Search results for: linked data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26367

Search results for: linked data

24837 Panel Application for Determining Impact of Real Exchange Rate and Security on Tourism Revenues: Countries with Middle and High Level Tourism Income

Authors: M. Koray Cetin, Mehmet Mert

Abstract:

The purpose of the study is to examine impacts on tourism revenues of the exchange rate and country overall security level. There are numerous studies that examine the bidirectional relation between macroeconomic factors and tourism revenues and tourism demand. Most of the studies support the existence of impact of tourism revenues on growth rate but not vice versa. Few studies examine the impact of factors like real exchange rate or purchasing power parity on the tourism revenues. In this context, firstly impact of real exchange rate on tourism revenues examination is aimed. Because exchange rate is one of the main determinants of international tourism services price in guests currency unit. Another determinant of tourism demand for a country is country’s overall security level. This issue can be handled in the context of the relationship between tourism revenues and overall security including turmoil, terrorism, border problem, political violence. In this study, factors are handled for several countries which have tourism revenues on a certain level. With this structure, it is a panel data, and it is evaluated with panel data analysis techniques. Panel data have at least two dimensions, and one of them is time dimensions. The panel data analysis techniques are applied to data gathered from Worldbank data web page. In this study, it is expected to find impacts of real exchange rate and security factors on tourism revenues for the countries that have noteworthy tourism revenues.

Keywords: exchange rate, panel data analysis, security, tourism revenues

Procedia PDF Downloads 353
24836 The Effect of General Data Protection Regulation on South Asian Data Protection Laws

Authors: Sumedha Ganjoo, Santosh Goswami

Abstract:

The rising reliance on technology places national security at the forefront of 21st-century issues. It complicates the efforts of emerging and developed countries to combat cyber threats and increases the inherent risk factors connected with technology. The inability to preserve data securely might have devastating repercussions on a massive scale. Consequently, it is vital to establish national, regional, and global data protection rules and regulations that penalise individuals who participate in immoral technology usage and exploit the inherent vulnerabilities of technology. This study paper seeks to analyse GDPR-inspired Bills in the South Asian Region and determine their suitability for the development of a worldwide data protection framework, considering that Asian countries are much more diversified than European ones. In light of this context, the objectives of this paper are to identify GDPR-inspired Bills in the South Asian Region, identify their similarities and differences, as well as the obstacles to developing a regional-level data protection mechanism, thereby satisfying the need to develop a global-level mechanism. Due to the qualitative character of this study, the researcher did a comprehensive literature review of prior research papers, journal articles, survey reports, and government publications on the aforementioned topics. Taking into consideration the survey results, the researcher conducted a critical analysis of the significant parameters highlighted in the literature study. Many nations in the South Asian area are in the process of revising their present data protection measures in accordance with GDPR, according to the primary results of this study. Consideration is given to the data protection laws of Thailand, Malaysia, China, and Japan. Significant parallels and differences in comparison to GDPR have been discussed in detail. The conclusion of the research analyses the development of various data protection legislation regimes in South Asia.

Keywords: data privacy, GDPR, Asia, data protection laws

Procedia PDF Downloads 84
24835 Characteristics of Phytophthora infestans: The Causal Fungus of Potato Late Blight Disease

Authors: A. E. Elkorany, Eman Elsrgawy

Abstract:

Eighty six isolates of Phytophthora infestans dating back to 2006 were recovered from potato tubers that were on sale in Alexandria markets, Egypt. The isolates were characterized for mating type and colony morphology. Both A1 and A2 mating types were detected in the isolate collection, however, the A2 constituted 5.8% of the total isolates made while the A1 mating type isolates constituted 91.9%. The self-fertile phenotype was also detected but at a lower percentage of 2.3% of the total isolates. This indicated that Mexico, the probable origin of the disease, is no longer the only place where A2 mating type ever exists. The lumpy phenotype was the only trait observed linked to the A2 mating type isolates on rye A agar medium. The self-fertile isolates, however, exhibited colonies of a waxy appearance with little aerial hyphae and the culture were backed full with oospores. The A1 mating colonies were of smooth white abundant aerial hyphae. The metalaxyl resistant isolates were also detected among the analyzed isolates and constituted 4.6% of the total (86) isolates investigated. The appearance of the A2 mating type outside Mexico and the variation revealed in the population of Phytophthora infestans investigated supported the hypothesis of a second worldwide migration of the fungus from its origin which could constitute a threat to potato cultivation around the world.

Keywords: Phytophthora infestans, potato, Egypt, fungus

Procedia PDF Downloads 387
24834 A Web Service Based Sensor Data Management System

Authors: Rose A. Yemson, Ping Jiang, Oyedeji L. Inumoh

Abstract:

The deployment of wireless sensor network has rapidly increased, however with the increased capacity and diversity of sensors, and applications ranging from biological, environmental, military etc. generates tremendous volume of data’s where more attention is placed on the distributed sensing and little on how to manage, analyze, retrieve and understand the data generated. This makes it more quite difficult to process live sensor data, run concurrent control and update because sensor data are either heavyweight, complex, and slow. This work will focus on developing a web service platform for automatic detection of sensors, acquisition of sensor data, storage of sensor data into a database, processing of sensor data using reconfigurable software components. This work will also create a web service based sensor data management system to monitor physical movement of an individual wearing wireless network sensor technology (SunSPOT). The sensor will detect movement of that individual by sensing the acceleration in the direction of X, Y and Z axes accordingly and then send the sensed reading to a database that will be interfaced with an internet platform. The collected sensed data will determine the posture of the person such as standing, sitting and lying down. The system is designed using the Unified Modeling Language (UML) and implemented using Java, JavaScript, html and MySQL. This system allows real time monitoring an individual closely and obtain their physical activity details without been physically presence for in-situ measurement which enables you to work remotely instead of the time consuming check of an individual. These details can help in evaluating an individual’s physical activity and generate feedback on medication. It can also help in keeping track of any mandatory physical activities required to be done by the individuals. These evaluations and feedback can help in maintaining a better health status of the individual and providing improved health care.

Keywords: HTML, java, javascript, MySQL, sunspot, UML, web-based, wireless network sensor

Procedia PDF Downloads 213
24833 Antioxidant Potential and Inhibition of Key Enzymes Linked to Alzheimer's Diseases and Diabetes Mellitus by Monoterpene-Rich Essential Oil from Sideritis Galatica Bornm. Endemic to Turkey

Authors: Gokhan Zengin, Cengiz Sarikurkcu, Abdurrahman Aktumsek, Ramazan Ceylan

Abstract:

The present study was designated to characterize the essential oil from S. galatica (SGEOs) and evaluate its antioxidant and enzyme inhibitory activities. Antioxidant capacity were tested different methods including free radical scavenging (DPPH, ABTS and NO), reducing power (FRAP and CUPRAC), metal chelating and phosphomolybdenum. Inhibitory activities were analyzed on acetylcholiesterase, butrylcholinesterase, α-amylase and α-glucosidase. SGEOs were chemically analyzed and identified by gas chromatography (GC) and gas chromatography/mass spectrophotometry (GC/MS). 23 components, representing 98.1% of SGEOs were identified. Monoterpene hydrocarbons (74.1%), especially α- (23.0%) and β-pinene (32.2%), were the main constituents in SGEOs. The main sesquiterpene hydrocarbons were β-caryophyllene (16.9%), Germacrene-D (1.2%) and Caryophyllene oxide (1.2%), respectively. Generally, SGEOs has shown moderate free radical, reducing power, metal chelating and enzyme inhibitory activities. These activities related to chemical profile in SGEOs. Our findings supported that the possible utility of SGEOs is a source of natural agents for food, cosmetics or pharmaceutical industries.

Keywords: sideritis galatica, antioxidant, monoterpenes, cholinesterase, anti-diabetic

Procedia PDF Downloads 446
24832 Unlocking Health Insights: Studying Data for Better Care

Authors: Valentina Marutyan

Abstract:

Healthcare data mining is a rapidly developing field at the intersection of technology and medicine that has the potential to change our understanding and approach to providing healthcare. Healthcare and data mining is the process of examining huge amounts of data to extract useful information that can be applied in order to improve patient care, treatment effectiveness, and overall healthcare delivery. This field looks for patterns, trends, and correlations in a variety of healthcare datasets, such as electronic health records (EHRs), medical imaging, patient demographics, and treatment histories. To accomplish this, it uses advanced analytical approaches. Predictive analysis using historical patient data is a major area of interest in healthcare data mining. This enables doctors to get involved early to prevent problems or improve results for patients. It also assists in early disease detection and customized treatment planning for every person. Doctors can customize a patient's care by looking at their medical history, genetic profile, current and previous therapies. In this way, treatments can be more effective and have fewer negative consequences. Moreover, helping patients, it improves the efficiency of hospitals. It helps them determine the number of beds or doctors they require in regard to the number of patients they expect. In this project are used models like logistic regression, random forests, and neural networks for predicting diseases and analyzing medical images. Patients were helped by algorithms such as k-means, and connections between treatments and patient responses were identified by association rule mining. Time series techniques helped in resource management by predicting patient admissions. These methods improved healthcare decision-making and personalized treatment. Also, healthcare data mining must deal with difficulties such as bad data quality, privacy challenges, managing large and complicated datasets, ensuring the reliability of models, managing biases, limited data sharing, and regulatory compliance. Finally, secret code of data mining in healthcare helps medical professionals and hospitals make better decisions, treat patients more efficiently, and work more efficiently. It ultimately comes down to using data to improve treatment, make better choices, and simplify hospital operations for all patients.

Keywords: data mining, healthcare, big data, large amounts of data

Procedia PDF Downloads 80
24831 Digital Learning and Entrepreneurship Education: Changing Paradigms

Authors: Shivangi Agrawal, Hsiu-I Ting

Abstract:

Entrepreneurship is an essential source of economic growth and a prominent factor influencing socio-economic development. Entrepreneurship education educates and enhances entrepreneurial activity. This study aims to understand current trends in entrepreneurship education and evaluate the effectiveness of diverse entrepreneurship education programs. An increasing number of universities offer entrepreneurship education courses to create and successfully continue entrepreneurial ventures. Despite the prevalence of entrepreneurship education, research studies lack inconsistency about the effectiveness of entrepreneurship education to promote and develop entrepreneurship. Strategies to develop entrepreneurial attitudes and intentions among individuals are hindered by a lack of understanding of entrepreneurs' educational purposes, components, methodology, and resources required. Lack of adequate entrepreneurship education has been linked with low self-efficacy and lack of entrepreneurial intent. Moreover, in the age of digitisation and during the COVID-19 pandemic, digital learning platforms (e.g., online entrepreneurship education courses and programs) and other digital tools (e.g., digital game-based entrepreneurship education) have become more relevant to entrepreneurship education. This paper contributes to the continuation of academic literature in entrepreneurship education by evaluating and assessing current trends in entrepreneurship education programs, leading to better understanding to reduce gaps between entrepreneurial development requirements and higher education institutions.

Keywords: entrepreneurship education, digital technologies, academic entrepreneurship, COVID-19

Procedia PDF Downloads 267
24830 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features

Authors: Bushra Zafar, Usman Qamar

Abstract:

Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.

Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection

Procedia PDF Downloads 320
24829 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education

Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue

Abstract:

In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.

Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education

Procedia PDF Downloads 111
24828 Foundation of the Information Model for Connected-Cars

Authors: Hae-Won Seo, Yong-Gu Lee

Abstract:

Recent progress in the next generation of automobile technology is geared towards incorporating information technology into cars. Collectively called smart cars are bringing intelligence to cars that provides comfort, convenience and safety. A branch of smart cars is connected-car system. The key concept in connected-cars is the sharing of driving information among cars through decentralized manner enabling collective intelligence. This paper proposes a foundation of the information model that is necessary to define the driving information for smart-cars. Road conditions are modeled through a unique data structure that unambiguously represent the time variant traffics in the streets. Additionally, the modeled data structure is exemplified in a navigational scenario and usage using UML. Optimal driving route searching is also discussed using the proposed data structure in a dynamically changing road conditions.

Keywords: connected-car, data modeling, route planning, navigation system

Procedia PDF Downloads 377
24827 Protection of a Doctor’s Reputation Against the Unjustified Medical Malpractice Allegations

Authors: Anna Wszołek

Abstract:

For a very long time, the doctor-patient relationship had a paternalistic character. The events of the II World War, as well as fast development of the biotechnology and medicine caused an important change in that relationship. Human beings and their dignity were put in the centre of philosophical and legal debate. The increasing frequency of clinical trials led to the emergence of bioethics, which dealt with the topic of the possibilities and boundaries of such research in relation to individual’s autonomy. Thus, there was a transformation from a paternalistic relationship to a more collaborative one in which the patient has more room for self-determination. Today, patients are more and more aware of their rights and the obligations placed on doctors and the health care system, which is linked to an increase in medical malpractice claims. Unfortunately, these claims are not always justified. There is a strong concentration around the topic of patient’s good, however, at the other side there are doctors who feel, on the example of Poland, they might be easily accused and sued for medical malpractice even though they fulfilled their duties. Such situation may have a negative impact on the quality of health care services and patient’s interests. This research is going to present doctor’s perspective on the topic of medical malpractice allegations. It is supposed to show possible damage to a doctor’s reputation caused by frivolous and weakly justified medical malpractice accusations, as well as means to protect this reputation.

Keywords: doctor's reputation, medical malpractice, personal rights, unjustified allegations

Procedia PDF Downloads 94
24826 Sphere in Cube Grid Approach to Modelling of Shale Gas Production Using Non-Linear Flow Mechanisms

Authors: Dhruvit S. Berawala, Jann R. Ursin, Obrad Slijepcevic

Abstract:

Shale gas is one of the most rapidly growing forms of natural gas. Unconventional natural gas deposits are difficult to characterize overall, but in general are often lower in resource concentration and dispersed over large areas. Moreover, gas is densely packed into the matrix through adsorption which accounts for large volume of gas reserves. Gas production from tight shale deposits are made possible by extensive and deep well fracturing which contacts large fractions of the formation. The conventional reservoir modelling and production forecasting methods, which rely on fluid-flow processes dominated by viscous forces, have proved to be very pessimistic and inaccurate. This paper presents a new approach to forecast shale gas production by detailed modeling of gas desorption, diffusion and non-linear flow mechanisms in combination with statistical representation of these processes. The representation of the model involves a cube as a porous media where free gas is present and a sphere (SiC: Sphere in Cube model) inside it where gas is adsorbed on to the kerogen or organic matter. Further, the sphere is considered consisting of many layers of adsorbed gas in an onion-like structure. With pressure decline, the gas desorbs first from the outer most layer of sphere causing decrease in its molecular concentration. The new available surface area and change in concentration triggers the diffusion of gas from kerogen. The process continues until all the gas present internally diffuses out of the kerogen, gets adsorbs onto available surface area and then desorbs into the nanopores and micro-fractures in the cube. Each SiC idealizes a gas pathway and is characterized by sphere diameter and length of the cube. The diameter allows to model gas storage, diffusion and desorption; the cube length takes into account the pathway for flow in nanopores and micro-fractures. Many of these representative but general cells of the reservoir are put together and linked to a well or hydraulic fracture. The paper quantitatively describes these processes as well as clarifies the geological conditions under which a successful shale gas production could be expected. A numerical model has been derived which is then compiled on FORTRAN to develop a simulator for the production of shale gas by considering the spheres as a source term in each of the grid blocks. By applying SiC to field data, we demonstrate that the model provides an effective way to quickly access gas production rates from shale formations. We also examine the effect of model input properties on gas production.

Keywords: adsorption, diffusion, non-linear flow, shale gas production

Procedia PDF Downloads 167
24825 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction

Procedia PDF Downloads 341
24824 Automated Multisensory Data Collection System for Continuous Monitoring of Refrigerating Appliances Recycling Plants

Authors: Georgii Emelianov, Mikhail Polikarpov, Fabian Hübner, Jochen Deuse, Jochen Schiemann

Abstract:

Recycling refrigerating appliances plays a major role in protecting the Earth's atmosphere from ozone depletion and emissions of greenhouse gases. The performance of refrigerator recycling plants in terms of material retention is the subject of strict environmental certifications and is reviewed periodically through specialized audits. The continuous collection of Refrigerator data required for the input-output analysis is still mostly manual, error-prone, and not digitalized. In this paper, we propose an automated data collection system for recycling plants in order to deduce expected material contents in individual end-of-life refrigerating appliances. The system utilizes laser scanner measurements and optical data to extract attributes of individual refrigerators by applying transfer learning with pre-trained vision models and optical character recognition. Based on Recognized features, the system automatically provides material categories and target values of contained material masses, especially foaming and cooling agents. The presented data collection system paves the way for continuous performance monitoring and efficient control of refrigerator recycling plants.

Keywords: automation, data collection, performance monitoring, recycling, refrigerators

Procedia PDF Downloads 168
24823 Characterization of the Catalytic and Structural Roles of the Human Hexokinase 2 in Cancer Progression

Authors: Mir Hussain Nawaz, Lyudmila Nedyalkova, Haizhong Zhu, Wael M. Rabeh

Abstract:

In this study, we aim to biochemically and structurally characterize the interactions of human HK2 with the mitochondria in addition to the role of its N-terminal domain in catalysis and stability of the full-length enzyme. Here, we solved the crystal structure of human HK2 in complex with glucose and glucose-6-phosphate (PDB code: 2NZT), where it is a homodimer with catalytically active N- and C-terminal domains linked by a seven-turn α-helix. Different from the inactive N-terminal domains of isozymes 1 and 3, the N- domain of HK2 not only capable to catalyze a reaction but it is responsible for the thermodynamic stabilizes of the full-length enzyme. Deletion of first α-helix of the N-domain that binds to the mitochondria altered the stability and catalytic activity of the full-length HK2. In addition, we found the linker helix between the N- and C-terminal domains to play an important role in controlling the catalytic activity of the N-terminal domain. HK2 is a major step in the regulation of glucose metabolism in cancer making it an ideal target for the development of new anticancer therapeutics. Characterizing the structural and molecular mechanisms of human HK2 and its role in cancer metabolism will accelerate the design and development of new cancer therapeutics that are safe and cancer specific.

Keywords: cancer metabolism, enzymology, drug discovery, protein stability

Procedia PDF Downloads 267
24822 Prevalence of Burnout among Health Care Workers During Covid-19 Pandemic at a Tertiary Hospital in Mauritius

Authors: Mubarak Jan Beebee Zeba Mahetaab, Sumera Bibi Keenoo

Abstract:

Background: Covid-19 was first reported in Wuhan. On 13th March 2020, WHO declared Covid-19 as a pandemic disease with 140,936 cases globally. The outbreak of covid-19 occurred in over 184 countries, and it created a lot of medical and mental burdens. Aside from the physical problems, the mental health of the medical staff has been of critical concern. Aims and Objectives: To determine the prevalence of burnout among HCW dealing with COVID-19, identify the risk factors and find measures to support their mental health while dealing with the current and future pandemic. Methodology: A cross-sectional study was conducted among the HCW who fought against COVID-19 in SSRN Hospital in Mauritius. The HCWs were recruited using the snowballing sampling technique. Age, gender, job category, income, duration of vacation, working environment and importance of mental health were measured. Results: The prevalence of burnout was highest among HCA. Age had no significant association with pandemic-related burnout. In Mauritius, burnout during the pandemic is linked with lower income and having less vacation days. Conclusion: Burnout is prevalent among healthcare workers working during the Covid-19 Pandemic. Interventions such as psychological counselling, yoga and financial increments need to be implemented to help the healthcare workers.

Keywords: burnout, Covid-19, health care professionals, pandemic

Procedia PDF Downloads 83
24821 Sales Patterns Clustering Analysis on Seasonal Product Sales Data

Authors: Soojin Kim, Jiwon Yang, Sungzoon Cho

Abstract:

As a seasonal product is only in demand for a short time, inventory management is critical to profits. Both markdowns and stockouts decrease the return on perishable products; therefore, researchers have been interested in the distribution of seasonal products with the aim of maximizing profits. In this study, we propose a data-driven seasonal product sales pattern analysis method for individual retail outlets based on observed sales data clustering; the proposed method helps in determining distribution strategies.

Keywords: clustering, distribution, sales pattern, seasonal product

Procedia PDF Downloads 602
24820 Teenage Pregnancy: The Unmet Needs of Female Adolescents in Uganda

Authors: M. Weller Jones, J. Moffat, J. Taylor, J. Hartland, M. Natarajan

Abstract:

Background: Uganda’s teenage pregnancy rate remains a significant problem for female and maternal health in the country. Teenage pregnancy is linked to higher rates of maternal and neonatal mortality and morbidity, including preterm labour, obstructed labour, vesicovaginal fistulae, infections, and maternal mental health morbidity. In 2015, the National Strategy to End Child Marriage and Teenage Pregnancy was launched in Uganda. Research is needed so that the interventions in this Strategy can be effectively applied at a local level. This study at Kitovu and Villa Maria Hospitals, two local community hospitals near Masaka, Uganda, aimed to measure change in the local teenage pregnancy rate over the past 5 years; and to explore the awareness and attitudes of teenagers and healthcare professionals towards 1) teenage pregnancy and, 2) the challenges female adolescents still currently face. Method: Teenage delivery rate, type of delivery, incidence of complications in labour and neonatal and maternal outcomes were collected from the labour ward admission books, at both hospitals, for a six month time period in 2011 and 2016. At Kitovu Hospital, qualitative data regarding the experience of, and attitudes towards teenage pregnancy was collected from interviews conducted with 12 maternity staff members and with eight female teenagers, aged 16-19, who were pregnant or post-partum. Results: The proportion of total births to teenage mothers fell from 14% in 2011 to 7% in 2016 (Kitovu), but it remains higher in rural locations (19%, Villa Maria). Beliefs about exacerbating factors included: poor access to contraception; misconceptions that contraception is damaging to women’s health; failing sex education in schools; and poor awareness of national campaigns to reduce teenage pregnancy. Staff felt that the best way to tackle teenage pregnancy was to improve sex education in schools and to sensitise families to these issues. Six of the eight teenagers wanted more frequent sex education and easier, cheap access to contraception. Only one teenager saw positive consequences stating that teenage pregnancy would ‘avoid operations later in life.’ Discussion: Teenage pregnancy is a recognised problem and strategies in the Masaka region should focus on improving sex education in schools and initiating an organisation that educates and supplies free contraception to teenagers.

Keywords: adolescents, attitudes, teenage pregnancy, Uganda

Procedia PDF Downloads 192
24819 Probability Sampling in Matched Case-Control Study in Drug Abuse

Authors: Surya R. Niraula, Devendra B Chhetry, Girish K. Singh, S. Nagesh, Frederick A. Connell

Abstract:

Background: Although random sampling is generally considered to be the gold standard for population-based research, the majority of drug abuse research is based on non-random sampling despite the well-known limitations of this kind of sampling. Method: We compared the statistical properties of two surveys of drug abuse in the same community: one using snowball sampling of drug users who then identified “friend controls” and the other using a random sample of non-drug users (controls) who then identified “friend cases.” Models to predict drug abuse based on risk factors were developed for each data set using conditional logistic regression. We compared the precision of each model using bootstrapping method and the predictive properties of each model using receiver operating characteristics (ROC) curves. Results: Analysis of 100 random bootstrap samples drawn from the snowball-sample data set showed a wide variation in the standard errors of the beta coefficients of the predictive model, none of which achieved statistical significance. One the other hand, bootstrap analysis of the random-sample data set showed less variation, and did not change the significance of the predictors at the 5% level when compared to the non-bootstrap analysis. Comparison of the area under the ROC curves using the model derived from the random-sample data set was similar when fitted to either data set (0.93, for random-sample data vs. 0.91 for snowball-sample data, p=0.35); however, when the model derived from the snowball-sample data set was fitted to each of the data sets, the areas under the curve were significantly different (0.98 vs. 0.83, p < .001). Conclusion: The proposed method of random sampling of controls appears to be superior from a statistical perspective to snowball sampling and may represent a viable alternative to snowball sampling.

Keywords: drug abuse, matched case-control study, non-probability sampling, probability sampling

Procedia PDF Downloads 495
24818 Health Monitoring of Primates in a Conservation Unit in Brazil

Authors: Elisângela de Albuquerque Sobreira Borovoski, Ricardo Willian Borovoski

Abstract:

Microbiological infections acquired by animals pose a risk to public health. In public health, monitoring the health of primates is linked to the risk of transmission of zoonoses through scratches, bites and contact with biological samples. The project was approved by the Ethics Committee on the Use of Animals Protocol No. 170/2019. It was authorized by ICMBio Protocol No. 52117-1. The study was carried out in the period 2019-2022 in the municipality of Anápolis. Iron and galvanized wire traps were used and the animals were anesthetized with 4.4mg/kg zolethyl intramuscularly and saliva was collected through swabs. Fifty-three capuchin monkeys were captured from the Onofre Quinan Environmental Park in Anápolis-Goiás for health monitoring purposes. In the laboratory, the samples were deposited on the agar surface and seeded by exhaustion to obtain isolated colonies. These colonies were analyzed according to morphocolonial characteristics. Morphometric characterization and biochemical tests for bacterial identification were performed. A total of 861 bacterial samples were isolated, nine of which were strict anaerobic bacteria of the genus Peptostreptococcus. Previous and constant knowledge of the prevalence of pathogenic agents in biological samples is essential to be prepared to act in pandemic situations.

Keywords: Brazil, microbiology, monkeys, public health

Procedia PDF Downloads 79
24817 Bioinformatics High Performance Computation and Big Data

Authors: Javed Mohammed

Abstract:

Right now, bio-medical infrastructure lags well behind the curve. Our healthcare system is dispersed and disjointed; medical records are a bit of a mess; and we do not yet have the capacity to store and process the crazy amounts of data coming our way from widespread whole-genome sequencing. And then there are privacy issues. Despite these infrastructure challenges, some researchers are plunging into bio medical Big Data now, in hopes of extracting new and actionable knowledge. They are doing delving into molecular-level data to discover bio markers that help classify patients based on their response to existing treatments; and pushing their results out to physicians in novel and creative ways. Computer scientists and bio medical researchers are able to transform data into models and simulations that will enable scientists for the first time to gain a profound under-standing of the deepest biological functions. Solving biological problems may require High-Performance Computing HPC due either to the massive parallel computation required to solve a particular problem or to algorithmic complexity that may range from difficult to intractable. Many problems involve seemingly well-behaved polynomial time algorithms (such as all-to-all comparisons) but have massive computational requirements due to the large data sets that must be analyzed. High-throughput techniques for DNA sequencing and analysis of gene expression have led to exponential growth in the amount of publicly available genomic data. With the increased availability of genomic data traditional database approaches are no longer sufficient for rapidly performing life science queries involving the fusion of data types. Computing systems are now so powerful it is possible for researchers to consider modeling the folding of a protein or even the simulation of an entire human body. This research paper emphasizes the computational biology's growing need for high-performance computing and Big Data. It illustrates this article’s indispensability in meeting the scientific and engineering challenges of the twenty-first century, and how Protein Folding (the structure and function of proteins) and Phylogeny Reconstruction (evolutionary history of a group of genes) can use HPC that provides sufficient capability for evaluating or solving more limited but meaningful instances. This article also indicates solutions to optimization problems, and benefits Big Data and Computational Biology. The article illustrates the Current State-of-the-Art and Future-Generation Biology of HPC Computing with Big Data.

Keywords: high performance, big data, parallel computation, molecular data, computational biology

Procedia PDF Downloads 366
24816 Evaluating the Effectiveness of Science Teacher Training Programme in National Colleges of Education: a Preliminary Study, Perceptions of Prospective Teachers

Authors: A. S. V Polgampala, F. Huang

Abstract:

This is an overview of what is entailed in an evaluation and issues to be aware of when class observation is being done. This study examined the effects of evaluating teaching practice of a 7-day ‘block teaching’ session in a pre -service science teacher training program at a reputed National College of Education in Sri Lanka. Effects were assessed in three areas: evaluation of the training process, evaluation of the training impact, and evaluation of the training procedure. Data for this study were collected by class observation of 18 teachers during 9th February to 16th of 2017. Prospective teachers of science teaching, the participants of the study were evaluated based on newly introduced format by the NIE. The data collected was analyzed qualitatively using the Miles and Huberman procedure for analyzing qualitative data: data reduction, data display and conclusion drawing/verification. It was observed that the trainees showed their confidence in teaching those competencies and skills. Teacher educators’ dissatisfaction has been a great impact on evaluation process.

Keywords: evaluation, perceptions & perspectives, pre-service, science teachering

Procedia PDF Downloads 316
24815 Testing a Motivational Model of Physical Education on Contextual Outcomes and Total Moderate to Vigorous Physical Activity of Middle School Students

Authors: Arto Grasten

Abstract:

Given the rising trend in obesity in children and youth, age-related decline in moderate- to- vigorous-intensity physical activity (MVPA) in several Western, African, and Asian countries in addition to limited evidence of behavioral, affective, cognitive outcomes in physical education, it is important to clarify the motivational processes in physical education classes behind total MVPA engagement. The present study examined the full sequence of the Hierarchical Model of Motivation in physical education including motivational climate, basic psychological needs, intrinsic motivation, contextual behavior, affect, cognition, total MVPA, and associated links to body mass index (BMI) and gender differences. A cross-sectional data comprised self-reports and objective assessments of 770 middle school students (Mage = 13.99 ± .81 years, 52% of girls) in North-East Finland. In order to test the associations between motivational climate, psychological needs, intrinsic motivation, cognition, behavior, affect, and total MVPA, a path model was implemented. Indirect effects between motivational climate and cognition, behavior, affect and total MVPA were tested by setting basic needs and intrinsic motivation as mediators into the model. The findings showed that direct and indirect paths for girls and boys associated with different contextual outcomes and girls’ indirect paths were not related with total MVPA. Precisely, task-involving climate-mediated by physical competence and intrinsic motivation related to enjoyment, importance, and graded assessments within girls, whereas task-involving climate associated with enjoyment and importance via competence and autonomy, and total MVPA via autonomy, intrinsic motivation, and importance within boys. Physical education assessments appeared to be essential in motivating students to participate in greater total MVPA. BMI was negatively linked with competence and relatedness only among girls. Although, the current and previous empirical findings supported task-involving teaching methods in physical education, in some cases, ego-involving climate should not be totally avoided. This may indicate that girls and boys perceive physical education classes in a different way. Therefore, both task- and ego-involving teaching practices can be useful ways of driving behavior in physical education classes.

Keywords: achievement goal theory, assessment, enjoyment, hierarchical model of motivation, physical activity, self-determination theory

Procedia PDF Downloads 282
24814 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm

Authors: Sukhleen Kaur

Abstract:

In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.

Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper

Procedia PDF Downloads 415
24813 Generalized Approach to Linear Data Transformation

Authors: Abhijith Asok

Abstract:

This paper presents a generalized approach for the simple linear data transformation, Y=bX, through an integration of multidimensional coordinate geometry, vector space theory and polygonal geometry. The scaling is performed by adding an additional ’Dummy Dimension’ to the n-dimensional data, which helps plot two dimensional component-wise straight lines on pairs of dimensions. The end result is a set of scaled extensions of observations in any of the 2n spatial divisions, where n is the total number of applicable dimensions/dataset variables, created by shifting the n-dimensional plane along the ’Dummy Axis’. The derived scaling factor was found to be dependent on the coordinates of the common point of origin for diverging straight lines and the plane of extension, chosen on and perpendicular to the ’Dummy Axis’, respectively. This result indicates the geometrical interpretation of a linear data transformation and hence, opportunities for a more informed choice of the factor ’b’, based on a better choice of these coordinate values. The paper follows on to identify the effect of this transformation on certain popular distance metrics, wherein for many, the distance metric retained the same scaling factor as that of the features.

Keywords: data transformation, dummy dimension, linear transformation, scaling

Procedia PDF Downloads 301
24812 Blockchain Platform Configuration for MyData Operator in Digital and Connected Health

Authors: Minna Pikkarainen, Yueqiang Xu

Abstract:

The integration of digital technology with existing healthcare processes has been painfully slow, a huge gap exists between the fields of strictly regulated official medical care and the quickly moving field of health and wellness technology. We claim that the promises of preventive healthcare can only be fulfilled when this gap is closed – health care and self-care becomes seamless continuum “correct information, in the correct hands, at the correct time allowing individuals and professionals to make better decisions” what we call connected health approach. Currently, the issues related to security, privacy, consumer consent and data sharing are hindering the implementation of this new paradigm of healthcare. This could be solved by following MyData principles stating that: Individuals should have the right and practical means to manage their data and privacy. MyData infrastructure enables decentralized management of personal data, improves interoperability, makes it easier for companies to comply with tightening data protection regulations, and allows individuals to change service providers without proprietary data lock-ins. This paper tackles today’s unprecedented challenges of enabling and stimulating multiple healthcare data providers and stakeholders to have more active participation in the digital health ecosystem. First, the paper systematically proposes the MyData approach for healthcare and preventive health data ecosystem. In this research, the work is targeted for health and wellness ecosystems. Each ecosystem consists of key actors, such as 1) individual (citizen or professional controlling/using the services) i.e. data subject, 2) services providing personal data (e.g. startups providing data collection apps or data collection devices), 3) health and wellness services utilizing aforementioned data and 4) services authorizing the access to this data under individual’s provided explicit consent. Second, the research extends the existing four archetypes of orchestrator-driven healthcare data business models for the healthcare industry and proposes the fifth type of healthcare data model, the MyData Blockchain Platform. This new architecture is developed by the Action Design Research approach, which is a prominent research methodology in the information system domain. The key novelty of the paper is to expand the health data value chain architecture and design from centralization and pseudo-decentralization to full decentralization, enabled by blockchain, thus the MyData blockchain platform. The study not only broadens the healthcare informatics literature but also contributes to the theoretical development of digital healthcare and blockchain research domains with a systemic approach.

Keywords: blockchain, health data, platform, action design

Procedia PDF Downloads 103
24811 Identifying Reforms Required in Construction Contracts from Resolved Disputed Cases

Authors: K. C. Iyer, Yogita Manan Bindal, Sumit Kumar Bakshi

Abstract:

The construction industry is plagued with disputes and litigation in India with many stalled projects seeking dispute resolution. This has an adverse effect on the performance and overall project delivery and impacts future investments within the industry. While construction industry is the major driver of growth, there has not been major reforms in the government construction contracts. The study is aimed at identifying the proactive means of dispute avoidance, focusing on reforms required within the construction contracts, by studying 49 arbitration awards of construction disputes. The claims presented in the awards are aggregated to study the causes linked to the contract document and are referred against the prospective recommendation and practices as surveyed from literature review of research papers. Within contract administration, record keeping has been a major concern as they are required by the parties to substantiate the claims or the counterclaims and therefore are essential in any dispute redressal process. The study also observes that the right judgment is inhibited when the record keeping is improper and due to lack of coherence between documents, the dispute resolution period is also prolonged. The finding of the research will be relevant to industry practitioners in contract drafting with a view to avoid disputes.

Keywords: construction contract, contract administration, contract management, dispute avoidance

Procedia PDF Downloads 267
24810 Evaluation of Nutritional Potential of Five Unexplored Wild Edible Food Plants from Eastern Himalayan Biodiversity Hotspot Region (India)

Authors: Pallabi Kalita, Hui Tag, Loxmi Jamoh, H. N. Sarma, A. K. Das

Abstract:

Wild edible food plants contain a number of organic phytochemical that have been linked to the promotion of good health. These plants used by the local people of Arunachal Pradesh (Northeast India) are found to have high nutritional potential to maintain general balance diet. A study was conducted to evaluate the nutritional potential of five commonly found, unexplored wild food plants namely, Piper pedicellatum C. DC (leaves), Gonostegia hirta (Blume ex Hassk.) Miq. (leaves), Mussaenda roxburghii Hook. f. (leaves), Solanum spirale Roxb. (leaves and fruits) and Cyathea spinulosa Wall. ex Hook. (pith portion and tender rachis) from East Siang District of Arunachal Pradesh Northeast (India) for ascertaining their suitability for utilization as supplementary food. Results of study revealed that P. pedicellatum, C. spinulosa, and S. spirale (leaves) are the most promising species which have high nutritional content out of the five wild food plants investigated which is required for the normal growth and development of human.

Keywords: wild edible plants, gross energy, Gonostegia hirta, Cyathea spinulosa

Procedia PDF Downloads 335
24809 Intensive Crosstalk between Autophagy and Intracellular Signaling Regulates Osteosarcoma Cell Survival Response under Cisplatin Stress

Authors: Jyothi Nagraj, Sudeshna Mukherjee, Rajdeep Chowdhury

Abstract:

Autophagy has recently been linked with cancer cell survival post drug insult contributing to acquisition of resistance. However, the molecular signaling governing autophagic survival response is poorly explored. In our study, in osteosarcoma (OS) cells cisplatin shock was found to activate both MAPK and autophagy signaling. An activation of JNK and autophagy acted as pro-survival strategy, while ERK1/2 triggered apoptotic signals upon cisplatin stress. An increased sensitivity of the cells to cisplatin was obtained with simultaneous inhibition of both autophagy and JNK pathway. Furthermore, we observed that the autophagic stimulation upon drug stress regulates other developmentally active signaling pathways like the Hippo pathway in OS cells. Cisplatin resistant cells were thereafter developed by repetitive drug exposure followed by clonal selection. Basal levels of autophagy were found to be high in resistant cells to. However, the signaling mechanism leading to autophagic up-regulation and its regulatory effect differed in OS cells upon attaining drug resistance. Our results provide valuable clues to regulatory dynamics of autophagy that can be considered for development of improved therapeutic strategy against resistant type cancers.

Keywords: JNK, autophagy, drug resistance, cancer

Procedia PDF Downloads 294
24808 Using Learning Apps in the Classroom

Authors: Janet C. Read

Abstract:

UClan set collaboration with Lingokids to assess the Lingokids learning app's impact on learning outcomes in classrooms in the UK for children with ages ranging from 3 to 5 years. Data gathered during the controlled study with 69 children includes attitudinal data, engagement, and learning scores. Data shows that children enjoyment while learning was higher among those children using the game-based app compared to those children using other traditional methods. It’s worth pointing out that engagement when using the learning app was significantly higher than other traditional methods among older children. According to existing literature, there is a direct correlation between engagement, motivation, and learning. Therefore, this study provides relevant data points to conclude that Lingokids learning app serves its purpose of encouraging learning through playful and interactive content. That being said, we believe that learning outcomes should be assessed with a wider range of methods in further studies. Likewise, it would be beneficial to assess the level of usability and playability of the app in order to evaluate the learning app from other angles.

Keywords: learning app, learning outcomes, rapid test activity, Smileyometer, early childhood education, innovative pedagogy

Procedia PDF Downloads 74