Search results for: prediction of deterioration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2770

Search results for: prediction of deterioration

1240 Ab Initio Study of Structural, Elastic, Electronic and Thermal Properties of Full Heusler

Authors: M. Khalfa, H. Khachai, F. Chiker, K. Bougherara, R. Khenata, G. Murtaza, M. Harmel

Abstract:

A theoretical study of structural, elastic, electronic and thermodynamic properties of Fe2VX, (with X = Al and Ga), were studied by means of the full-relativistic version of the full-potential augmented plane wave plus local orbitals method. For exchange and correlation potential we used both generalized-gradient approximation (GGA) and local-density approximation (LDA). Our calculated ground state properties like as lattice constants, bulk modulus and elastic constants appear more accurate when we employed the GGA rather than the LDA approximation, and these results agree very well with the available experimental and theoretical data. Further, prediction of the thermal effects on some macroscopic properties of Fe2VAl and Fe2VGa are given in this paper using the quasi-harmonic Debye model in which the lattice vibrations are taken into account. We have obtained successfully the variations of the primitive cell volume, volume expansion coefficient, heat capacities and Debye temperature with pressure and temperature in the ranges of 0–40 GPa and 0–1500 K.

Keywords: full Heusler, FP-LAPW, electronic properties, thermal properties

Procedia PDF Downloads 493
1239 Methods for Distinction of Cattle Using Supervised Learning

Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl

Abstract:

Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.

Keywords: genetic data, Pinzgau cattle, supervised learning, machine learning

Procedia PDF Downloads 549
1238 The Role of Land Consolidation to Reduce Soil Degradation in the Czech Republic

Authors: Miroslav Dumbrovsky

Abstract:

The paper deals with positive impacts of land consolidation on decreasing soil degradation with the main emphasis on soil and water conservation in the landscape. The importance of land degradation is very high because of its impact on crop productivity and many other adverse effects. Soil degradation through soil erosion is causing losses in crop productivity and quality of the environment, through decreasing quality of soil and water (especially water resources). Negative effects of conventional farming practices are increased water erosion, as well as crusting and compaction of the topsoil and subsoil. Soil erosion caused by water destructs the soil’s structure, reduces crop productivity due to deterioration in soil physical and chemical properties such as infiltration rate, water holding capacity, loss of nutrients needed for crop production, and loss of soil carbon. Recently, a new process of complex land consolidation in the Czech Republic has provided a unique opportunity for improving the quality of the environment and sustainability of the crop production by means a better soil and water conservation. The present process of the complex land consolidation is not only a reallocation of plots, but this system consists of a new layout of plots within a certain territory, aimed at establishing the integrated land-use economic units, based on the needs of individual landowners and land users. On the other hand, the interests of the general public and the environmental protection have to be solved, too. From the general point of view, a large part of the Czech landscape shall be reconstructed in the course of complex land consolidation projects. These projects will be based on new integrated soil-economic units, spatially arranged in a designed multifunctional system of soil and water conservation measures, such as path network and a territorial system of ecological stability, according to structural changes in agriculture. This new approach will be the basis of a rational economic utilization of the region which will comply with the present ecological and aesthetic demands at present.

Keywords: soil degradation, land consolidation, soil erosion, soil conservation

Procedia PDF Downloads 354
1237 Building a Stochastic Simulation Model for Blue Crab Population Evolution in Antinioti Lagoon

Authors: Nikolaos Simantiris, Markos Avlonitis

Abstract:

This work builds a simulation platform, modeling the spatial diffusion of the invasive species Callinectes sapidus (blue crab) as a random walk, incorporating also generation, fatality, and fishing rates modeling the time evolution of its population. Antinioti lagoon in West Greece was used as a testbed for applying the simulation model. Field measurements from June 2020 to June 2021 on the lagoon’s setting, bathymetry, and blue crab juveniles provided the initial population simulation of blue crabs, as well as biological parameters from the current literature were used to calibrate simulation parameters. The scope of this study is to render the authors able to predict the evolution of the blue crab population in confined environments of the Ionian Islands region in West Greece. The first result of the simulation experiments shows the possibility for a robust prediction for blue crab population evolution in the Antinioti lagoon.

Keywords: antinioti lagoon, blue crab, stochastic simulation, random walk

Procedia PDF Downloads 227
1236 Modeling Sediment Yield Using the SWAT Model: A Case Study of Upper Ankara River Basin, Turkey

Authors: Umit Duru

Abstract:

The Soil and Water Assessment Tool (SWAT) was tested for prediction of water balance and sediment yield in the Ankara gauged basin, Turkey. The overall objective of this study was to evaluate the performance and applicability of the SWAT in this region of Turkey. Thirteen years of monthly stream flow, and suspended sediment, data were used for calibration and validation. This research assessed model performance based on differences between observed and predicted suspended sediment yield during calibration (1987-1996) and validation (1982-1984) periods. Statistical comparisons of suspended sediment produced values for NSE (Nash Sutcliffe efficiency), RE (relative error), and R² (coefficient of determination), of 0.81, -1.55, and 0.93, respectively, during the calibration period, and NSE, RE (%), and R² of 0.77, -2.61, and 0.87, respectively, during the validation period. Based on the analyses, SWAT satisfactorily simulated observed hydrology and sediment yields and can be used as a tool in decision making for water resources planning and management in the basin.

Keywords: calibration, GIS, sediment yield, SWAT, validation

Procedia PDF Downloads 279
1235 Libyan Crude Oil Composition Analysis and Prediction

Authors: Omar Hussein El Ayadi, EmadY. El-Mansouri, Mohamed B. Dozan

Abstract:

Production oil process require specific details i.e. oil composition. Generally, types of oil or differentiation between reservoir fluids depend specifically on composition. The main purpose of this study is to correlate and predict the Libyan oil (reservoir fluid and residual) composition utilizing tri-angle-coordinate plots discovered and tasked with Excel. The reservoir fluid data (61 old + 47 new), the residual oil data (33 new) collected from most of Libyan reservoirs were correlated with each others. Moreover, find a relation between stock tank molecular weight and stock tank oil gravity (oAPI), the molecular weight oh (C7+) versus residual oil gravity (oAPI). The average value of every oil composition was estimated including non-hydrocarbon (H2S, CO2, and N2). Nevertheless, the isomers (i-…) and normal (n-…) structure of (C4) and (C5) were also obtained. The summary of the conclusion is; utilizing excel Microsoft office to draw triangle coordinates to find two unknown component if only one is known. However, it is recommended to use the obtained oil composition plots and equations for any oil composition dependents i.e. optimum separator pressure.

Keywords: PVT, phase behavior, petroleum, chemical engineering

Procedia PDF Downloads 512
1234 3D Numerical Studies on External Aerodynamics of a Flying Car

Authors: Sasitharan Ambicapathy, J. Vignesh, P. Sivaraj, Godfrey Derek Sams, K. Sabarinath, V. R. Sanal Kumar

Abstract:

The external flow simulation of a flying car at take off phase is a daunting task owing to the fact that the prediction of the transient unsteady flow features during its deployment phase is very complex. In this paper 3D numerical simulations of external flow of Ferrari F430 proposed flying car with different NACA 9618 rectangular wings have been carried. Additionally, the aerodynamics characteristics have been generated for optimizing its geometry for achieving the minimum take off velocity with better overall performance in both road and air. The three-dimensional standard k-omega turbulence model has been used for capturing the intrinsic flow physics during the take off phase. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations is employed. Through the detailed parametric analytical studies we have conjectured that Ferrari F430 flying car facilitated with high wings having three different deployment histories during the take off phase is the best choice for accomplishing its better performance for the commercial applications.

Keywords: aerodynamics of flying car, air taxi, negative lift, roadable airplane

Procedia PDF Downloads 417
1233 Strengthening Bridge Piers by Carbon Fiber Reinforced Polymer (CFRP): A Case Study for Thuan Phuoc Suspension Bridge in Vietnam

Authors: Lan Nguyen, Lam Cao Van

Abstract:

Thuan Phuoc is a suspension bridge built in Danang city, Vietnam. Because this bridge locates near the estuary, its structure has degraded rapidly. Many cracks have currently occurred on most of the concrete piers of the curved approach spans. This paper aims to present the results of diagnostic analysis of causes for cracks as well as some calculations for strengthening piers by carbon fiber reinforced polymer (CFRP). Besides, it describes how to use concrete nonlinear analysis software ATENA to diagnostically analyze cracks, strengthening designs. Basing on the results of studying the map of distributing crack on Thuan Phuoc bridge’s concrete piers is analyzed by the software ATENA is suitable for the real conditions and CFRP would be the best solution to strengthen piers in a sound and fast way.

Keywords: ATENA, bridge pier strengthening, carbon fiber reinforced polymer (CFRP), crack prediction analysis

Procedia PDF Downloads 240
1232 Application of a Hybrid Modified Blade Element Momentum Theory/Computational Fluid Dynamics Approach for Wine Turbine Aerodynamic Performances Prediction

Authors: Samah Laalej, Abdelfattah Bouatem

Abstract:

In the field of wind turbine blades, it is complicated to evaluate the aerodynamic performances through experimental measurements as it requires a lot of computing time and resources. Therefore, in this paper, a hybrid BEM-CFD numerical technique is developed to predict power and aerodynamic forces acting on the blades. Computational fluid dynamics (CFD) simulation was conducted to calculate the drag and lift forces through Ansys software using the K-w model. Then an enhanced BEM code was created to predict the power outputs generated by the wind turbine using the aerodynamic properties extracted from the CFD approach. The numerical approach was compared and validated with experimental data. The power curves calculated from this hybrid method were in good agreement with experimental measurements for all velocity ranges.

Keywords: blade element momentum, aerodynamic forces, wind turbine blades, computational fluid dynamics approach

Procedia PDF Downloads 63
1231 Model Based Design and Development of Horticultural Produce Crate from Bamboo

Authors: Sisay Wondmagegn Molla, Mulugeta Admasu Delele, Tadelle Nigusu Mekonen

Abstract:

It is common to observe quality deterioration and mechanical injury of horticulture products as a result of suboptimal design and handling of the packaging systems. Society uses the old and primitive way of handling horticulture products, which is produced through trial and error This method is known to have many limitations on quality, environmental pollution, labor and cost. Ethiopia stands first in bamboo resources in Africa, which is 67 % of the African and 7 % of the world's bamboo resources. The purpose of this project was to design and develop bamboo-based ventilated horticultural produce crates using validated computational fluid dynamics (CFD). The model was used to predict the airflow and temperature distribution inside the loaded crate. The study included: sizing, collection of the thermo-physical properties, and designing and developing a CFD model of the bamboo-based ventilated horticultural crate. The designed crate (40×30×25cm) had a capacity of about 18 kg, and cold air temperature (130C) was used for cooling the fruit. Airflow in the loaded crate is far from uniform. There is a relatively high-velocity flow at the top, near inlet and near outlet sections, and a relatively low airflow near the center of the loaded crate. The predicted velocity variation within the bulk of the produce was relatively large, it was in the range of 0.04-7m/s. The vented produce package contributed the highest cooling airflow resistance. Similar to the airflow, the cooling characteristics of the product were not uniform. There was a difference in the cooling rate of the produce in the airflow direction and from the top to the bottom section of the loaded crate. The products that were located near the inlet side and top of the bulk showed a faster cooling rate than the rest of the bulk. The result showed that the produced volume average temperature was 17.9°C after a cooling period of 3 hr. It was reduced by 12.05°C. The result showed the potential of the CFD modeling approach in developing the bamboo-based design of horticultural produce crates in terms of airflow and heat transfer characteristics.

Keywords: bamboo, modeling, cooling, horticultural, packaging

Procedia PDF Downloads 22
1230 Performance Evaluation of an Inventive Co2 Gas Separation Inorganic Ceramic Membrane System

Authors: Ngozi Claribelle Nwogu, Mohammed Nasir Kajama, Oyoh Kechinyere, Edward Gobina

Abstract:

Atmospheric carbon dioxide emissions are considered as the greatest environmental challenge the world is facing today. The challenges to control the emissions include the recovery of CO2 from flue gas. This concern has been improved due to recent advances in materials process engineering resulting in the development of inorganic gas separation membranes with excellent thermal and mechanical stability required for most gas separations. This paper therefore evaluates the performance of a highly selective inorganic membrane for CO2 recovery applications. Analysis of results obtained is in agreement with experimental literature data. Further results show the prediction performance of the membranes for gas separation and the future direction of research. The materials selection and the membrane preparation techniques are discussed. Method of improving the interface defects in the membrane and its effect on the separation performance has also been reviewed and in addition advances to totally exploit the potential usage of this innovative membrane.

Keywords: carbon dioxide, gas separation, inorganic ceramic membrane, permselectivity

Procedia PDF Downloads 342
1229 Total Plaque Area in Chronic Renal Failure

Authors: Hernán A. Perez, Luis J. Armando, Néstor H. García

Abstract:

Background and aims Cardiovascular disease rates are very high in patients with renal failure (CRF), but the underlying mechanisms are incompletely understood. Traditional cardiovascular risk factors do not explain the increased risk, and observational studies have observed paradoxical or absent associations between classical risk factors and mortality in dialysis patients. A large randomized controlled trial, the 4D Study, the AURORA and the ALERT study found that statin therapy in CRF do not reduce cardiovascular events. These results may be the results of ‘accelerated atherosclerosis’ observed on these patients. The objective of this study was to investigate if carotid total plaque area (TPA), a measure of carotid plaque burden growth is increased at progressively lower creatinine clearance in patients with CRF. We studied a cohort of patients with CRF not on dialysis, reasoning that risk factor associations might be more easily discerned before end stage renal disease. Methods: The Blossom DMO Argentina ethics committee approved the study and informed consent from each participant was obtained. We performed a cohort study in 412 patients with Stage 1, 2 and 3 CRF. Clinical and laboratory data were obtained. TPA was determined using bilateral carotid ultrasonography. Modification of Diet in Renal Disease estimation formula was used to determine renal function. ANOVA was used when appropriate. Results: Stage 1 CRF group (n= 16, 43±2yo) had a blood pressure of 123±2/78±2 mmHg, BMI 30±1, LDL col 145±10 mg/dl, HbA1c 5.8±0.4% and had the lowest TPA 25.8±6.9 mm2. Stage 2 CRF (n=231, 50±1 yo) had a blood pressure of 132±1/81±1 mmHg, LDL col 125±2 mg/dl, HbA1c 6±0.1% and TPA 48±10mm2 ( p< 0.05 vs CRF stage 1) while Stage 3 CRF (n=165, 59±1 yo) had a blood pressure of 134±1/81±1, LDL col 125±3 mg/dl, HbA1c 6±0.1% and TPA 71±6mm2 (p < 0.05 vs CRF stage 1 and 2). Conclusion: Our data indicate that TPA increases along the renal function deterioration, and it is not related with the LDL cholesterol and triglycerides levels. We suggest that mechanisms other than the classics are responsible for the observed excess of cardiovascular disease in CKD patients and finally, determination of total plaque area should be used to measure effects of antiatherosclerotic therapy.

Keywords: hypertension, chronic renal failure, atherosclerosis, cholesterol

Procedia PDF Downloads 269
1228 Circular Bio-economy of Copper and Gold from Electronic Wastes

Authors: Sadia Ilyas, Hyunjung Kim, Rajiv R. Srivastava

Abstract:

Current work has attempted to establish the linkages between circular bio-economy and recycling of copper and gold from urban mine by applying microbial activities instead of the smelter and chemical technologies. Thereafter, based on the potential of microbial approaches and research hypothesis, the structural model has been tested for a significance level of 99%, which is supported by the corresponding standardization co-efficient values. A prediction model applied to determine the recycling impact on circular bio-economy indicates to re-circulate 51,833 tons of copper and 58 tons of gold by 2030 for the production of virgin metals/raw-materials, while recycling rate of the accumulated e-waste remains to be 20%. This restoration volume of copper and gold through the microbial activities corresponds to mitigate 174 million kg CO₂ emissions and 24 million m³ water consumption if compared with the primary production activities. The study potentially opens a new window for environmentally-friendly biotechnological recycling of e-waste urban mine under the umbrella concept of circular bio-economy.

Keywords: urban mining, biobleaching, circular bio-economy, environmental impact

Procedia PDF Downloads 155
1227 Telemedicine and Telemonitoring for Interstitial Lung Disease Patients with Nintedanib

Authors: M. Brockes, S. Beck, A. Sigaroudi, C. Brockes

Abstract:

Over the last years, telemedicine and telemonitoring have become a popular way of treatment, especially in other chronic diseases. Therefore this type of treatment methodology was also implemented in interstitial lung disease (ILD) patients. In January 2024, a new service for patients with interstitial lung disease (ILD) treated with Nintedanib was established, which contains daily telemonitoring (home spirometry, pulse oximetry, and daily level of activity), daily evaluation of parameters as well as a telemedical availability answered by doctors and telemedical specialists throughout 365 days per year. The main motivational points of this service are the early detection of first signs of exacerbations and/or other symptoms/complications as well as easier access to healthcare professionals. The evaluation of the patient’s quality of life and the subjective feeling of safetyness was measured through patient reported experience measurements (PREMs) and patient reported outcome measurements (PROMs). Patients were introduced to the telemedical and telemonitoring service six-months ago. Within this period, every sixty days, the questionnaires were conducted by the scientific employees. Due to the unlimited time frame of the long-term service the evaluation is not completed. The first analysis of patient reported experience measurements (PREMs) and patient reported outcome measurements (PROMs) have shown an increased positive effect on the patients' quality of life as well as an increased positive effect on the subjective feeling of safety at home, plus a reduction and avoidance of secondary damages (e.g., exacerbations, deterioration of typical interstitial lung disease ILD symptoms and pharmaceutical side effects). The first results have shown a tendency that the telemedical treatment combined with telemonitoring at home and the encouragement of patients to actively participate in their healthcare has a positive effect on the patient’s overall well-being and could be implemented as a complementation of the traditional standard of care.

Keywords: avoidance of secondary damages, interstitial lung disease, telemedicine and telemonitoring, subjective feeling of safety

Procedia PDF Downloads 18
1226 Efficient Recommendation System for Frequent and High Utility Itemsets over Incremental Datasets

Authors: J. K. Kavitha, D. Manjula, U. Kanimozhi

Abstract:

Mining frequent and high utility item sets have gained much significance in the recent years. When the data arrives sporadically, incremental and interactive rule mining and utility mining approaches can be adopted to handle user’s dynamic environmental needs and avoid redundancies, using previous data structures, and mining results. The dependence on recommendation systems has exponentially risen since the advent of search engines. This paper proposes a model for building a recommendation system that suggests frequent and high utility item sets over dynamic datasets for a cluster based location prediction strategy to predict user’s trajectories using the Efficient Incremental Rule Mining (EIRM) algorithm and the Fast Update Utility Pattern Tree (FUUP) algorithm. Through comprehensive evaluations by experiments, this scheme has shown to deliver excellent performance.

Keywords: data sets, recommendation system, utility item sets, frequent item sets mining

Procedia PDF Downloads 291
1225 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule

Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu

Abstract:

Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.

Keywords: instance selection, data reduction, MapReduce, kNN

Procedia PDF Downloads 252
1224 Fuzzy Logic Based Fault Tolerant Model Predictive MLI Topology

Authors: Abhimanyu Kumar, Chirag Gupta

Abstract:

This work presents a comprehensive study on the employment of Model Predictive Control (MPC) for a three-phase voltage-source inverter to regulate the output voltage efficiently. The inverter is modeled via the Clarke Transformation, considering a scenario where the load is unknown. An LC filter model is developed, demonstrating its efficacy in Total Harmonic Distortion (THD) reduction. The system, when implemented with fault-tolerant multilevel inverter topologies, ensures reliable operation even under fault conditions, a requirement that is paramount with the increasing dependence on renewable energy sources. The research also integrates a Fuzzy Logic based fault tolerance system which identifies and manages faults, ensuring consistent inverter performance. The efficacy of the proposed methodology is substantiated through rigorous simulations and comparative results, shedding light on the voltage prediction efficiency and the robustness of the model even under fault conditions.

Keywords: total harmonic distortion, fuzzy logic, renewable energy sources, MLI

Procedia PDF Downloads 129
1223 Using Machine Learning to Predict Answers to Big-Five Personality Questions

Authors: Aadityaa Singla

Abstract:

The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.

Keywords: machine learning, personally, big five personality traits, cognitive science

Procedia PDF Downloads 144
1222 Determination of Water Pollution and Water Quality with Decision Trees

Authors: Çiğdem Bakır, Mecit Yüzkat

Abstract:

With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.

Keywords: decision tree, water quality, water pollution, machine learning

Procedia PDF Downloads 78
1221 An Improved Amplified Sway Method for Semi-Rigidly Jointed Sway Frames

Authors: Abdul Hakim Chikho

Abstract:

A simple method of calculating satisfactory of the effect of instability on the distribution of in-plane bending moments in unbraced semi-rigidly multistory steel framed structures is presented in this paper. This method, which is a modified form of the current amplified sway method of BS5950: part1:2000, uses an approximate load factor at elastic instability in each storey of a frame which in turn dependent up on the axial loads acting in the columns. The calculated factors are then used to represent the geometrical deformations due to the presence of axial loads, acting in that storey. Only a first order elastic analysis is required to accomplish the calculation. Comparison of the prediction of the proposed method and the current BS5950 amplified sway method with an accurate second order elastic computation shows that the proposed method leads to predictions which are markedly more accurate than the current approach of BS5950.

Keywords: improved amplified sway method, steel frames, semi-rigid connections, secondary effects

Procedia PDF Downloads 86
1220 Prediction of Permeability of Frozen Unsaturated Soil Using Van Genuchten Model and Fredlund-Xing Model in Soil Vision

Authors: Bhavita S. Dave, Jaimin Vaidya, Chandresh H. Solanki, Atul K.

Abstract:

To measure the permeability of a soil specimen, one of the basic assumptions of Darcy's law is that the soil sample should be saturated. Unlike saturated soils, the permeability of unsaturated soils cannot be found using conventional methods as it does not follow Darcy's law. Many empirical models, such as the Van Genuchten Model and Fredlund-Xing Model were suggested to predict permeability value for unsaturated soil. Such models use data from the soil-freezing characteristic curve to find fitting parameters for frozen unsaturated soils. In this study, soil specimens were subjected to 0, 1, 3, and 5 freezing-thawing (F-T) cycles for different degrees of saturation to have a wide range of suction, and its soil freezing characteristic curves were formulated for all F-T cycles. Changes in fitting parameters and relative permeability with subsequent F-T cycles are presented in this paper for both models.

Keywords: frozen unsaturated soil, Fredlund Xing model, soil-freezing characteristic curve, Van Genuchten model

Procedia PDF Downloads 187
1219 Cost Effective and Efficient Feeding: A Way Forward for Sustainable and Profitable Aquaculture

Authors: Pawan Kumar Sharma, J. Stephan Sampath Kumar, S. Anand, Chandana B. L.

Abstract:

Protein is the major component for the success in culture of shrimp and fishes. Apparently, excess dietary protein is undesirable, as it not only enhances the production cost but also leads to water quality deterioration. A field survey was conducted with aqua farmers of Kerala, India, a leading state in coastal aquaculture, to assess the role of protein component in feed that can be efficiently and effectively managed for sustainable aquaculture. The study showed an average feed amount of 13.55 ± 2.16 tonnes per hectare was being used by the farmers of Kerala. The average feed cost percentage of Rs. 57.76 ± 13.46 /kg was invested for an average protein level of 36.26 % ± 0.082 in the feed and Rs.78.95 ± 3.086 per kilogram of feed was being paid by the farmers. Study revealed that replacement of fish meal and fish oil within shrimp aquafeeds with alternative protein, and lipid sources can only be achieved if changes are made in the basic shrimp culturing practices, such as closed farming system through water recycling or zero-water exchange, and by maximizing in-situ, floc and natural food production within the culture system. The upshot of such production systems is that imports of high-quality feed ingredients and aqua feeds can eventually be eliminated, and the utilization of locally available feed ingredients from agricultural by-products can be greatly improved and maximized. The promotion of closed shrimp production systems would also greatly reduce water use and increase shrimp production per unit area but would necessitate the continuous provision of electricity for aeration during production. Alternative energy sources such as solar power might be used, and resource poor farming communities should also explore wind energy for use. The study concluded that farm made feed and closed farming systems are essential for the sustainability and profitability of the aquaculture industry.

Keywords: aqua feeds, floc, fish meal, protein, zero-water exchange

Procedia PDF Downloads 143
1218 Systematic Review of Quantitative Risk Assessment Tools and Their Effect on Racial Disproportionality in Child Welfare Systems

Authors: Bronwen Wade

Abstract:

Over the last half-century, child welfare systems have increasingly relied on quantitative risk assessment tools, such as actuarial or predictive risk tools. These tools are developed by performing statistical analysis of how attributes captured in administrative data are related to future child maltreatment. Some scholars argue that attributes in administrative data can serve as proxies for race and that quantitative risk assessment tools reify racial bias in decision-making. Others argue that these tools provide more “objective” and “scientific” guides for decision-making instead of subjective social worker judgment. This study performs a systematic review of the literature on the impact of quantitative risk assessment tools on racial disproportionality; it examines methodological biases in work on this topic, summarizes key findings, and provides suggestions for further work. A search of CINAHL, PsychInfo, Proquest Social Science Premium Collection, and the ProQuest Dissertations and Theses Collection was performed. Academic and grey literature were included. The review includes studies that use quasi-experimental methods and development, validation, or re-validation studies of quantitative risk assessment tools. PROBAST (Prediction model Risk of Bias Assessment Tool) and CHARMS (CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies) were used to assess the risk of bias and guide data extraction for risk development, validation, or re-validation studies. ROBINS-I (Risk of Bias in Non-Randomized Studies of Interventions) was used to assess for bias and guide data extraction for the quasi-experimental studies identified. Due to heterogeneity among papers, a meta-analysis was not feasible, and a narrative synthesis was conducted. 11 papers met the eligibility criteria, and each has an overall high risk of bias based on the PROBAST and ROBINS-I assessments. This is deeply concerning, as major policy decisions have been made based on a limited number of studies with a high risk of bias. The findings on racial disproportionality have been mixed and depend on the tool and approach used. Authors use various definitions for racial equity, fairness, or disproportionality. These concepts of statistical fairness are connected to theories about the reason for racial disproportionality in child welfare or social definitions of fairness that are usually not stated explicitly. Most findings from these studies are unreliable, given the high degree of bias. However, some of the less biased measures within studies suggest that quantitative risk assessment tools may worsen racial disproportionality, depending on how disproportionality is mathematically defined. Authors vary widely in their approach to defining and addressing racial disproportionality within studies, making it difficult to generalize findings or approaches across studies. This review demonstrates the power of authors to shape policy or discourse around racial justice based on their choice of statistical methods; it also demonstrates the need for improved rigor and transparency in studies of quantitative risk assessment tools. Finally, this review raises concerns about the impact that these tools have on child welfare systems and racial disproportionality.

Keywords: actuarial risk, child welfare, predictive risk, racial disproportionality

Procedia PDF Downloads 51
1217 Comparison of Solar Radiation Models

Authors: O. Behar, A. Khellaf, K. Mohammedi, S. Ait Kaci

Abstract:

Up to now, most validation studies have been based on the MBE and RMSE, and therefore, focused only on long and short terms performance to test and classify solar radiation models. This traditional analysis does not take into account the quality of modeling and linearity. In our analysis we have tested 22 solar radiation models that are capable to provide instantaneous direct and global radiation at any given location Worldwide. We introduce a new indicator, which we named Global Accuracy Indicator (GAI) to examine the linear relationship between the measured and predicted values and the quality of modeling in addition to long and short terms performance. Note that the quality of model has been represented by the T-Statistical test, the model linearity has been given by the correlation coefficient and the long and short term performance have been respectively known by the MBE and RMSE. An important founding of this research is that the use GAI allows avoiding default validation when using traditional methodology that might results in erroneous prediction of solar power conversion systems performances.

Keywords: solar radiation model, parametric model, performance analysis, Global Accuracy Indicator (GAI)

Procedia PDF Downloads 348
1216 Prediction of the Thermal Parameters of a High-Temperature Metallurgical Reactor Using Inverse Heat Transfer

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study presents an inverse analysis for predicting the thermal conductivities and the heat flux of a high-temperature metallurgical reactor simultaneously. Once these thermal parameters are predicted, the time-varying thickness of the protective phase-change bank that covers the inside surface of the brick walls of a metallurgical reactor can be calculated. The enthalpy method is used to solve the melting/solidification process of the protective bank. The inverse model rests on the Levenberg-Marquardt Method (LMM) combined with the Broyden method (BM). A statistical analysis for the thermal parameter estimation is carried out. The effect of the position of the temperature sensors, total number of measurements and measurement noise on the accuracy of inverse predictions is investigated. Recommendations are made concerning the location of temperature sensors.

Keywords: inverse heat transfer, phase change, metallurgical reactor, Levenberg–Marquardt method, Broyden method, bank thickness

Procedia PDF Downloads 332
1215 The Role of Artificial Intelligence in Concrete Constructions

Authors: Ardalan Tofighi Soleimandarabi

Abstract:

Artificial intelligence has revolutionized the concrete construction industry and improved processes by increasing efficiency, accuracy, and sustainability. This article examines the applications of artificial intelligence in predicting the compressive strength of concrete, optimizing mixing plans, and improving structural health monitoring systems. Artificial intelligence-based models, such as artificial neural networks (ANN) and combined machine learning techniques, have shown better performance than traditional methods in predicting concrete properties. In addition, artificial intelligence systems have made it possible to improve quality control and real-time monitoring of structures, which helps in preventive maintenance and increases the life of infrastructure. Also, the use of artificial intelligence plays an effective role in sustainable construction by optimizing material consumption and reducing waste. Although the implementation of artificial intelligence is associated with challenges such as high initial costs and the need for specialized training, it will create a smarter, more sustainable, and more affordable future for concrete structures.

Keywords: artificial intelligence, concrete construction, compressive strength prediction, structural health monitoring, stability

Procedia PDF Downloads 14
1214 Understanding Water Governance in the Central Rift Valley of Ethiopia: Zooming into Transparency, Accountability, and Participation

Authors: Endalew Jibat, Feyera Senbeta, Tesfaye Zeleke, Fitsum Hagos

Abstract:

Water governance considers multi-sector participation beyond the state; and for sustainable use of water resources, appropriate laws, policies, regulations, and institutions needs to be developed and put in place. Water policy, a critical and integral instrument of water governance, guided water use schemes and ensures equitable water distribution among users. The Ethiopian Central Rift Valley (CRV) is wealthy of water resources, but these water resources are currently under severe strain owing to an imbalance in human-water interactions. The main aim of the study was to examine the state of water resources governance in the CRV of Ethiopia, and the impact of the Ethiopian Water Resources Management Policy on water governance. Key informant interviews (KII), focused group discussions, and document reviews were used to gather data for the study. The NVivo 11 program was used to organize, code, and analyze the data. The results revealed that water resources governance practices such as water allocation and apportionment, comprehensive and integrated water management plans, water resources protection, and conservation activities were rarely implemented. Water resources management policy mechanisms were not fully put in place. Lack of coherence in water policy implementation, absence of clear roles and responsibilities of stakeholders, absence of transparency and accountability in irrigation water service delivery, and lack of meaningful participation of key actors in water governance decision-making were the primary shortcomings observed. Factors such as over-abstraction, deterioration of buffer zone, and chemical erosion from surrounding farming have contributed to the reduction in water volume and quality in the CRV. These challenges have influenced aquatic ecosystem services and threaten the livelihoods of the surrounding communities. Hence, reforms relating to policy coherence and enforcement, stakeholder involvement, water distribution strategies, and the application of water governance principles must be given more emphasis.

Keywords: water resources, irrigation, governance, water allocation, governance principles, stakeholders engagement, central rift valley

Procedia PDF Downloads 91
1213 Prediction of Vapor Liquid Equilibrium for Dilute Solutions of Components in Ionic Liquid by Neural Networks

Authors: S. Mousavian, A. Abedianpour, A. Khanmohammadi, S. Hematian, Gh. Eidi Veisi

Abstract:

Ionic liquids are finding a wide range of applications from reaction media to separations and materials processing. In these applications, Vapor–Liquid equilibrium (VLE) is the most important one. VLE for six systems at 353 K and activity coefficients at infinite dilution 〖(γ〗_i^∞) for various solutes (alkanes, alkenes, cycloalkanes, cycloalkenes, aromatics, alcohols, ketones, esters, ethers, and water) in the ionic liquids (1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [EMIM][BTI], 1-hexyl-3-methyl imidazolium bis (trifluoromethylsulfonyl) imide [HMIM][BTI], 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [OMIM][BTI], and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide [BMPYR][BTI]) have been used to train neural networks in the temperature range from (303 to 333) K. Densities of the ionic liquids, Hildebrant constant of substances, and temperature were selected as input of neural networks. The networks with different hidden layers were examined. Networks with seven neurons in one hidden layer have minimum error and good agreement with experimental data.

Keywords: ionic liquid, neural networks, VLE, dilute solution

Procedia PDF Downloads 299
1212 Estimation of the Drought Index Based on the Climatic Projections of Precipitation of the Uruguay River Basin

Authors: José Leandro Melgar Néris, Claudinéia Brazil, Luciane Teresa Salvi, Isabel Cristina Damin

Abstract:

The impact the climate change is not recent, the main variable in the hydrological cycle is the sequence and shortage of a drought, which has a significant impact on the socioeconomic, agricultural and environmental spheres. This study aims to characterize and quantify, based on precipitation climatic projections, the rainy and dry events in the region of the Uruguay River Basin, through the Standardized Precipitation Index (SPI). The database is the image that is part of the Intercomparison of Model Models, Phase 5 (CMIP5), which provides condition prediction models, organized according to the Representative Routes of Concentration (CPR). Compared to the normal set of climates in the Uruguay River Watershed through precipitation projections, seasonal precipitation increases for all proposed scenarios, with a low climate trend. From the data of this research, the idea is that this article can be used to support research and the responsible bodies can use it as a subsidy for mitigation measures in other hydrographic basins.

Keywords: climate change, climatic model, dry events, precipitation projections

Procedia PDF Downloads 142
1211 Using Geographic Information System and Analytic Hierarchy Process for Detecting Forest Degradation in Benslimane Forest, Morocco

Authors: Loubna Khalile, Hicham Lahlaoi, Hassan Rhinane, A. Kaoukaya, S. Fal

Abstract:

Green spaces is an essential element, they contribute to improving the quality of lives of the towns around them. They are a place of relaxation, walk and rest a playground for sport and youths. According to United Nations Organization Forests cover 31% of the land. In Morocco in 2013 that cover 12.65 % of the total land area, still, a small proportion compared to the natural needs of forests as a green lung of our planet. The Benslimane Forest is a large green area It belongs to Chaouia-Ouardigha Region and Greater Casablanca Region, it is located geographically between Casablanca is considered the economic and business Capital of Morocco and Rabat the national political capital, with an area of 12261.80 Hectares. The essential problem usually encountered in suburban forests, is visitation and tourism pressure it is anthropogenic actions, as well as other ecological and environmental factors. In recent decades, Morocco has experienced a drought year that has influenced the forest with increasing human pressure and every day it suffers heavy losses, as well as over-exploitation. The Moroccan forest ecosystems are weak with intense ecological variation, domanial and imposed usage rights granted to the population; forests are experiencing a significant deterioration due to forgetfulness and immoderate use of forest resources which can influence the destruction of animal habitats, vegetation, water cycle and climate. The purpose of this study is to make a model of the degree of degradation of the forest and know the causes for prevention by using remote sensing and geographic information systems by introducing climate and ancillary data. Analytic hierarchy process was used to find out the degree of influence and the weight of each parameter, in this case, it is found that anthropogenic activities have a fairly significant impact has thus influenced the climate.

Keywords: analytic hierarchy process, degradation, forest, geographic information system

Procedia PDF Downloads 321