: B. Padmaja, V. V. Rama Prasad, K. V. N. Sunitha, E. Krishna Rao Patro
Abstract:
Stress is a psychological condition that reduces the quality of sleep and affects every facet of life. Constant exposure to stress is detrimental not only for mind but also body. Nevertheless, to cope with stress, one should first identify it. This paper provides an effective method for the cognitive stress level detection by using data provided from a physical activity tracker device Fitbit. This device gathers people’s daily activities of food, weight, sleep, heart rate, and physical activities. In this paper, four major stressors like physical activities, sleep patterns, working hours and change in heart rate are used to assess the stress levels of individuals. The main motive of this system is to use machine learning approach in stress detection with the help of Smartphone sensor technology. Individually, the effect of each stressor is evaluated using logistic regression and then combined model is built and assessed using variants of ordinal logistic regression models like logit, probit and complementary log-log. Then the quality of each model is evaluated using Akaike Information Criterion (AIC) and probit is assessed as the more suitable model for our dataset. This system is experimented and evaluated in a real time environment by taking data from adults working in IT and other sectors in India. The novelty of this work lies in the fact that stress detection system should be less invasive as possible for the users.Keywords: physical activity tracker, sleep pattern, working hours, heart rate, smartphone sensor
Procedia PDF Downloads 25717629 Technology for Enhancing the Learning and Teaching Experience in Higher Education
Authors: Sara M. Ismael, Ali H. Al-Badi
Abstract:
The rapid development and growth of technology has changed the method of obtaining information for educators and learners. Technology has created a new world of collaboration and communication among people. Incorporating new technology into the teaching process can enhance learning outcomes. Billions of individuals across the world are now connected together, and are cooperating and contributing their knowledge and intelligence. Time is no longer wasted in waiting until the teacher is ready to share information as learners can go online and get it immediately. The objectives of this paper are to understand the reasons why changes in teaching and learning methods are necessary, to find ways of improving them, and to investigate the challenges that present themselves in the adoption of new ICT tools in higher education institutes. To achieve these objectives two primary research methods were used: questionnaires, which were distributed among students at higher educational institutes and multiple interviews with faculty members (teachers) from different colleges and universities, which were conducted to find out why teaching and learning methodology should change. The findings show that both learners and educators agree that educational technology plays a significant role in enhancing instructors’ teaching style and students’ overall learning experience; however, time constraints, privacy issues, and not being provided with enough up-to-date technology do create some challenges.Keywords: e-books, educational technology, educators, e-learning, learners, social media, Web 2.0, LMS
Procedia PDF Downloads 27717628 Language Learning, Drives and Context: A Grounded Theory of Learning Behavior
Authors: Julian Pigott
Abstract:
This paper introduces the Language Learning as a Means of Drive Engagement (LLMDE) theory, derived from a grounded theory analysis of interviews with Japanese university students. According to LLMDE theory, language learning can be understood as a means of engaging one or more of four self-fulfillment drives: the drive to expand one’s horizons (perspective drive); the drive to make a success of oneself (status drive); the drive to engage in interaction with others (communication drive); and the drive to obtain intellectual and affective stimulation (entertainment drive). While many theories of learner psychology focus on conscious agency, LLMDE theory addresses the role of the unconscious. In addition, supplementary thematic analysis of the data revealed the role of context in mediating drive engagement. Unexpected memorable events, for example, play a key role in instigating and, indirectly, in regulating learning, as do institutional and cultural contexts. Given the apparent importance of such factors beyond the immediate control of the learner, and given the pervasive role of habit and drives, it is argued that the concept of motivation merits theoretical reappraisal. Rather than an underlying force determining language learning success or failure, it can be understood to emerge sporadically in consciousness to promote behavioral change, or to protect habitual behavior from disruption.Keywords: drives, grounded theory, motivation, significant events
Procedia PDF Downloads 15117627 The Influence of Guided and Independent Training Toward Teachers’ Competence to Plan Early Childhood Education Learning Program
Authors: Sofia Hartati
Abstract:
This research is aimed at describing training in early childhood education program empirically, describing teachers ability to plan lessons empirically, and acquiring empirical data as well as analyzing the influence of guided and independent training toward teachers competence in planning early childhood learning program. The method used is an experiment. It collected data with a population of 76 early childhood educators in Tunjung Teja Sub District area through random sampling technique and grouped into two namely 38 people in an experiment class and 38 people in a controlled class. The technique used for data collections is a test. The result of the research shows that there is a significant influence between training for guided educators toward Teachers Ability toward Planning Early Childhood Learning Program. Guided training has been proven to improve the ability to comprehend planning a learning program. The ability to comprehend planning a learning program owned by teachers of early childhood program comprises of 1) determining the characteristics and competence of students prior to learning; 2) formulating the objective of the learning; 3) selecting materials and its sequences; 4) selecting teaching methods; 5) determining the means or learning media; 6) selecting evaluation strategy as a part of teachers pedagogic competence. The result of this research describes a difference in the competence level of teachers who have joined guided training which is relatively higher than the teachers who joined the independent training. Guided training is one of an effective way to improve the knowledge and competence of early childhood educators.Keywords: competence, planning, teachers, training
Procedia PDF Downloads 26517626 Impact of a Professional Learning Community on the Continuous Professional Development of Teacher Educators in Myanmar
Authors: Moet Moet Myint lay
Abstract:
Professional learning communities provide ongoing professional development for teachers, where they become learning leaders and actively participate in school improvement. The development of professional knowledge requires a significant focus on professional competence in the work of teachers, and a solid foundation of professional knowledge and skills is necessary for members of society to become intelligent members. Continuing professional development (CPD) plays a vital role in improving educational outcomes, as its importance has been proven over the years. This article explores the need for CPD for teachers in Myanmar and the utility of professional learning communities in improving teacher quality. This study aims to explore a comprehensive understanding of professional learning communities to support the continuing professional development of teacher educators in improving the quality of education. The research questions are: (1) How do teacher educators in Myanmar understand the concept of professional learning communities for continuing professional development? (2) What CPD training is required for all teachers in teachers' colleges? Quantitative research methods were used in this study. Survey data were collected from 50 participants (teacher trainers) from five educational institutions. The analysis shows that professional learning communities when done well, can have a lasting impact on teacher quality. Furthermore, the creation of professional learning communities is the best indicator of professional development in existing education systems. Some research suggests that teacher professional development is closely related to teacher professional skills and school improvement. As a result of the collective learning process, teachers gain a deeper understanding of the subject matter, increase their knowledge, and develop their professional teaching skills. This will help improve student performance and school quality in the future. The lack of clear understanding and knowledge about PLC among school leaders and leads teachers to believe that PLC activities are not beneficial. Lack of time, teacher accountability, leadership skills, and negative attitudes of participating teachers were the most frequently cited challenges in implementing PLCs. As a result of these findings, educators and stakeholders can use them to implement professional learning communities.Keywords: professional learning communities, continuing professional development, teacher education, competence, school improvement
Procedia PDF Downloads 6117625 Applications of Evolutionary Optimization Methods in Reinforcement Learning
Authors: Rahul Paul, Kedar Nath Das
Abstract:
The paradigm of Reinforcement Learning (RL) has become prominent in training intelligent agents to make decisions in environments that are both dynamic and uncertain. The primary objective of RL is to optimize the policy of an agent in order to maximize the cumulative reward it receives throughout a given period. Nevertheless, the process of optimization presents notable difficulties as a result of the inherent trade-off between exploration and exploitation, the presence of extensive state-action spaces, and the intricate nature of the dynamics involved. Evolutionary Optimization Methods (EOMs) have garnered considerable attention as a supplementary approach to tackle these challenges, providing distinct capabilities for optimizing RL policies and value functions. The ongoing advancement of research in both RL and EOMs presents an opportunity for significant advancements in autonomous decision-making systems. The convergence of these two fields has the potential to have a transformative impact on various domains of artificial intelligence (AI) applications. This article highlights the considerable influence of EOMs in enhancing the capabilities of RL. Taking advantage of evolutionary principles enables RL algorithms to effectively traverse extensive action spaces and discover optimal solutions within intricate environments. Moreover, this paper emphasizes the practical implementations of EOMs in the field of RL, specifically in areas such as robotic control, autonomous systems, inventory problems, and multi-agent scenarios. The article highlights the utilization of EOMs in facilitating RL agents to effectively adapt, evolve, and uncover proficient strategies for complex tasks that may pose challenges for conventional RL approaches.Keywords: machine learning, reinforcement learning, loss function, optimization techniques, evolutionary optimization methods
Procedia PDF Downloads 8117624 Early Influences on Teacher Identity: Perspectives from the USA and Northern Ireland
Authors: Martin Hagan
Abstract:
Teacher identity has been recognised as a crucial field of research which supports understanding of the ways in which teachers navigate the complexities of professional life in order to grow in competence, knowledge and practice. As a field of study, teacher identity is concerned with understanding: how identity is defined; how it develops; how teachers make sense of their emerging identity; and how the act of teaching is mediated through the individual teacher’s values, beliefs and sense of professional self. By comparing two particular, socially constructed learning contexts or ‘learning milieu’, one in Northern Ireland and the other in the United States of America, this study aims specifically, to gain better understanding of how teacher identity develops during the initial phase of teacher education. The comparative approach was adopted on the premise that experiences are constructed through interactive, socio-historical and cultural negotiations with others within particular environments, situations and contexts. As such, whilst the common goal is to ‘become’ a teacher, the nuances emerging from the different learning milieu highlight variance in discourse, priorities, practice and influence. A qualitative, interpretative research design was employed to understand the world-constructions of the participants through asking open-ended questions, seeking views and perspectives, examining contexts and eventually deducing meaning. Data were collected using semi structured interviews from a purposive sample of student teachers (n14) in either the first or second year of study in their respective institutions. In addition, a sample of teacher educators (n5) responsible for the design, organisation and management of the programmes were also interviewed. Inductive thematic analysis was then conducted, which highlighted issues related to: the participants’ personal dispositions, prior learning experiences and motivation; the influence of the teacher education programme on the participants’ emerging professional identity; and the extent to which the experiences of working with teachers and pupils in schools in the context of the practicum, challenged and changed perspectives on teaching as a professional activity. The study also highlights the varying degrees of influence exercised by the different roles (tutor, host teacher/mentor, student) within the teacher-learning process across the two contexts. The findings of the study contribute to the understanding of teacher identity development in the early stages of professional learning. By so doing, the research makes a valid contribution to the discourse on initial teacher preparation and can help to better inform teacher educators and policy makers in relation to appropriate strategies, approaches and programmes to support professional learning and positive teacher identity formation.Keywords: initial teacher education, professional learning, professional growth, teacher identity
Procedia PDF Downloads 7317623 Analysis of Jenni: Essay Writing Artificial Intelligence
Authors: Joud Tayeb, Dunia Moussa, Rafal Al-Khawlani, Huda Elyas
Abstract:
This research delves into the intricate AI features of Jenni, an AI-powered chatbot designed to offer personalized and engaging conversations. We explore the fundamental technologies driving Jenni's capabilities, including natural language processing (NLP), machine learning, and deep learning. Through a meticulous analysis of these technologies, we aim to unravel how Jenni effectively processes and understands user queries, generates contextually relevant responses, and continuously learns from interactions. To gain deeper insights into user experiences and satisfaction, a comprehensive survey was conducted. By analyzing the collected data, we determine that consumers mostly like Jenni AI and reported that it has improved their essay writing process, yet the algorithm needs to improve certain aspects, such as accuracy.Keywords: natural language processing, machine learning, deep learning, artificial intelligence, Jenni
Procedia PDF Downloads 517622 Water Repellent Finishing of Cotton: Teaching and Learning Materials
Authors: C. W. Kan
Abstract:
Fabrics can be treated to equip them with certain functional properties in which water repellency is one of the important functional effects. In this study, commercial water repellent agent was used under different application conditions to cotton fabric. Finally, the water repellent effect was evaluated by standard testing method. Thus, the aim of this study is to illustrate the proper application of water repellent finishing to cotton fabric and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.Keywords: learning materials, water repellent, textiles, cotton
Procedia PDF Downloads 24117621 Attitudes to Thinking and Learning in Sustainability Education: Case Basics of Natural Stone Industry in Circular Economy
Authors: Anne-Marie Tuomala
Abstract:
Education for sustainable development (ESD) aims to provide students with the attitudes, values, and behaviors necessary for the contribution to sustainability. The research was implemented as a part of the Horizons Europe research project, where each partner organization had at least one pilot project locally. The pilot in question was an online course about the basics of the natural stone industry in Finland and its sustainability and circular economy aspects. The course was open to all students of applied universities in Finland, and it was implemented twice during the research. The Stone from Finland association participated in the course design, and it was also an expert in the local context and real-life provider. The multiple case-study method was chosen, as it enables purposeful sampling of cases that are tailored to the specific study. It was also assumed that it predicts quite comparable results of two different course implementations of the course with the same topic and content. The Curtin University of Technology’s Attitudes Towards Thinking and Learning Survey was adapted. The results show the importance of the trans-disciplinary nature of sustainability education. In addition, the new industry areas with the general - but also industry-specific sustainability issues - must be introduced to students and encourage them to do critically reflective learning. Surveys that guide them to analyze their own attitudes to thinking and learning may expose students to their weaknesses but also result in forms of more active sustainability interaction.Keywords: education for sustainable development, learning attitudes, learning of circular economy, virtual learning
Procedia PDF Downloads 4717620 Cosmetic Recommendation Approach Using Machine Learning
Authors: Shakila N. Senarath, Dinesh Asanka, Janaka Wijayanayake
Abstract:
The necessity of cosmetic products is arising to fulfill consumer needs of personality appearance and hygiene. A cosmetic product consists of various chemical ingredients which may help to keep the skin healthy or may lead to damages. Every chemical ingredient in a cosmetic product does not perform on every human. The most appropriate way to select a healthy cosmetic product is to identify the texture of the body first and select the most suitable product with safe ingredients. Therefore, the selection process of cosmetic products is complicated. Consumer surveys have shown most of the time, the selection process of cosmetic products is done in an improper way by consumers. From this study, a content-based system is suggested that recommends cosmetic products for the human factors. To such an extent, the skin type, gender and price range will be considered as human factors. The proposed system will be implemented by using Machine Learning. Consumer skin type, gender and price range will be taken as inputs to the system. The skin type of consumer will be derived by using the Baumann Skin Type Questionnaire, which is a value-based approach that includes several numbers of questions to derive the user’s skin type to one of the 16 skin types according to the Bauman Skin Type indicator (BSTI). Two datasets are collected for further research proceedings. The user data set was collected using a questionnaire given to the public. Those are the user dataset and the cosmetic dataset. Product details are included in the cosmetic dataset, which belongs to 5 different kinds of product categories (Moisturizer, Cleanser, Sun protector, Face Mask, Eye Cream). An alternate approach of TF-IDF (Term Frequency – Inverse Document Frequency) is applied to vectorize cosmetic ingredients in the generic cosmetic products dataset and user-preferred dataset. Using the IF-IPF vectors, each user-preferred products dataset and generic cosmetic products dataset can be represented as sparse vectors. The similarity between each user-preferred product and generic cosmetic product will be calculated using the cosine similarity method. For the recommendation process, a similarity matrix can be used. Higher the similarity, higher the match for consumer. Sorting a user column from similarity matrix in a descending order, the recommended products can be retrieved in ascending order. Even though results return a list of similar products, and since the user information has been gathered, such as gender and the price ranges for product purchasing, further optimization can be done by considering and giving weights for those parameters once after a set of recommended products for a user has been retrieved.Keywords: content-based filtering, cosmetics, machine learning, recommendation system
Procedia PDF Downloads 13517619 Lean Models Classification: Towards a Holistic View
Authors: Y. Tiamaz, N. Souissi
Abstract:
The purpose of this paper is to present a classification of Lean models which aims to capture all the concepts related to this approach and thus facilitate its implementation. This classification allows the identification of the most relevant models according to several dimensions. From this perspective, we present a review and an analysis of Lean models literature and we propose dimensions for the classification of the current proposals while respecting among others the axes of the Lean approach, the maturity of the models as well as their application domains. This classification allowed us to conclude that researchers essentially consider the Lean approach as a toolbox also they design their models to solve problems related to a specific environment. Since Lean approach is no longer intended only for the automotive sector where it was invented, but to all fields (IT, Hospital, ...), we consider that this approach requires a generic model that is capable of being implemented in all areas.Keywords: lean approach, lean models, classification, dimensions, holistic view
Procedia PDF Downloads 43517618 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 4017617 Usage of “Flowchart of Diagnosis and Treatment” Software in Medical Education
Authors: Boy Subirosa Sabarguna, Aria Kekalih, Irzan Nurman
Abstract:
Introduction: Software in the form of Clinical Decision Support System could help students in understanding the mind set of decision-making in diagnosis and treatment at the stage of general practitioners. This could accelerate and ease the learning process which previously took place by using books and experience. Method: Gather 1000 members of the National Medical Multimedia Digital Community (NM2DC) who use the “flowchart of diagnosis and treatment” software, and analyse factors related to: display, speed in learning, convenience in learning, helpfulness and usefulness in the learning process, by using the Likert Scale through online questionnaire which will further be processed using percentage. Results and Discussions: Out of the 1000 members of NM2DC, apparently: 97.0% of the members use the software and 87.5% of them are students. In terms of the analysed factors related to: display, speed in learning, convenience in learning, helpfulness and usefulness of the software’s usage, the results indicate a 90.7% of fairly good performance. Therefore, the “Flowchart of Diagnosis and Treatment” software has helped students in understanding the decision-making of diagnosis and treatment. Conclusion: the use of “Flowchart of Diagnosis and Treatment” software indicates a positive role in helping students understand decision-making of diagnosis and treatment.Keywords: usage, software, diagnosis and treatment, medical education
Procedia PDF Downloads 35917616 A Brief of Survey on Use of Videoconferencing in Teaching during Quarantine Conducted in Sao Paulo
Authors: Fernanda Laureti T. Ferreira, Kazuo Nishimoto
Abstract:
This paper presents a summary of the experience on videoconferencing tools that have been used to teach regular classes during this pandemic period in educational institutions in São Paulo, which tools and applications are most used and the challenges related to this mode of delivery. At this moment, the massive online education is not a choice of students or a structured development of education system, but a solution that emerged to attend urgent needs and it presents the opportunity to teach and learning available for the most students in this single time of social isolation that forced among others, this significant change for education, students, teachers, institutions and families. Distance education enables synchronous and asynchronous mode classes, and even though the current circumstances generate discomfort and uncertainty, on the other hand, there is a chance to promote a 'learning to learn'. The videoconference is a preferred choice of schools because synchronous mode to give more interaction between a group of students and teachers, but this mode requires specifics teacher competencies and skills, in addition to equipment and provision of adequate internet signal for all participants of the process. The approach is making use of known technical information about video conference tools and the results of search answered by a group of students, teachers, schools, and parents. The results presented refer to the perspectives of students and parents as respondents.Keywords: distance education, interaction on education, online classes, synchronous e-learning, videoconference
Procedia PDF Downloads 12417615 Training Engineering Students in Sustainable Development
Authors: Hoong C. Chin, Soon H. Chew, Zhaoxia Wang
Abstract:
Work on sustainable developments and the call for action in education for sustainable development have been ongoing for a number of years. Training engineering students with the relevant competencies, particularly in sustainable development literacy, has been identified as an urgent task in universities. This requires not only a holistic, multi-disciplinary approach to education but also a suitable training environment to develop the needed skills and to inculcate the appropriate attitudes in students towards sustainable development. To demonstrate how this can be done, a module involving an overseas field trip was introduced in 2013 at the National University of Singapore. This paper provides details of the module and describes its training philosophy and methods. Measured against the student learning outcomes, stipulated by the Engineering Accreditation Board, the module scored well on all of them, particularly those related to complex problem solving, environmental and sustainability awareness, multi-disciplinary team work and varied-level communications.Keywords: civil engineering education, socio-economically sustainable infrastructure, student learning outcome, sustainable development
Procedia PDF Downloads 35117614 Physics-Informed Machine Learning for Displacement Estimation in Solid Mechanics Problem
Authors: Feng Yang
Abstract:
Machine learning (ML), especially deep learning (DL), has been extensively applied to many applications in recently years and gained great success in solving different problems, including scientific problems. However, conventional ML/DL methodologies are purely data-driven which have the limitations, such as need of ample amount of labelled training data, lack of consistency to physical principles, and lack of generalizability to new problems/domains. Recently, there is a growing consensus that ML models need to further take advantage of prior knowledge to deal with these limitations. Physics-informed machine learning, aiming at integration of physics/domain knowledge into ML, has been recognized as an emerging area of research, especially in the recent 2 to 3 years. In this work, physics-informed ML, specifically physics-informed neural network (NN), is employed and implemented to estimate the displacements at x, y, z directions in a solid mechanics problem that is controlled by equilibrium equations with boundary conditions. By incorporating the physics (i.e. the equilibrium equations) into the learning process of NN, it is showed that the NN can be trained very efficiently with a small set of labelled training data. Experiments with different settings of the NN model and the amount of labelled training data were conducted, and the results show that very high accuracy can be achieved in fulfilling the equilibrium equations as well as in predicting the displacements, e.g. in setting the overall displacement of 0.1, a root mean square error (RMSE) of 2.09 × 10−4 was achieved.Keywords: deep learning, neural network, physics-informed machine learning, solid mechanics
Procedia PDF Downloads 15017613 Educating the Education Student: Technology as the Link between Theory and Praxis
Authors: Rochelle Botha-Marais
Abstract:
When lecturing future educators in South Africa, praxis is an indispensable aspect that is often neglected. Without properly understanding how the theory taught in lecture halls relates to their future position as educators, we can not expect these students to be fully equipped future teachers. To enable education students at the Vaal Campus of the North West University - who have the Afrikaans language as major - to discover the link between theory and practice, the author created an assignment on phonetics in which the use of technology was incorporated. In the past, students had to submit an assignment or worksheet and they did not get the opportunity to apply their newly found knowledge in a practical manner. For potential future teachers, this application is essential. This paper will demonstrate how technology is used in the second year Afrikaans education module to promote student engagement and self-directed learning. Students were introduced to innovative new technologies alongside more familiar applications to shape a 21st century learning environment where students can think, communicate, solve problems, collaborate and take responsibility for their own teaching and learning. The paper will also reflect on student feedback pertaining the use and efficiency of technology in the Afrikaans module and the possible impact thereof on their own teaching and learning landscape. The aim of this paper is to showcase how technology can be used to maximize the students learning experience and equip future education students with the tools and knowledge to introduce technology-enhanced learning in their own teaching practice.Keywords: education students, theory and practice, self-directed learning, student engagement, technology
Procedia PDF Downloads 28817612 Learning through Reflective Practice of Nursing Students in the Delivery Room: A Qualitative Research
Authors: Peeranan Wisanskoonwong, Sumitta Sawangtook
Abstract:
Practicum in Midwifery II is the subject that affects most students to be stressed and anxious because they lack of experiences and self-confidence in delivery baby. This study is a qualitative research. That research objectives were (1) to study learning through reflective practice of nursing students (2) to explain the effects of learning through reflective practice of nursing students in the delivery room. The selected key informant method was criterion-based selection. Thirty-two of fourth-year nursing students in Kuakarun Faculty of nursing who practiced in Delivery room at Taksin Hospital in academic year 2014 were selected. Data collection was data triangulation which consisted of in-depth interview, group discussion and reading students’ reflective practice journal. The research instruments were students’ reflective practice journal, semi-structured questionnaires for in-depth interview, group discussion. Data analysis was thematic analysis. The research result found that: The learning method through reflective practice of nursing students in the delivery room were (1) reflective practice journal (2) dialogue (3) critical thinking and problem solving (4) incident analysis (5) self-criticism (6) observation and evaluation of practice. There were eight issues that students learned through their reflective practice were that (1) students' ethics and morality. (2) students' knowledge and comprehension (3) creative thinking of students (4) communications and collaboration (5) experiential learning of students (6) students’memories and impressions (7) students’experience in delivery baby (8) self-learning of students. Learning through reflective practice supported students’ awareness in improving knowledge and learning continuously and systematically. It helped to adjust the attitude to learning and leadership to be careful which help develop their skills, including critical thinking and understand themselves and understand others. Recommendation for applying research results: midwifery and nursing lecturers can apply these results to be a guide for development their clinical teaching in delivery rooms and other wards.Keywords: learning, reflection, birth, qualitative research
Procedia PDF Downloads 28117611 Resources-Based Ontology Matching to Access Learning Resources
Authors: A. Elbyed
Abstract:
Nowadays, ontologies are used for achieving a common understanding within a user community and for sharing domain knowledge. However, the de-centralized nature of the web makes indeed inevitable that small communities will use their own ontologies to describe their data and to index their own resources. Certainly, accessing to resources from various ontologies created independently is an important challenge for answering end user queries. Ontology mapping is thus required for combining ontologies. However, mapping complete ontologies at run time is a computationally expensive task. This paper proposes a system in which mappings between concepts may be generated dynamically as the concepts are encountered during user queries. In this way, the interaction itself defines the context in which small and relevant portions of ontologies are mapped. We illustrate application of the proposed system in the context of Technology Enhanced Learning (TEL) where learners need to access to learning resources covering specific concepts.Keywords: resources query, ontologies, ontology mapping, similarity measures, semantic web, e-learning
Procedia PDF Downloads 31317610 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children
Authors: Budhvin T. Withana, Sulochana Rupasinghe
Abstract:
The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science
Procedia PDF Downloads 11817609 Scalable Learning of Tree-Based Models on Sparsely Representable Data
Authors: Fares Hedayatit, Arnauld Joly, Panagiotis Papadimitriou
Abstract:
Many machine learning tasks such as text annotation usually require training over very big datasets, e.g., millions of web documents, that can be represented in a sparse input space. State-of the-art tree-based ensemble algorithms cannot scale to such datasets, since they include operations whose running time is a function of the input space size rather than a function of the non-zero input elements. In this paper, we propose an efficient splitting algorithm to leverage input sparsity within decision tree methods. Our algorithm improves training time over sparse datasets by more than two orders of magnitude and it has been incorporated in the current version of scikit-learn.org, the most popular open source Python machine learning library.Keywords: big data, sparsely representable data, tree-based models, scalable learning
Procedia PDF Downloads 26517608 Geography Undergraduates 360⁰ Academic Peer Learning And Mentoring 2021 – 2023: A Pilot Study
Authors: N. Ayob, N. C. Nkosi, R. P. Burger, S. J. Piketh, F. Letlaila, O. Maphosa
Abstract:
South African higher tertiary institution have been faced with high dropout rates. About 50 to 60% of first years drop out to due to various reasons one being inadequate academic support. Geography 111 (GEOG 111) module is historically known for having below 50% pass rate, high dropout rate and identified as a first year risk module. For the first time GEOG 111 (2021) on the Mahikeng Campus admitted 150 students pursuing more than 6 different qualifications (BA and BSc) from the Humanities Faculty and FNAS. First year students had difficulties transitioning from secondary to tertiary institutions as we shifted to remote learning while we navigate through the Covid-19 pandemic. The traditional method of teaching does not encourage students to help each other. With remote learning we do not have control over what the students share and perhaps this can be a learning opportunity to embrace peer learning and change the manner in which we assess the students. The purpose of this pilot study was to assist GEOG111 students with academic challenges whilst improving their University experience. This was a qualitative study open to all GEOG111, repeaters, students who are not confident in their Geographical knowledge and never did Geography at high school level. The selected 9 Golden Key International Honour Society Geography mentors attended an academic mentor training program with module lecturers. About 17.6% of the mentees did not have a geography background however, 94% of the mentees passed, 1 mentee had a mark of 38%. 11 of the participants had a mark >60% with one student that excelled 70%. It is evident that mentorship helped students reach their academic potential. Peer learning and mentoring are associated with improved academic performance and allows the students to take charge of their learning and academic experience. Thus an important element as we transform pedagogies at higher learning institutions.Keywords: geography, risk module, peer mentoring, peer learning
Procedia PDF Downloads 15717607 Resin Finishing of Cotton: Teaching and Learning Materials
Authors: C. W. Kan
Abstract:
Cotton is the most commonly used material for apparel purpose because of its durability, good perspiration absorption characteristics, comfort during wear and dyeability. However, proneness to creasing and wrinkling give cotton garments a poor rating during actual wear. Resin finishing is a process to bring out crease or wrinkle free/resistant effect to cotton fabric. Thus, the aim of this study is to illustrate the proper application of resin finishing to cotton fabric, and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.Keywords: learning materials, resin, textiles, wrinkle
Procedia PDF Downloads 25717606 The Lived Experiences of Paramedical Students Engaged in Virtual Hands-on Learning
Authors: Zyra Cheska Hidalgo, Joehiza Mae Renon, Kzarina Buen, Girlie Mitrado
Abstract:
ABSTRACT: The global coronavirus disease (COVID-19) has dramatically impacted the lives of many, including education and our economy. Thus, it presents a massive challenge for medical education as instructors are mandated to deliver their lectures virtually to ensure the continuity of the medical education process and ensure students' safety. The purpose of this research paper is to determine the lived experiences of paramedical students who are engaged in virtual hands-on learning and to determine the different coping strategies they used to deal with virtual hands-on learning. The researchers used the survey method of descriptive research design to determine the lived experiences and coping strategies of twenty (20) paramedical students from Lorma Colleges (particularly the College of Medicine Department). The data were collected through online questionnaires, particularly with the use of google forms. This study shows technical issues, difficulty in adapting styles, distractions and time management issues, mental and physical health issues, and lack of interest and motivation are the most common problems and challenges experienced by paramedical students. On the other hand, the coping strategies used by paramedical students to deal with those challenges include time management, engagement in leisure activities, acceptance of responsibilities, studying, and adapting. With the data gathered, the researchers concluded that virtual hands-on learning effectively increases the knowledge of paramedical students. However, teaching and learning barriers must have to be considered to implement virtual hands-on learning successfully.Keywords: virtual hands-on learning, E-learning, paramedical students, medical education
Procedia PDF Downloads 131