Search results for: fifth-generation district heating network
5587 System-level Factors, Presidential Coattails and Mass Preferences: Dynamics of Party Nationalization in Contemporary Brazil (1990-2014)
Authors: Kazuma Mizukoshi
Abstract:
Are electoral politics in contemporary Brazil still local in organization and focus? The importance of this question lies in its paradoxical trajectories. First, often coupled with institutional and sociological ‘barriers’ (e.g. the selection and election of candidates relatively loyal to the local party leadership, the predominance of territorialized electoral campaigns, and the resilience of political clientelism), the regionalization of electoral politics has been a viable and practical solution especially for pragmatic politicians in some Latin American countries. On the other hand, some leftist parties that once served as minor opposition forces at the time of foundational or initial elections have certainly expanded vote shares. Some were eventually capable of holding most (if not a majority) legislative seats since the 1990s. Though not yet rigorously demonstrated, theoretically implicit in the rise of leftist parties in legislative elections is the gradual (if not complete) nationalization of electoral support—meaning the growing equality of a party’s vote share across electoral districts and its change over time. This study will develop four hypotheses to explain the dynamics of party nationalization in contemporary Brazil: district magnitude, ethnic and class fractionalization of each district, voting intentions in federal and state executive elections, and finally the left-right stances of electorates. The study will demonstrate these hypotheses by closely working with the Brazilian Electoral Study (2002-2014).Keywords: party nationalization, presidential coattails, Left, Brazil
Procedia PDF Downloads 1385586 Effect of Farmers Field School on Vegetables Production in District Peshawar Khyber Pakhtunkhwa-Pakistan
Authors: Muhammad Zafarullah Khan, Sumeera Abbasi
Abstract:
The Farmers Field School (FFS) aims at benefiting poor farmers by improving their knowledge of existing agricultural technologies and integrated crop management to become independent and confident in their decision. The study on effect of farmer’s field school on vegetables production before and after FFS implementation in district Peshawar in four selected villages on each crop in 2011 was conducted from 80 farmers. The results were compared by using paired t-test. It was observed that 80% of the respondents were satisfied with FFS approach as there was a significant increase in vegetable production. The seed rate of tomato and cucumber decreased from 0.185kg/kanal to 0.1 kg/ kanal and 0.120kg/kanal to 0.01kg/kanal while production of tomato and cucumber were increased from 8158.75kgs/kanal to 1030.25kgs/kanal and 3230kgs/kanal to 5340kgs/kanal, respectively after the activities of FFS. FFS brought a positive effect on vegetable production and technology adoption improving their income, skills and knowledge ultimately lead farmers towards empowerment. The input cost including seed, crop management, FYM, and weedicides for tomato were reduced by Rs.28, Rs. 3170 and Rs.658 and cucumber reduced by Rs.35, Rs.570 and Rs.430. Only fertilizers cost was increased by Rs. 2200 in case of tomato and 465 in case of cucumber. FFS facilitator and coordinator should be more skilled and practical oriented to facilitate poor farmers. In light of the above study, more FFS should be planned so that the more farmers should be benefited.Keywords: effect, farmer field school, vegetables production, integrated crop management
Procedia PDF Downloads 3955585 Cluster Based Ant Colony Routing Algorithm for Mobile Ad-Hoc Networks
Authors: Alaa Eddien Abdallah, Bajes Yousef Alskarnah
Abstract:
Ant colony based routing algorithms are known to grantee the packet delivery, but they suffer from the huge overhead of control messages which are needed to discover the route. In this paper we utilize the network nodes positions to group the nodes in connected clusters. We use clusters-heads only on forwarding the route discovery control messages. Our simulations proved that the new algorithm has decreased the overhead dramatically without affecting the delivery rate.Keywords: ad-hoc network, MANET, ant colony routing, position based routing
Procedia PDF Downloads 4255584 Non-Destructive Testing of Carbon Fiber Reinforced Plastic by Infrared Thermography Methods
Authors: W. Swiderski
Abstract:
Composite materials are one answer to the growing demand for materials with better parameters of construction and exploitation. Composite materials also permit conscious shaping of desirable properties to increase the extent of reach in the case of metals, ceramics or polymers. In recent years, composite materials have been used widely in aerospace, energy, transportation, medicine, etc. Fiber-reinforced composites including carbon fiber, glass fiber and aramid fiber have become a major structural material. The typical defect during manufacture and operation is delamination damage of layered composites. When delamination damage of the composites spreads, it may lead to a composite fracture. One of the many methods used in non-destructive testing of composites is active infrared thermography. In active thermography, it is necessary to deliver energy to the examined sample in order to obtain significant temperature differences indicating the presence of subsurface anomalies. To detect possible defects in composite materials, different methods of thermal stimulation can be applied to the tested material, these include heating lamps, lasers, eddy currents, microwaves or ultrasounds. The use of a suitable source of thermal stimulation on the test material can have a decisive influence on the detection or failure to detect defects. Samples of multilayer structure carbon composites were prepared with deliberately introduced defects for comparative purposes. Very thin defects of different sizes and shapes made of Teflon or copper having a thickness of 0.1 mm were screened. Non-destructive testing was carried out using the following sources of thermal stimulation, heating lamp, flash lamp, ultrasound and eddy currents. The results are reported in the paper.Keywords: Non-destructive testing, IR thermography, composite material, thermal stimulation
Procedia PDF Downloads 2595583 Three-Stage Least Squared Models of a Station-Level Subway Ridership: Incorporating an Analysis on Integrated Transit Network Topology Measures
Authors: Jungyeol Hong, Dongjoo Park
Abstract:
The urban transit system is a critical part of a solution to the economic, energy, and environmental challenges. Furthermore, it ultimately contributes the improvement of people’s quality of lives. For taking these kinds of advantages, the city of Seoul has tried to construct an integrated transit system including both subway and buses. The effort led to the fact that approximately 6.9 million citizens use the integrated transit system every day for their trips. Diagnosing the current transit network is a significant task to provide more convenient and pleasant transit environment. Therefore, the critical objective of this study is to establish a methodological framework for the analysis of an integrated bus-subway network and to examine the relationship between subway ridership and parameters such as network topology measures, bus demand, and a variety of commercial business facilities. Regarding a statistical approach to estimate subway ridership at a station level, many previous studies relied on Ordinary Least Square regression, but there was lack of studies considering the endogeneity issues which might show in the subway ridership prediction model. This study focused on both discovering the impacts of integrated transit network topology measures and endogenous effect of bus demand on subway ridership. It could ultimately contribute to developing more accurate subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers Seoul city in South Korea, and it includes 243 subway stations and 10,120 bus stops with the temporal scope set during twenty-four hours with one-hour interval time panels each. The subway and bus ridership information in detail was collected from the Seoul Smart Card data in 2015 and 2016. First, integrated subway-bus network topology measures which have characteristics regarding connectivity, centrality, transitivity, and reciprocity were estimated based on the complex network theory. The results of integrated transit network topology analysis were compared to subway-only network topology. Also, the non-recursive approach which is Three-Stage Least Square was applied to develop the daily subway ridership model as capturing the endogeneity between bus and subway demands. Independent variables included roadway geometry, commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. Consequently, it was found that network topology measures were significant size effect. Especially, centrality measures showed that the elasticity was a change of 4.88% for closeness centrality, 24.48% for betweenness centrality while the elasticity of bus ridership was 8.85%. Moreover, it was proved that bus demand and subway ridership were endogenous in a non-recursive manner as showing that predicted bus ridership and predicted subway ridership is statistically significant in OLS regression models. Therefore, it shows that three-stage least square model appears to be a plausible model for efficient subway ridership estimation. It is expected that the proposed approach provides a reliable guideline that can be used as part of the spectrum of tools for evaluating a city-wide integrated transit network.Keywords: integrated transit system, network topology measures, three-stage least squared, endogeneity, subway ridership
Procedia PDF Downloads 1775582 Coupling Random Demand and Route Selection in the Transportation Network Design Problem
Authors: Shabnam Najafi, Metin Turkay
Abstract:
Network design problem (NDP) is used to determine the set of optimal values for certain pre-specified decision variables such as capacity expansion of nodes and links by optimizing various system performance measures including safety, congestion, and accessibility. The designed transportation network should improve objective functions defined for the system by considering the route choice behaviors of network users at the same time. The NDP studies mostly investigated the random demand and route selection constraints separately due to computational challenges. In this work, we consider both random demand and route selection constraints simultaneously. This work presents a nonlinear stochastic model for land use and road network design problem to address the development of different functional zones in urban areas by considering both cost function and air pollution. This model minimizes cost function and air pollution simultaneously with random demand and stochastic route selection constraint that aims to optimize network performance via road capacity expansion. The Bureau of Public Roads (BPR) link impedance function is used to determine the travel time function in each link. We consider a city with origin and destination nodes which can be residential or employment or both. There are set of existing paths between origin-destination (O-D) pairs. Case of increasing employed population is analyzed to determine amount of roads and origin zones simultaneously. Minimizing travel and expansion cost of routes and origin zones in one side and minimizing CO emission in the other side is considered in this analysis at the same time. In this work demand between O-D pairs is random and also the network flow pattern is subject to stochastic user equilibrium, specifically logit route choice model. Considering both demand and route choice, random is more applicable to design urban network programs. Epsilon-constraint is one of the methods to solve both linear and nonlinear multi-objective problems. In this work epsilon-constraint method is used to solve the problem. The problem was solved by keeping first objective (cost function) as the objective function of the problem and second objective as a constraint that should be less than an epsilon, where epsilon is an upper bound of the emission function. The value of epsilon should change from the worst to the best value of the emission function to generate the family of solutions representing Pareto set. A numerical example with 2 origin zones and 2 destination zones and 7 links is solved by GAMS and the set of Pareto points is obtained. There are 15 efficient solutions. According to these solutions as cost function value increases, emission function value decreases and vice versa.Keywords: epsilon-constraint, multi-objective, network design, stochastic
Procedia PDF Downloads 6475581 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach
Authors: Riznaldi Akbar
Abstract:
In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.Keywords: debt crisis, external debt, artificial neural network, ANN
Procedia PDF Downloads 4435580 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform
Abstract:
Image recognition, as one of the most critical technologies in computer vision, works to help machine-like robotics understand a scene, that is, if deployed appropriately, will trigger the revolution in remote sensing and industry automation. With the developments of AI technologies, there are many prevailing and sophisticated neural networks as technologies developed for image recognition. However, computer vision platforms as hardware, supporting neural networks for image recognition, as crucial as the neural network technologies, need to be more congruently addressed as the research subjects. In contrast, different computer vision platforms are deterministic to leverage the performance of different neural networks for recognition. In this paper, three different computer vision platforms – Jetson Nano(with 4GB), a standalone laptop(with RTX 3000s, using CUDA), and Google Colab (web-based, using GPU) are explored and four prominent neural network architectures (including AlexNet, VGG(16/19), GoogleNet, and ResNet(18/34/50)), are investigated. In the context of pairwise usage between different computer vision platforms and distinctive neural networks, with the merits of recognition accuracy and time efficiency, the performances are evaluated. In the case study using public imageNets, our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.Keywords: alexNet, VGG, googleNet, resNet, Jetson nano, CUDA, COCO-NET, cifar10, imageNet large scale visual recognition challenge (ILSVRC), google colab
Procedia PDF Downloads 905579 Building Capacity and Personnel Flow Modeling for Operating amid COVID-19
Authors: Samuel Fernandes, Dylan Kato, Emin Burak Onat, Patrick Keyantuo, Raja Sengupta, Amine Bouzaghrane
Abstract:
The COVID-19 pandemic has spread across the United States, forcing cities to impose stay-at-home and shelter-in-place orders. Building operations had to adjust as non-essential personnel worked from home. But as buildings prepare for personnel to return, they need to plan for safe operations amid new COVID-19 guidelines. In this paper we propose a methodology for capacity and flow modeling of personnel within buildings to safely operate under COVID-19 guidelines. We model personnel flow within buildings by network flows with queuing constraints. We study maximum flow, minimum cost, and minimax objectives. We compare our network flow approach with a simulation model through a case study and present the results. Our results showcase various scenarios of how buildings could be operated under new COVID-19 guidelines and provide a framework for building operators to plan and operate buildings in this new paradigm.Keywords: network analysis, building simulation, COVID-19
Procedia PDF Downloads 1605578 Hot Deformability of Si-Steel Strips Containing Al
Authors: Mohamed Yousef, Magdy Samuel, Maha El-Meligy, Taher El-Bitar
Abstract:
The present work is dealing with 2% Si-steel alloy. The alloy contains 0.05% C as well as 0.85% Al. The alloy under investigation would be used for electrical transformation purposes. A heating (expansion) - cooling (contraction) dilation investigation was executed to detect the a, a+g, and g transformation temperatures at the inflection points of the dilation curve. On heating, primary a was detected at a temperature range between room temperature and 687 oC. The domain of a+g was detected in the range between 687 oC and 746 oC. g phase exists in the closed g region at the range between 746 oC and 1043 oC. The domain of a phase appears again at a temperature range between 1043 and 1105 oC, and followed by secondary a at temperature higher than 1105 oC. A physical simulation of thermo-mechanical processing on the as-cast alloy was carried out. The simulation process took into consideration the hot flat rolling pilot plant parameters. The process was executed on the thermo-mechanical simulator (Gleeble 3500). The process was designed to include seven consecutive passes. The 1st pass represents the roughing stage, while the remaining six passes represent finish rolling stage. The whole process was executed at the temperature range from 1100 oC to 900 oC. The amount of strain starts with 23.5% at the roughing pass and decreases continuously to reach 7.5 % at the last finishing pass. The flow curve of the alloy can be abstracted from the stress-strain curves representing simulated passes. It shows alloy hardening from a pass to the other up to pass no. 6, as a result of decreasing the deformation temperature and increasing of cumulative strain. After pass no. 6, the deformation process enhances the dynamic recrystallization phenomena to appear, where the z-parameter would be high.Keywords: si- steel, hot deformability, critical transformation temperature, physical simulation, thermo-mechanical processing, flow curve, dynamic softening.
Procedia PDF Downloads 2455577 Crop Productivity, Nutrient Uptake and Apparent Balance for Rice Based Cropping Systems under Improved Crop Varieties and Nutrient Management Practices in Previous Enclaves of Bangladesh
Authors: Md. Samim Hossain Molla, Md. Mazharul Anwar, Md. Akkas Ali, Mian Sayeed Hassan
Abstract:
Being detached about 68 years from the mainland, the previous enclaves’ (Chhitmohal) farmers were engaged only in subsistence farming with low agricultural productivity and restricted access to inputs technology. To increase crop productivity for attaining food security by addressing soil status, the experiments were undertaken in 2017 and 2018 in three previous enclaves of Northern Bangladesh i.e. Dasiarchhara of Kurigram district; Dahalakhagrabari of Panchagarh district and Banskata of Lalmonirhat district under On-Farm Research Division, Bangladesh Agricultural Research Institute, Rangpur. The Mustard (var. BARI Sarisha-14)-Boro rice (var. BRRI dhan58)-T. Aman rice (var. BRRI dhan49) cropping pattern using soil test based (STB) fertilizer with cowdung (T1) or recommended fertilizer dose (T2) were tested against existing cropping pattern Fallow-Boro rice (var. BRRI dhan28)-T. Aman rice (var. Swarna) using farmers’ practices fertilizer dose (T3) in six disperse replications at each location maintaining Randomized Complete Block design. Almost all crops yields were relatively higher in T1 followed by T2. Farmers existing pattern with local varieties and imbalance fertilizer (T3) use may be decreased the crop yield. The rice equivalent yield of T1 was 109, 103 and 95% higher than T3 and the gross margin was 164, 153 and 133% higher in T1 than T3 at Dasiarchhara, Dahalakhagrabari and Banskata, respectively. The Benefit Cost Ratio for T1, T2 and T3 were 1.99, 1.78 and 1.28 in Dasiarchhara; 1.93, 1.81 and 1.27 in Dahalakhagrabari and 1.78, 1.71 and 1.25 in Banskata, respectively. There was a remarkable decrease in mineral N, P and K in the topsoil (0–15 cm) of T3 and T2 treatments at Dasiarchhara and Dahalakhagrabari, and a generally less marked decline under the same treatments at Banskata. The same practices (T1) exhibited the greatest nutrients uptake by the test crops. The apparent balance of N, P and K was negative in most cases, where it was less negative in T1 treatment. However, from the experimentation, it is revealed that balanced fertilization (STB) and inclusion of National Agricultural Research Institutes developed improved crops varieties in cropping pattern may increase the crop productivity, farm efficiency and farmer’s income in a remarkable level.Keywords: cropping pattern, fertilizer management, nutrient balance, previous enclaves
Procedia PDF Downloads 1455576 Assessment of the Adoption and Distribution Pattern of Agroforestry in Faisalabad District Using GIS
Authors: Irfan Ahmad, Raza Ghafoor, Hammad Raza Ahmad, Muhammad Asif, Farrakh Nawaz, M. Tahir Siddiqui
Abstract:
Due to the exploding population of Pakistan the pressure on natural forests is increasing to meet the demands of wood and wood based products. Agroforestry is being practiced throughout the world on scientific basis but unfortunately the farmers of Pakistan are reluctant in its adoption. The presents study was designed to assess the adoption of agroforestry practices in Faisalabad with respect to land holdings of farmers and future suitability by using Geographic information system (GIS). Faisalabad is the third largest city of the country and is famous due to the textile industry. A comprehensive survey from target villages of the Lyallpur town of Faisalabad district was carried out. Out of total 65 villages, 40 were selected for study. From each selected village, one farmer who was actively engaged in farming activities was selected. It was observed that medium sized farmers having 10-20 acre were more in number as compared to small and large farmers. Number of trees was found maximum in large farm lands, ratio of diseased trees was almost similar in all categories with maximum in small farmlands (24.1%). Regarding the future prospects 35% farmer were interested in agroforestry practices 65% were not interested in the promotion of trees due to the non-availability of technical guidance and proper markets. Geographic images of the study site can further help the researchers and policy makers in the promotion of agroforestry.Keywords: agroforestry trends, adoption, Faisalabad, geographic information system (GIS)
Procedia PDF Downloads 5045575 Prevalence and Associated Factors of Attention Deficit Hyperactivity Disorder among Children Age 6 to 17 Years Old Living in Girja District, Oromia Regional State, Rural Ethiopia: Community Based Cross-Sectional Study
Authors: Hirbaye Mokona, Abebaw Gebeyehu, Aemro Zerihun
Abstract:
Introduction: Attention deficit hyperactivity disorder is serious public health problem affecting millions of children throughout the world. Method: A cross-sectional study conducted from May to June 2015 among children age 6 to 17 years living in rural area of Girja district. Multi-stage cluster sampling technique was used to select 1302 study participants. Disruptive Behavior Disorder rating scale was used to collect the data. Data were coded, entered and cleaned by Epi-Data version 3.1 and analyzed by SPSS version 20. Logistic regression analysis was used and Variables that have P-values less than 0.05 on multivariable logistic regression was considered as statistically significant. Results: Prevalence of Attention deficit hyperactivity disorder (ADHD) among children age 6 to 17 years was 7.3%. Being male [AOR=1.81, 95%CI: (1.13, 2.91)]; living with single parent [AOR=5.0, 95%CI: (2.35, 10.65)]; child birth order/rank [AOR=2.35, 95%CI: (1.30, 4.25)]; low family socio-economic status [AOR= 2.43, 95%CI: (1.29, 4.59)]; maternal alcohol/khat use during pregnancy [AOR=3.14, 95%CI: (1.37, 7.37)] and complication at delivery [AOR=3.56, 95%CI: (1.19, 10.64)] were more likely to develop Attention deficit hyperactivity disorder. Conclusion: In this study, the prevalence of Attention deficit hyperactivity disorder was similar with worldwide prevalence. Prevention and early management of its modifiable risk factors should be carryout alongside increasing community awareness.Keywords: attention deficit hyperactivity disorder, ADHD, associated factors, children, prevalence
Procedia PDF Downloads 1865574 Multilabel Classification with Neural Network Ensemble Method
Authors: Sezin Ekşioğlu
Abstract:
Multilabel classification has a huge importance for several applications, it is also a challenging research topic. It is a kind of supervised learning that contains binary targets. The distance between multilabel and binary classification is having more than one class in multilabel classification problems. Features can belong to one class or many classes. There exists a wide range of applications for multi label prediction such as image labeling, text categorization, gene functionality. Even though features are classified in many classes, they may not always be properly classified. There are many ensemble methods for the classification. However, most of the researchers have been concerned about better multilabel methods. Especially little ones focus on both efficiency of classifiers and pairwise relationships at the same time in order to implement better multilabel classification. In this paper, we worked on modified ensemble methods by getting benefit from k-Nearest Neighbors and neural network structure to address issues within a beneficial way and to get better impacts from the multilabel classification. Publicly available datasets (yeast, emotion, scene and birds) are performed to demonstrate the developed algorithm efficiency and the technique is measured by accuracy, F1 score and hamming loss metrics. Our algorithm boosts benchmarks for each datasets with different metrics.Keywords: multilabel, classification, neural network, KNN
Procedia PDF Downloads 1555573 Effect of Flux Salts on the Recovery Extent and Quality of Metal Values from Spent Rechargeable Lead Batteries
Authors: Mahmoud A Rabah, Sabah M. Abelbasir
Abstract:
Lead-calcium alloy containing up to 0.10% calcium was recovered from spent rechargeable sealed acid lead batteries. Two techniques were investigated to explore the effect of flux salts on the extent and quality of the recovered alloy, pyro-metallurgical and electrochemical methods. About 10 kg of the spent batteries were collected for testing. The sample was washed with hot water and dried. The plastic cases of the batteries were mechanically cut, and the contents were dismantled manually, the plastic containers were shredded for recycling. The electrode plates were freed from the loose powder and placed in SiC crucible and covered with alkali chloride salts. The loaded crucible was heated in an electronically controlled chamber furnace type Nabertherm C3 at temperatures up to 800 °C. The obtained metals were analyzed. The effect of temperature, rate of heating, atmospheric conditions, composition of the flux salts on the extent and quality of the recovered products were studied. Results revealed that the spent rechargeable batteries contain 6 blocks of 6 plates of Pb-Ca alloy each. Direct heating of these plates in a silicon carbide crucible under ambient conditions produces lead metal poor in calcium content ( < 0.07%) due to partial oxidation of the alloying calcium element. Rate of temperature increase has a considerable effect on the yield of the lead alloy extraction. Flux salts composition benefits the recovery process. Sodium salts are more powerful as compared to potassium salts. Lead calcium alloy meeting the standard specification was successfully recovered from the spent rechargeable acid lead batteries with a very competitive cost to the same alloy prepared from primary resources.Keywords: rechargeable lead batteries, lead-calcium alloy, waste recovery, flux salts, thermal recovery
Procedia PDF Downloads 3735572 A Novel Approach of NPSO on Flexible Logistic (S-Shaped) Model for Software Reliability Prediction
Authors: Pooja Rani, G. S. Mahapatra, S. K. Pandey
Abstract:
In this paper, we propose a novel approach of Neural Network and Particle Swarm Optimization methods for software reliability prediction. We first explain how to apply compound function in neural network so that we can derive a Flexible Logistic (S-shaped) Growth Curve (FLGC) model. This model mathematically represents software failure as a random process and can be used to evaluate software development status during testing. To avoid trapping in local minima, we have applied Particle Swarm Optimization method to train proposed model using failure test data sets. We drive our proposed model using computational based intelligence modeling. Thus, proposed model becomes Neuro-Particle Swarm Optimization (NPSO) model. We do test result with different inertia weight to update particle and update velocity. We obtain result based on best inertia weight compare along with Personal based oriented PSO (pPSO) help to choose local best in network neighborhood. The applicability of proposed model is demonstrated through real time test data failure set. The results obtained from experiments show that the proposed model has a fairly accurate prediction capability in software reliability.Keywords: software reliability, flexible logistic growth curve model, software cumulative failure prediction, neural network, particle swarm optimization
Procedia PDF Downloads 3445571 An AI-Based Dynamical Resource Allocation Calculation Algorithm for Unmanned Aerial Vehicle
Authors: Zhou Luchen, Wu Yubing, Burra Venkata Durga Kumar
Abstract:
As the scale of the network becomes larger and more complex than before, the density of user devices is also increasing. The development of Unmanned Aerial Vehicle (UAV) networks is able to collect and transform data in an efficient way by using software-defined networks (SDN) technology. This paper proposed a three-layer distributed and dynamic cluster architecture to manage UAVs by using an AI-based resource allocation calculation algorithm to address the overloading network problem. Through separating services of each UAV, the UAV hierarchical cluster system performs the main function of reducing the network load and transferring user requests, with three sub-tasks including data collection, communication channel organization, and data relaying. In this cluster, a head node and a vice head node UAV are selected considering the Central Processing Unit (CPU), operational (RAM), and permanent (ROM) memory of devices, battery charge, and capacity. The vice head node acts as a backup that stores all the data in the head node. The k-means clustering algorithm is used in order to detect high load regions and form the UAV layered clusters. The whole process of detecting high load areas, forming and selecting UAV clusters, and moving the selected UAV cluster to that area is proposed as offloading traffic algorithm.Keywords: k-means, resource allocation, SDN, UAV network, unmanned aerial vehicles
Procedia PDF Downloads 1115570 Fault Location Detection in Active Distribution System
Authors: R. Rezaeipour, A. R. Mehrabi
Abstract:
Recent increase of the DGs and microgrids in distribution systems, disturbs the tradition structure of the system. Coordination between protection devices in such a system becomes the concern of the network operators. This paper presents a new method for fault location detection in the active distribution networks, independent of the fault type or its resistance. The method uses synchronized voltage and current measurements at the interconnection of DG units and is able to adapt to changes in the topology of the system. The method has been tested on a 38-bus distribution system, with very encouraging results.Keywords: fault location detection, active distribution system, micro grids, network operators
Procedia PDF Downloads 7895569 Maximum Power Point Tracking for Small Scale Wind Turbine Using Multilayer Perceptron Neural Network Implementation without Mechanical Sensor
Authors: Piyangkun Kukutapan, Siridech Boonsang
Abstract:
The article proposes maximum power point tracking without mechanical sensor using Multilayer Perceptron Neural Network (MLPNN). The aim of article is to reduce the cost and complexity but still retain efficiency. The experimental is that duty cycle is generated maximum power, if it has suitable qualification. The measured data from DC generator, voltage (V), current (I), power (P), turnover rate of power (dP), and turnover rate of voltage (dV) are used as input for MLPNN model. The output of this model is duty cycle for driving the converter. The experiment implemented using Arduino Uno board. This diagram is compared to MPPT using MLPNN and P&O control (Perturbation and Observation control). The experimental results show that the proposed MLPNN based approach is more efficiency than P&O algorithm for this application.Keywords: maximum power point tracking, multilayer perceptron netural network, optimal duty cycle, DC generator
Procedia PDF Downloads 3255568 Factors Influencing the Uptake of Family Planning Services among Young People (18-24 Years) at Community Level in Rural Budaka District, Uganda
Authors: Mathew Nyashanu, George K. Kiggundu, Mandu S. Ekpenyong
Abstract:
There is an increased number of young people engaging in early sexual relationships worldwide. Furthermore, statistics for early pregnancy among young people have also increased, especially in low and middle-income countries. This has health implications for both the parents and the baby. High uptake in family planning contraception among young people can reduce early pregnancy and subsequent negative health outcomes on the young parents and the baby. This study was set to explore the factors influencing the uptake of family planning contraceptive services among young people (18-24 years) at a community level in rural Budaka district, Uganda. The study utilised an explorative qualitative approach. The study found out that religion, partner resistance; perceived loss of libido, perceived barren, long waiting time and distance from the health facility, lack of privacy/confidentiality, excessive menstrual bleeding, cancer, and fear of having disabled babies, limited the utilisation of family planning contraceptive services while contraception as HIV prevention and child spacing encouraged young people to use family planning contraceptive services. There is a need for a culturally orientated community-based contraceptive health promotion approach to increase the uptake of family planning contraception services among young people.Keywords: Young people, Family Planning, Contraceptives, Black sub-Sahara African
Procedia PDF Downloads 1375567 Recognition of Tifinagh Characters with Missing Parts Using Neural Network
Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui
Abstract:
In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.Keywords: Tifinagh character recognition, neural networks, local cost computation, ANN
Procedia PDF Downloads 3345566 A Survey on Traditional Mac Layer Protocols in Cognitive Wireless Mesh Networks
Authors: Anusha M., V. Srikanth
Abstract:
Maximizing spectrum usage and numerous applications of the wireless communication networks have forced to a high interest of available spectrum. Cognitive Radio control its receiver and transmitter features exactly so that they can utilize the vacant approved spectrum without impacting the functionality of the principal licensed users. The Use of various channels assists to address interferences thereby improves the whole network efficiency. The MAC protocol in cognitive radio network explains the spectrum usage by interacting with multiple channels among the users. In this paper we studied about the architecture of cognitive wireless mesh network and traditional TDMA dependent MAC method to allocate channels dynamically. The majority of the MAC protocols suggested in the research are operated on Common-Control-Channel (CCC) to handle the services between Cognitive Radio secondary users. In this paper, an extensive study of Multi-Channel Multi-Radios or frequency range channel allotment and continually synchronized TDMA scheduling are shown in summarized way.Keywords: TDMA, MAC, multi-channel, multi-radio, WMN’S, cognitive radios
Procedia PDF Downloads 5615565 Delay in the Diagnosis of Tuberculosis and Initiation of TB Treatment in the Private and Public Health Sectors, Udaipur District, Rajasthan, India, Nov 2013
Authors: Yogita Tulsian, R. S. Gupta, K. F. Laserson
Abstract:
Background: Delays in the diagnosis and treatment of TB facilitates disease transmission in the community, so we conducted a study to evaluate the burden of and risk factors for delay in TB diagnosis and initiation of TB treatment among patients in the private and public sectors in Udaipur district, Rajasthan, India. Methods: A retrospective cohort study was conducted among 100 new sputum-positive TB. Patients were interviewed in the intensive phase of treatment September 2013-November 2013 Long total diagnosis delay (TDD) was defined as a time interval between first symptom to confirmed diagnosis > 30 days. Long health treatment delay (HTD) was defined as a time interval between confirmed diagnosis to treatment initiation > 7 days. Results: We observed a median TDD of 55 days (range: 7-136 days) in the public sector and of 92 days (11-380 days) in the private sector. Long TDD in the private sector was significantly associated with middle-higher socio-economic status (Risk Ratio (RR): 2;95% CI: 1.3-3). The reasons reported from the private sector for long TDD were suspect TB patients not advised for sputum examination (RR: 42; 95% CI:2.6-660), practise of self-medication (RR: 17.4; 95% CI: 1.1-267), or lack of awareness (RR: 9.7;95% CI: 0.6-145). The median HTD in the public sector was 3 days (range: 0-14 days), and in the private sector, 2 days (range: 0-11 days) (non-significant difference). Conclusions: Long TDD in private sector may be improved through sputum referral for all suspect TB cases and better education to all regarding TB.Keywords: diagnosis delay, treatment delay, privatesector, public sector
Procedia PDF Downloads 4275564 Water Demand Modelling Using Artificial Neural Network in Ramallah
Authors: F. Massri, M. Shkarneh, B. Almassri
Abstract:
Water scarcity and increasing water demand especially for residential use are major challenges facing Palestine. The need to accurately forecast water consumption is useful for the planning and management of this natural resource. The main objective of this paper is to (i) study the major factors influencing the water consumption in Palestine, (ii) understand the general pattern of Household water consumption, (iii) assess the possible changes in household water consumption and suggest appropriate remedies and (iv) develop prediction model based on the Artificial Neural Network to the water consumption in Palestinian cities. The paper is organized in four parts. The first part includes literature review of household water consumption studies. The second part concerns data collection methodology, conceptual frame work for the household water consumption surveys, survey descriptions and data processing methods. The third part presents descriptive statistics, multiple regression and analysis of the water consumption in the two Palestinian cities. The final part develops the use of Artificial Neural Network for modeling the water consumption in Palestinian cities.Keywords: water management, demand forecasting, consumption, ANN, Ramallah
Procedia PDF Downloads 2195563 Research on “Three Ports in One” Comprehensive Transportation System of Sea, Land and Airport in Nantong City under the Background of a New Round of Territorial Space Planning
Authors: Ying Sun, Yuxuan Lei
Abstract:
Based on the analysis of the current situation of Nantong's comprehensive transportation system, the interactive relationship between the transportation system and the economy and society is clarified, and then the development strategy for the planning and implementation of the "three ports in one" comprehensive transportation system of ocean, land, and airport is proposed for this round of territorial spatial planning. The research findings are as follows: (1) The comprehensive transportation network system of Nantong City is beginning to take shape, but the lack of a unified and complete system planning makes it difficult to establish a "multi-port integration" pattern with transportation hubs. (2) At the Yangtze River Delta level and Nantong City level, a connected transport node integrating ocean, land, and airport should be built in the transportation construction planning to effectively meet the guidance of the overall territorial space planning of Nantong City. (3) Nantong's comprehensive transportation system and economic society have experienced three interactive development relations in different stages: mutual promotion, geographical separation, and high-level driving. Therefore, the current planning of Nantong's comprehensive transportation system needs to be optimized. The four levels of Nantong city, Shanghai metropolitan area, Yangtze River Delta, and each district, county, and city should be comprehensively considered, and the four development strategies of accelerating construction, dislocation development, active docking, and innovative implementation should be adopted.Keywords: master plan for territorial space, Integrated transportation system, Nantong, sea, land and air, "Three ports in one"
Procedia PDF Downloads 1465562 A Highly Efficient Broadcast Algorithm for Computer Networks
Authors: Ganesh Nandakumaran, Mehmet Karaata
Abstract:
A wave is a distributed execution, often made up of a broadcast phase followed by a feedback phase, requiring the participation of all the system processes before a particular event called decision is taken. Wave algorithms with one initiator such as the 1-wave algorithm have been shown to be very efficient for broadcasting messages in tree networks. Extensions of this algorithm broadcasting a sequence of waves using a single initiator have been implemented in algorithms such as the m-wave algorithm. However as the network size increases, having a single initiator adversely affects the message delivery times to nodes further away from the initiator. As a remedy, broadcast waves can be allowed to be initiated by multiple initiator nodes distributed across the network to reduce the completion time of broadcasts. These waves initiated by one or more initiator processes form a collection of waves covering the entire network. Solutions to global-snapshots, distributed broadcast and various synchronization problems can be solved efficiently using waves with multiple concurrent initiators. In this paper, we propose the first stabilizing multi-wave sequence algorithm implementing waves started by multiple initiator processes such that every process in the network receives at least one sequence of broadcasts. Due to being stabilizing, the proposed algorithm can withstand transient faults and do not require initialization. We view a fault as a transient fault if it perturbs the configuration of the system but not its program.Keywords: distributed computing, multi-node broadcast, propagation of information with feedback and cleaning (PFC), stabilization, wave algorithms
Procedia PDF Downloads 5045561 The Omicron Variant BA.2.86.1 of SARS- 2 CoV-2 Demonstrates an Altered Interaction Network and Dynamic Features to Enhance the Interaction with the hACE2
Authors: Taimur Khan, Zakirullah, Muhammad Shahab
Abstract:
The SARS-CoV-2 variant BA.2.86 (Omicron) has emerged with unique mutations that may increase its transmission and infectivity. This study investigates how these mutations alter the Omicron receptor-binding domain's interaction network and dynamic properties (RBD) compared to the wild-type virus, focusing on its binding affinity to the human ACE2 (hACE2) receptor. Protein-protein docking and all-atom molecular dynamics simulations were used to analyze structural and dynamic differences. Despite the structural similarity to the wild-type virus, the Omicron variant exhibits a distinct interaction network involving new residues that enhance its binding capacity. The dynamic analysis reveals increased flexibility in the RBD, particularly in loop regions crucial for hACE2 interaction. Mutations significantly alter the secondary structure, leading to greater flexibility and conformational adaptability compared to the wild type. Binding free energy calculations confirm that the Omicron RBD has a higher binding affinity (-70.47 kcal/mol) to hACE2 than the wild-type RBD (-61.38 kcal/mol). These results suggest that the altered interaction network and enhanced dynamics of the Omicron variant contribute to its increased infectivity, providing insights for the development of targeted therapeutics and vaccines.Keywords: SARS-CoV-2, molecular dynamic simulation, receptor binding domain, vaccine
Procedia PDF Downloads 225560 DCDNet: Lightweight Document Corner Detection Network Based on Attention Mechanism
Authors: Kun Xu, Yuan Xu, Jia Qiao
Abstract:
The document detection plays an important role in optical character recognition and text analysis. Because the traditional detection methods have weak generalization ability, and deep neural network has complex structure and large number of parameters, which cannot be well applied in mobile devices, this paper proposes a lightweight Document Corner Detection Network (DCDNet). DCDNet is a two-stage architecture. The first stage with Encoder-Decoder structure adopts depthwise separable convolution to greatly reduce the network parameters. After introducing the Feature Attention Union (FAU) module, the second stage enhances the feature information of spatial and channel dim and adaptively adjusts the size of receptive field to enhance the feature expression ability of the model. Aiming at solving the problem of the large difference in the number of pixel distribution between corner and non-corner, Weighted Binary Cross Entropy Loss (WBCE Loss) is proposed to define corner detection problem as a classification problem to make the training process more efficient. In order to make up for the lack of Dataset of document corner detection, a Dataset containing 6620 images named Document Corner Detection Dataset (DCDD) is made. Experimental results show that the proposed method can obtain fast, stable and accurate detection results on DCDD.Keywords: document detection, corner detection, attention mechanism, lightweight
Procedia PDF Downloads 3545559 Introduce a New Model of Anomaly Detection in Computer Networks Using Artificial Immune Systems
Authors: Mehrshad Khosraviani, Faramarz Abbaspour Leyl Abadi
Abstract:
The fundamental component of the computer network of modern information society will be considered. These networks are connected to the network of the internet generally. Due to the fact that the primary purpose of the Internet is not designed for, in recent decades, none of these networks in many of the attacks has been very important. Today, for the provision of security, different security tools and systems, including intrusion detection systems are used in the network. A common diagnosis system based on artificial immunity, the designer, the Adhasaz Foundation has been evaluated. The idea of using artificial safety methods in the diagnosis of abnormalities in computer networks it has been stimulated in the direction of their specificity, there are safety systems are similar to the common needs of m, that is non-diagnostic. For example, such methods can be used to detect any abnormalities, a variety of attacks, being memory, learning ability, and Khodtnzimi method of artificial immune algorithm pointed out. Diagnosis of the common system of education offered in this paper using only the normal samples is required for network and any additional data about the type of attacks is not. In the proposed system of positive selection and negative selection processes, selection of samples to create a distinction between the colony of normal attack is used. Copa real data collection on the evaluation of ij indicates the proposed system in the false alarm rate is often low compared to other ir methods and the detection rate is in the variations.Keywords: artificial immune system, abnormality detection, intrusion detection, computer networks
Procedia PDF Downloads 3535558 A 5G Architecture Based to Dynamic Vehicular Clustering Enhancing VoD Services Over Vehicular Ad hoc Networks
Authors: Lamaa Sellami, Bechir Alaya
Abstract:
Nowadays, video-on-demand (VoD) applications are becoming one of the tendencies driving vehicular network users. In this paper, considering the unpredictable vehicle density, the unexpected acceleration or deceleration of the different cars included in the vehicular traffic load, and the limited radio range of the employed communication scheme, we introduce the “Dynamic Vehicular Clustering” (DVC) algorithm as a new scheme for video streaming systems over VANET. The proposed algorithm takes advantage of the concept of small cells and the introduction of wireless backhauls, inspired by the different features and the performance of the Long Term Evolution (LTE)- Advanced network. The proposed clustering algorithm considers multiple characteristics such as the vehicle’s position and acceleration to reduce latency and packet loss. Therefore, each cluster is counted as a small cell containing vehicular nodes and an access point that is elected regarding some particular specifications.Keywords: video-on-demand, vehicular ad-hoc network, mobility, vehicular traffic load, small cell, wireless backhaul, LTE-advanced, latency, packet loss
Procedia PDF Downloads 141