Search results for: branch and bound algorithm.
2797 A Novel Combined Finger Counting and Finite State Machine Technique for ASL Translation Using Kinect
Authors: Rania Ahmed Kadry Abdel Gawad Birry, Mohamed El-Habrouk
Abstract:
This paper presents a brief survey of the techniques used for sign language recognition along with the types of sensors used to perform the task. It presents a modified method for identification of an isolated sign language gesture using Microsoft Kinect with the OpenNI framework. It presents the way of extracting robust features from the depth image provided by Microsoft Kinect and the OpenNI interface and to use them in creating a robust and accurate gesture recognition system, for the purpose of ASL translation. The Prime Sense’s Natural Interaction Technology for End-user - NITE™ - was also used in the C++ implementation of the system. The algorithm presents a simple finger counting algorithm for static signs as well as directional Finite State Machine (FSM) description of the hand motion in order to help in translating a sign language gesture. This includes both letters and numbers performed by a user, which in-turn may be used as an input for voice pronunciation systems.Keywords: American sign language, finger counting, hand tracking, Microsoft Kinect
Procedia PDF Downloads 2982796 Artificial Intelligence and Distributed System Computing: Application and Practice in Real Life
Authors: Lai Junzhe, Wang Lihao, Burra Venkata Durga Kumar
Abstract:
In recent years, due to today's global technological advances, big data and artificial intelligence technologies have been widely used in various industries and fields, playing an important role in reducing costs and increasing efficiency. Among them, artificial intelligence has derived another branch in its own continuous progress and the continuous development of computer personnel, namely distributed artificial intelligence computing systems. Distributed AI is a method for solving complex learning, decision-making, and planning problems, characterized by the ability to take advantage of large-scale computation and the spatial distribution of resources, and accordingly, it can handle problems with large data sets. Nowadays, distributed AI is widely used in military, medical, and human daily life and brings great convenience and efficient operation to life. In this paper, we will discuss three areas of distributed AI computing systems in vision processing, blockchain, and smart home to introduce the performance of distributed systems and the role of AI in distributed systems.Keywords: distributed system, artificial intelligence, blockchain, IoT, visual information processing, smart home
Procedia PDF Downloads 1132795 The Social Aspects of Mental Illness among Orthodox Christians of the Tigrinya Ethnic Group in Eritrea
Authors: Erimias Firre
Abstract:
This study is situated within the religio-cultural milieu of Coptic Orthodox Christians of the Tigrinya ethnic group in Eritrea. With this ethnic group being conservative and traditionally bound, extended family structures dissected along various clans and expansive community networks are the distinguishing mark of its members. Notably, Coptic Tigrinya constitutes the largest percentage of all Christian denominations in Eritrea. As religious, cultural beliefs, rituals and teachings permeate in all aspects of social life, a distinct worldview and traditionalized health and illness conceptualization are common. Accordingly, this study argues that religio-culturally bound illness ideologies immensely determine the perception, help seeking behavior and healing preference of Coptic Tigrinya in Eritrea. The study bears significance in the sense that it bridges an important knowledge gap, given that it is ethno-linguistically (within the Tigrinya ethnic group), spatially (central region of Eritrea) and religiously (Coptic Christianity) specific. The conceptual framework guiding this research centered on the social determinants of mental health, and explores through the lens of critical theory how existing systems generate social vulnerability and structural inequality, providing a platform to reveal how the psychosocial model has the capacity to emancipate and empower those with mental disorders to live productive and meaningful lives. A case study approach was employed to explore the interrelationship between religio-cultural beliefs and practices and perception of common mental disorders of depression, anxiety, bipolar affective, schizophrenia and post-traumatic stress disorders and the impact of these perceptions on people with those mental disorders. Purposive sampling was used to recruit 41 participants representing seven diverse cohorts; people with common mental disorders, family caregivers, general community members, ex-fighters , priests, staff at St. Mary’s and Biet-Mekae Community Health Center; resulting in rich data for thematic analysis. Findings highlighted current religio-cultural perceptions, causes and treatment of mental disorders among Coptic Tigrinya result in widespread labelling, stigma and discrimination, both of those with mental disorders and their families. Traditional healing sources are almost exclusively tried, sometimes for many years, before families and sufferers seek formal medical assessment and treatment, resulting difficult to treat illness chronicity. Service gaps in the formal medical system result in the inability to meet the principles enshrined in the WHO Mental Health Action Plan 2013-2020 to which the Eritrean Government is a signatory. However, the study found that across all participant cohorts, there was a desire for change that will create a culture whereby those with mental disorders will have restored hope, connectedness, healing and self-determination.Keywords: Coptic Tigrinya, mental disorders, psychosocial model social integration and recovery, traditional healing
Procedia PDF Downloads 1872794 Surface Adjustments for Endothelialization of Decellularized Porcine Pericardium
Authors: M. Markova, E. Filova, O. Kaplan, R. Matejka, L. Bacakova
Abstract:
The porcine pericardium is used as a material for cardiac and aortic valves substitutes. Current biological aortic heart valve prosthesis have a limited lifetime period because they undergo degeneration. In order to make them more biocompatible and prolong their lifetime it is necessary to reseed the decellularized prostheses with endothelial cells and with valve interstitial cells. The endothelialization of the prosthesis-surface may be supported by suitable chemical surface modification of the prosthesis. The aim of this study is to prepare bioactive fibrin layers which would both support endothelialization of porcine pericardium and enhance differentiation and maturation of the endothelial cells seeded. As a material for surface adjustments we used layers of fibrin with/without heparin and some of them with adsorbed or chemically bound FGF2, VEGF or their combination. Fibrin assemblies were prepared in 24-well cell culture plate and were seeded with HSVEC (Human Saphenous Vein Endothelial Cells) at a density of 20,000 cells per well in EGM-2 medium with 0.5% FS and without heparin, without FGF2 and without VEGF; medium was supplemented with aprotinin (200 U/mL). As a control, surface polystyrene (PS) was used. Fibrin was also used as homogeneous impregnation of the decellularized porcine pericardium throughout the scaffolds. Morphology, density, and viability of the seeded endothelial cells were observed from micrographs after staining the samples by LIVE/DEAD cytotoxicity/viability assay kit on the days 1, 3, and 7. Endothelial cells were immunocytochemically stained for proteins involved in cell adhesion, i.e. alphaV integrin, vinculin, and VE-cadherin, markers of endothelial cells differentiation and maturation, i.e. von Willebrand factor and CD31, and for extracellular matrix proteins typically produced by endothelial cells, i.e. type IV collagen and laminin. The staining intensities were subsequently quantified using a software. HSVEC cells grew on each of the prepared surfaces better than on control surface. They reached confluency. The highest cell densities were obtained on the surface of fibrin with heparin and both grow factors used together. Intensity of alphaV integrins staining was highest on samples with remained fibrin layer, i.e. on layers with lower cell densities, i.e. on fibrin without heparin. Vinculin staining was apparent, but was rather diffuse, on fibrin with both FGF2 and VEGF and on control PS. Endothelial cells on all samples were positively stained for von Willebrand factor and CD31. VE-cadherin receptors clusters were best developed on fibrin with heparin and growth factors. Significantly stronger staining of type IV collagen was observed on fibrin with heparin and both growth factors. Endothelial cells on all samples produced laminin-1. Decellularized pericardium was homogeneously filled with fibrin structures. These fibrin-modified pericardium samples will be further seeded with cells and cultured in a bioreactor. Fibrin layers with/without heparin and with adsorbed or chemically bound FGF2, VEGF or their combination are good surfaces for endothelialization of cardiovascular prostheses or porcine pericardium based heart valves. Supported by the Ministry of Health, grants No15-29153A and 15-32497A, and the Grant Agency of the Czech Republic, project No. P108/12/G108.Keywords: aortic valves prosthesis, FGF2, heparin, HSVEC cells, VEGF
Procedia PDF Downloads 2662793 Registration of Multi-Temporal Unmanned Aerial Vehicle Images for Facility Monitoring
Authors: Dongyeob Han, Jungwon Huh, Quang Huy Tran, Choonghyun Kang
Abstract:
Unmanned Aerial Vehicles (UAVs) have been used for surveillance, monitoring, inspection, and mapping. In this paper, we present a systematic approach for automatic registration of UAV images for monitoring facilities such as building, green house, and civil structures. The two-step process is applied; 1) an image matching technique based on SURF (Speeded up Robust Feature) and RANSAC (Random Sample Consensus), 2) bundle adjustment of multi-temporal images. Image matching to find corresponding points is one of the most important steps for the precise registration of multi-temporal images. We used the SURF algorithm to find a quick and effective matching points. RANSAC algorithm was used in the process of finding matching points between images and in the bundle adjustment process. Experimental results from UAV images showed that our approach has a good accuracy to be applied to the change detection of facility.Keywords: building, image matching, temperature, unmanned aerial vehicle
Procedia PDF Downloads 2932792 Optimal Design of Tuned Inerter Damper-Based System for the Control of Wind-Induced Vibration in Tall Buildings through Cultural Algorithm
Authors: Luis Lara-Valencia, Mateo Ramirez-Acevedo, Daniel Caicedo, Jose Brito, Yosef Farbiarz
Abstract:
Controlling wind-induced vibrations as well as aerodynamic forces, is an essential part of the structural design of tall buildings in order to guarantee the serviceability limit state of the structure. This paper presents a numerical investigation on the optimal design parameters of a Tuned Inerter Damper (TID) based system for the control of wind-induced vibration in tall buildings. The control system is based on the conventional TID, with the main difference that its location is changed from the ground level to the last two story-levels of the structural system. The TID tuning procedure is based on an evolutionary cultural algorithm in which the optimum design variables defined as the frequency and damping ratios were searched according to the optimization criteria of minimizing the root mean square (RMS) response of displacements at the nth story of the structure. A Monte Carlo simulation was used to represent the dynamic action of the wind in the time domain in which a time-series derived from the Davenport spectrum using eleven harmonic functions with randomly chosen phase angles was reproduced. The above-mentioned methodology was applied on a case-study derived from a 37-story prestressed concrete building with 144 m height, in which the wind action overcomes the seismic action. The results showed that the optimally tuned TID is effective to reduce the RMS response of displacements up to 25%, which demonstrates the feasibility of the system for the control of wind-induced vibrations in tall buildings.Keywords: evolutionary cultural algorithm, Monte Carlo simulation, tuned inerter damper, wind-induced vibrations
Procedia PDF Downloads 1352791 Optimization of Dez Dam Reservoir Operation Using Genetic Algorithm
Authors: Alireza Nikbakht Shahbazi, Emadeddin Shirali
Abstract:
Since optimization issues of water resources are complicated due to the variety of decision making criteria and objective functions, it is sometimes impossible to resolve them through regular optimization methods or, it is time or money consuming. Therefore, the use of modern tools and methods is inevitable in resolving such problems. An accurate and essential utilization policy has to be determined in order to use natural resources such as water reservoirs optimally. Water reservoir programming studies aim to determine the final cultivated land area based on predefined agricultural models and water requirements. Dam utilization rule curve is also provided in such studies. The basic information applied in water reservoir programming studies generally include meteorological, hydrological, agricultural and water reservoir related data, and the geometric characteristics of the reservoir. The system of Dez dam water resources was simulated applying the basic information in order to determine the capability of its reservoir to provide the objectives of the performed plan. As a meta-exploratory method, genetic algorithm was applied in order to provide utilization rule curves (intersecting the reservoir volume). MATLAB software was used in order to resolve the foresaid model. Rule curves were firstly obtained through genetic algorithm. Then the significance of using rule curves and the decrease in decision making variables in the system was determined through system simulation and comparing the results with optimization results (Standard Operating Procedure). One of the most essential issues in optimization of a complicated water resource system is the increasing number of variables. Therefore a lot of time is required to find an optimum answer and in some cases, no desirable result is obtained. In this research, intersecting the reservoir volume has been applied as a modern model in order to reduce the number of variables. Water reservoir programming studies has been performed based on basic information, general hypotheses and standards and applying monthly simulation technique for a statistical period of 30 years. Results indicated that application of rule curve prevents the extreme shortages and decrease the monthly shortages.Keywords: optimization, rule curve, genetic algorithm method, Dez dam reservoir
Procedia PDF Downloads 2672790 Comparative DNA Binding of Iron and Manganese Complexes by Spectroscopic and ITC Techniques and Antibacterial Activity
Authors: Maryam Nejat Dehkordi, Per Lincoln, Hassan Momtaz
Abstract:
Interaction of Schiff base complexes of iron and manganese (iron [N, N’ Bis (5-(triphenyl phosphonium methyl) salicylidene) -1, 2 ethanediamine) chloride, [Fe Salen]Cl, manganese [N, N’ Bis (5-(triphenyl phosphonium methyl) salicylidene) -1, 2 ethanediamine) acetate) with DNA were investigated by spectroscopic and isothermal titration calorimetry techniques (ITC). The absorbance spectra of complexes have shown hyper and hypochromism in the presence of DNA that is indication of interaction of complexes with DNA. The linear dichroism (LD) measurements confirmed the bending of DNA in the presence of complexes. Furthermore, isothermal titration calorimetry experiments approved that complexes bound to DNA on the base of both electrostatic and hydrophobic interactions. Furthermore, ITC profile exhibits the existence of two binding phases for the complex. Antibacterial activity of ligand and complexes were tested in vitro to evaluate their activity against the gram positive and negative bacteria.Keywords: Schiff base complexes, ct-DNA, linear dichroism (LD), isothermal titration calorimetry (ITC), antibacterial activity
Procedia PDF Downloads 4712789 Expansion and Consolidation of Islam in Iran to the End of Qajar Period
Authors: Ashaq Hussain
Abstract:
Under Islam, for the first time since the Achaemenids, all Iranians including those of Central Asia and on the frontiers of India became united under one rule. Islam was rescued from a narrow Bedouin outlook and Bedouin mores primarily by the Iranians, who showed that Islam, both as a religion and, primarily, as a culture, need not be bound solely to the Arabic language and Arab norms of behavior. Instead Islam was to become a universal religion and culture open to all people. This was a fundamental contribution of the Iranians to Islam, although all Iranians had become Muslims by the time of the creation of Saljuq Empire. So, Iran in a sense provided the history, albeit an epic, of pre-Islamic times for Islam. After all, the Arabs conquered the entire Sasanian Empire, where they found full-scale, imperial models for the management of the new Caliphate, whereas only provinces of the Byzantine Empire were overrun by the Arabs. The present paper is an attempt to give reader a detailed introduction, emergence, expansion and spread of Islam in Iran to the end of Qajar period. It is in this context the present paper has been analyzed.Keywords: Islam, Achaemenids, Bedouin, Central Asia, Iran
Procedia PDF Downloads 4282788 Compact Low Loss Design of SOI 1x2 Y-Branch Optical Power Splitter with S-Bend Waveguide and Study on the Variation of Transmitted Power with Various Waveguide Parameters
Authors: Nagaraju Pendam, C. P. Vardhani
Abstract:
A simple technology–compatible design of silicon-on-insulator based 1×2 optical power splitter is proposed. For developing large area Opto-electronic Silicon-on-Insulator (SOI) devices, the power splitter is a key passive device. The SOI rib- waveguide dimensions (height, width, and etching depth, refractive indices, length of waveguide) leading simultaneously to single mode propagation. In this paper a low loss optical power splitter is designed by using R Soft cad tool and simulated by Beam propagation method, here s-bend waveguides proposed. We concentrate changing the refractive index difference, branching angle, width of the waveguide, free space wavelength of the waveguide and observing transmitted power, effective refractive index in the designed waveguide, and choosing the best simulated results to be fabricated on silicon-on insulator platform. In this design 1550 nm free spacing are used.Keywords: beam propagation method, insertion loss, optical power splitter, rib waveguide, transmitted power
Procedia PDF Downloads 6642787 Maximization of Lifetime for Wireless Sensor Networks Based on Energy Efficient Clustering Algorithm
Authors: Frodouard Minani
Abstract:
Since last decade, wireless sensor networks (WSNs) have been used in many areas like health care, agriculture, defense, military, disaster hit areas and so on. Wireless Sensor Networks consist of a Base Station (BS) and more number of wireless sensors in order to monitor temperature, pressure, motion in different environment conditions. The key parameter that plays a major role in designing a protocol for Wireless Sensor Networks is energy efficiency which is a scarcest resource of sensor nodes and it determines the lifetime of sensor nodes. Maximizing sensor node’s lifetime is an important issue in the design of applications and protocols for Wireless Sensor Networks. Clustering sensor nodes mechanism is an effective topology control approach for helping to achieve the goal of this research. In this paper, the researcher presents an energy efficiency protocol to prolong the network lifetime based on Energy efficient clustering algorithm. The Low Energy Adaptive Clustering Hierarchy (LEACH) is a routing protocol for clusters which is used to lower the energy consumption and also to improve the lifetime of the Wireless Sensor Networks. Maximizing energy dissipation and network lifetime are important matters in the design of applications and protocols for wireless sensor networks. Proposed system is to maximize the lifetime of the Wireless Sensor Networks by choosing the farthest cluster head (CH) instead of the closest CH and forming the cluster by considering the following parameter metrics such as Node’s density, residual-energy and distance between clusters (inter-cluster distance). In this paper, comparisons between the proposed protocol and comparative protocols in different scenarios have been done and the simulation results showed that the proposed protocol performs well over other comparative protocols in various scenarios.Keywords: base station, clustering algorithm, energy efficient, sensors, wireless sensor networks
Procedia PDF Downloads 1482786 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features
Authors: Bushra Zafar, Usman Qamar
Abstract:
Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection
Procedia PDF Downloads 3182785 A Spiral Dynamic Optimised Hybrid Fuzzy Logic Controller for a Unicycle Mobile Robot on Irregular Terrains
Authors: Abdullah M. Almeshal, Mohammad R. Alenezi, Talal H. Alzanki
Abstract:
This paper presents a hybrid fuzzy logic control strategy for a unicycle trajectory following robot on irregular terrains. In literature, researchers have presented the design of path tracking controllers of mobile robots on non-frictional surface. In this work, the robot is simulated to drive on irregular terrains with contrasting frictional profiles of peat and rough gravel. A hybrid fuzzy logic controller is utilised to stabilise and drive the robot precisely with the predefined trajectory and overcome the frictional impact. The controller gains and scaling factors were optimised using spiral dynamics optimisation algorithm to minimise the mean square error of the linear and angular velocities of the unicycle robot. The robot was simulated on various frictional surfaces and terrains and the controller was able to stabilise the robot with a superior performance that is shown via simulation results.Keywords: fuzzy logic control, mobile robot, trajectory tracking, spiral dynamic algorithm
Procedia PDF Downloads 4962784 High Level Synthesis of Canny Edge Detection Algorithm on Zynq Platform
Authors: Hanaa M. Abdelgawad, Mona Safar, Ayman M. Wahba
Abstract:
Real-time image and video processing is a demand in many computer vision applications, e.g. video surveillance, traffic management and medical imaging. The processing of those video applications requires high computational power. Therefore, the optimal solution is the collaboration of CPU and hardware accelerators. In this paper, a Canny edge detection hardware accelerator is proposed. Canny edge detection is one of the common blocks in the pre-processing phase of image and video processing pipeline. Our presented approach targets offloading the Canny edge detection algorithm from processing system (PS) to programmable logic (PL) taking the advantage of High Level Synthesis (HLS) tool flow to accelerate the implementation on Zynq platform. The resulting implementation enables up to a 100x performance improvement through hardware acceleration. The CPU utilization drops down and the frame rate jumps to 60 fps of 1080p full HD input video stream.Keywords: high level synthesis, canny edge detection, hardware accelerators, computer vision
Procedia PDF Downloads 4802783 Resistivity Tomography Optimization Based on Parallel Electrode Linear Back Projection Algorithm
Authors: Yiwei Huang, Chunyu Zhao, Jingjing Ding
Abstract:
Electrical Resistivity Tomography has been widely used in the medicine and the geology, such as the imaging of the lung impedance and the analysis of the soil impedance, etc. Linear Back Projection is the core algorithm of Electrical Resistivity Tomography, but the traditional Linear Back Projection can not make full use of the information of the electric field. In this paper, an imaging method of Parallel Electrode Linear Back Projection for Electrical Resistivity Tomography is proposed, which generates the electric field distribution that is not linearly related to the traditional Linear Back Projection, captures the new information and improves the imaging accuracy without increasing the number of electrodes by changing the connection mode of the electrodes. The simulation results show that the accuracy of the image obtained by the inverse operation obtained by the Parallel Electrode Linear Back Projection can be improved by about 20%.Keywords: electrical resistivity tomography, finite element simulation, image optimization, parallel electrode linear back projection
Procedia PDF Downloads 1542782 The Success and Failure of the Solicitor General When the U.S. Government Appears as a Direct Party before the U.S. Supreme Court
Authors: Joseph Ignagni, Rebecca Deen
Abstract:
This paper analyzes the extent to which the U.S. Supreme Court votes to support the position of the United States in cases where the government is a party to the litigation. This study considers the relationship between the Solicitor General’s Office and the U.S. Supreme Court. The Solicitor General has the unique position of being the representative of the Executive Branch and the U.S. government before the Supreme Court. While a great deal of research has looked at the Solicitor General’s success as a “friend of the court,” far less has considered this relationship when the U.S. is a direct party in the litigation. This paper investigates the success rate of the Solicitor General’s Office in these cases. We find that there is considerable variation in the U.S. government’s success rate before the Court depending on the issue, Supreme Court leadership, the ideological direction of the Court and whether the U.S. approached the Court as a petitioner or respondent. We conduct our analysis on the Court’s decisions from 1953-2009. This study adds to our understanding of checks and balances, separation of powers, and inter-institutional relationships between the branches of the federal government of the United States.Keywords: U.S. president, solicitor general, U.S. Supreme Court, separation of power, checks and balances
Procedia PDF Downloads 3622781 Facility Anomaly Detection with Gaussian Mixture Model
Authors: Sunghoon Park, Hank Kim, Jinwon An, Sungzoon Cho
Abstract:
Internet of Things allows one to collect data from facilities which are then used to monitor them and even predict malfunctions in advance. Conventional quality control methods focus on setting a normal range on a sensor value defined between a lower control limit and an upper control limit, and declaring as an anomaly anything falling outside it. However, interactions among sensor values are ignored, thus leading to suboptimal performance. We propose a multivariate approach which takes into account many sensor values at the same time. In particular Gaussian Mixture Model is used which is trained to maximize likelihood value using Expectation-Maximization algorithm. The number of Gaussian component distributions is determined by Bayesian Information Criterion. The negative Log likelihood value is used as an anomaly score. The actual usage scenario goes like a following. For each instance of sensor values from a facility, an anomaly score is computed. If it is larger than a threshold, an alarm will go off and a human expert intervenes and checks the system. A real world data from Building energy system was used to test the model.Keywords: facility anomaly detection, gaussian mixture model, anomaly score, expectation maximization algorithm
Procedia PDF Downloads 2732780 A Near-Optimal Domain Independent Approach for Detecting Approximate Duplicates
Authors: Abdelaziz Fellah, Allaoua Maamir
Abstract:
We propose a domain-independent merging-cluster filter approach complemented with a set of algorithms for identifying approximate duplicate entities efficiently and accurately within a single and across multiple data sources. The near-optimal merging-cluster filter (MCF) approach is based on the Monge-Elkan well-tuned algorithm and extended with an affine variant of the Smith-Waterman similarity measure. Then we present constant, variable, and function threshold algorithms that work conceptually in a divide-merge filtering fashion for detecting near duplicates as hierarchical clusters along with their corresponding representatives. The algorithms take recursive refinement approaches in the spirit of filtering, merging, and updating, cluster representatives to detect approximate duplicates at each level of the cluster tree. Experiments show a high effectiveness and accuracy of the MCF approach in detecting approximate duplicates by outperforming the seminal Monge-Elkan’s algorithm on several real-world benchmarks and generated datasets.Keywords: data mining, data cleaning, approximate duplicates, near-duplicates detection, data mining applications and discovery
Procedia PDF Downloads 3872779 Finite Element Analysis for Earing Prediction Incorporating the BBC2003 Material Model with Fully Implicit Integration Method: Derivation and Numerical Algorithm
Authors: Sajjad Izadpanah, Seyed Hadi Ghaderi, Morteza Sayah Irani, Mahdi Gerdooei
Abstract:
In this research work, a sophisticated yield criterion known as BBC2003, capable of describing planar anisotropic behaviors of aluminum alloy sheets, was integrated into the commercial finite element code ABAQUS/Standard via a user subroutine. The complete formulation of the implementation process using a fully implicit integration scheme, i.e., the classic backward Euler method, is presented, and relevant aspects of the yield criterion are introduced. In order to solve nonlinear differential and algebraic equations, the line-search algorithm was adopted in the user-defined material subroutine (UMAT) to expand the convergence domain of the iterative Newton-Raphson method. The developed subroutine was used to simulate a challenging computational problem with complex stress states, i.e., deep drawing of an anisotropic aluminum alloy AA3105. The accuracy and stability of the developed subroutine were confirmed by comparing the numerically predicted earing and thickness variation profiles with the experimental results, which showed an excellent agreement between numerical and experimental earing and thickness profiles. The integration of the BBC2003 yield criterion into ABAQUS/Standard represents a significant contribution to the field of computational mechanics and provides a useful tool for analyzing the mechanical behavior of anisotropic materials subjected to complex loading conditions.Keywords: BBC2003 yield function, plastic anisotropy, fully implicit integration scheme, line search algorithm, explicit and implicit integration schemes
Procedia PDF Downloads 752778 Performences of Type-2 Fuzzy Logic Control and Neuro-Fuzzy Control Based on DPC for Grid Connected DFIG with Fixed Switching Frequency
Authors: Fayssal Amrane, Azeddine Chaiba
Abstract:
In this paper, type-2 fuzzy logic control (T2FLC) and neuro-fuzzy control (NFC) for a doubly fed induction generator (DFIG) based on direct power control (DPC) with a fixed switching frequency is proposed for wind generation application. First, a mathematical model of the doubly-fed induction generator implemented in d-q reference frame is achieved. Then, a DPC algorithm approach for controlling active and reactive power of DFIG via fixed switching frequency is incorporated using PID. The performance of T2FLC and NFC, which is based on the DPC algorithm, are investigated and compared to those obtained from the PID controller. Finally, simulation results demonstrate that the NFC is more robust, superior dynamic performance for wind power generation system applications.Keywords: doubly fed induction generator (DFIG), direct power control (DPC), neuro-fuzzy control (NFC), maximum power point tracking (MPPT), space vector modulation (SVM), type 2 fuzzy logic control (T2FLC)
Procedia PDF Downloads 4222777 An Evolutionary Multi-Objective Optimization for Airport Gate Assignment Problem
Authors: Seyedmirsajad Mokhtarimousavi, Danial Talebi, Hamidreza Asgari
Abstract:
Gate Assignment Problem (GAP) is one of the most substantial issues in airport operation. In principle, GAP intends to maintain the maximum capacity of the airport through the best possible allocation of the resources (gates) in order to reach the optimum outcome. The problem involves a wide range of dependent and independent resources and their limitations, which add to the complexity of GAP from both theoretical and practical perspective. In this study, GAP was mathematically formulated as a three-objective problem. The preliminary goal of multi-objective formulation was to address a higher number of objectives that can be simultaneously optimized and therefore increase the practical efficiency of the final solution. The problem is solved by applying the second version of Non-dominated Sorting Genetic Algorithm (NSGA-II). Results showed that the proposed mathematical model could address most of major criteria in the decision-making process in airport management in terms of minimizing both airport/airline cost and passenger walking distance time. Moreover, the proposed approach could properly find acceptable possible answers.Keywords: airport management, gate assignment problem, mathematical modeling, genetic algorithm, NSGA-II
Procedia PDF Downloads 3002776 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine
Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour
Abstract:
Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.Keywords: decision tree, feature selection, intrusion detection system, support vector machine
Procedia PDF Downloads 2662775 Sentiment Analysis of Ensemble-Based Classifiers for E-Mail Data
Authors: Muthukumarasamy Govindarajan
Abstract:
Detection of unwanted, unsolicited mails called spam from email is an interesting area of research. It is necessary to evaluate the performance of any new spam classifier using standard data sets. Recently, ensemble-based classifiers have gained popularity in this domain. In this research work, an efficient email filtering approach based on ensemble methods is addressed for developing an accurate and sensitive spam classifier. The proposed approach employs Naive Bayes (NB), Support Vector Machine (SVM) and Genetic Algorithm (GA) as base classifiers along with different ensemble methods. The experimental results show that the ensemble classifier was performing with accuracy greater than individual classifiers, and also hybrid model results are found to be better than the combined models for the e-mail dataset. The proposed ensemble-based classifiers turn out to be good in terms of classification accuracy, which is considered to be an important criterion for building a robust spam classifier.Keywords: accuracy, arcing, bagging, genetic algorithm, Naive Bayes, sentiment mining, support vector machine
Procedia PDF Downloads 1432774 Biomass Carbon Credit Estimation for Sustainable Urban Planning and Micro-climate Assessment
Authors: R. Niranchana, K. Meena Alias Jeyanthi
Abstract:
As a result of the present climate change dilemma, the energy balancing strategy is to construct a sustainable environment has become a top concern for researchers worldwide. The environment itself has always been a solution from the earliest days of human evolution. Carbon capture begins with its accurate estimation and monitoring credit inventories, and its efficient use. Sustainable urban planning with deliverables of re-use energy models might benefit from assessment methods like biomass carbon credit ranking. The term "biomass energy" refers to the various ways in which living organisms can potentially be converted into a source of energy. The approaches that can be applied to biomass and an algorithm for evaluating carbon credits are presented in this paper. The micro-climate evaluation using Computational Fluid dynamics was carried out across the location (1 km x1 km) at Dindigul, India (10°24'58.68" North, 77°54.1.80 East). Sustainable Urban design must be carried out considering environmental and physiological convection, conduction, radiation and evaporative heat exchange due to proceeding solar access and wind intensities.Keywords: biomass, climate assessment, urban planning, multi-regression, carbon estimation algorithm
Procedia PDF Downloads 972773 Switched System Diagnosis Based on Intelligent State Filtering with Unknown Models
Authors: Nada Slimane, Foued Theljani, Faouzi Bouani
Abstract:
The paper addresses the problem of fault diagnosis for systems operating in several modes (normal or faulty) based on states assessment. We use, for this purpose, a methodology consisting of three main processes: 1) sequential data clustering, 2) linear model regression and 3) state filtering. Typically, Kalman Filter (KF) is an algorithm that provides estimation of unknown states using a sequence of I/O measurements. Inevitably, although it is an efficient technique for state estimation, it presents two main weaknesses. First, it merely predicts states without being able to isolate/classify them according to their different operating modes, whether normal or faulty modes. To deal with this dilemma, the KF is endowed with an extra clustering step based fully on sequential version of the k-means algorithm. Second, to provide state estimation, KF requires state space models, which can be unknown. A linear regularized regression is used to identify the required models. To prove its effectiveness, the proposed approach is assessed on a simulated benchmark.Keywords: clustering, diagnosis, Kalman Filtering, k-means, regularized regression
Procedia PDF Downloads 1842772 Tuning Fractional Order Proportional-Integral-Derivative Controller Using Hybrid Genetic Algorithm Particle Swarm and Differential Evolution Optimization Methods for Automatic Voltage Regulator System
Authors: Fouzi Aboura
Abstract:
The fractional order proportional-integral-derivative (FOPID) controller or fractional order (PIλDµ) is a proportional-integral-derivative (PID) controller where integral order (λ) and derivative order (µ) are fractional, one of the important application of classical PID is the Automatic Voltage Regulator (AVR).The FOPID controller needs five parameters optimization while the design of conventional PID controller needs only three parameters to be optimized. In our paper we have proposed a comparison between algorithms Differential Evolution (DE) and Hybrid Genetic Algorithm Particle Swarm Optimization (HGAPSO) ,we have studied theirs characteristics and performance analysis to find an optimum parameters of the FOPID controller, a new objective function is also proposed to take into account the relation between the performance criteria’s.Keywords: FOPID controller, fractional order, AVR system, objective function, optimization, GA, PSO, HGAPSO
Procedia PDF Downloads 922771 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image
Authors: Abe D. Desta
Abstract:
This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking
Procedia PDF Downloads 1292770 Synthesis, Spectroscopic and XRD Study of Transition Metal Complex Derived from Low-Schiff Acyl-Hydrazone Ligand
Authors: Mohamedou El Boukhary, Farba Bouyagui Tamboura, A. Hamady Barry, T. Moussa Seck, Mohamed L. Gaye
Abstract:
Nowadays, low-schiff acyl-hydrazone ligands are highly sought after due to their wide applications in various fields of biology, coordination chemistry, and catalysis. They are studied for their antioxidant, antibacterial and antiviral properties. The complexes of transition metals and the lanthanide they derive are well known for their magnetic, optical, and catalytic properties. In this work, we present the synthesis of an acyl-hydrazone (H2L) schiff base and their 3d transition complexes. The ligand (H2L) is characterized by IR, NMR (1H; 13C) spectroscopy. The complexes are characterized by different physic-chemical techniques such as IR, UV-visible, conductivity, measurement of magnetic susceptibility. The study of XRD allowed us to elucidate the crystalline structure of the manganese (Mn) complex. The asymmetric unit of the complex is composed of two molecules of the ligand, one manganese (II) ion, and two coordinate chloride ions; the environment around Mn is described as a pentagonal base bipyramid. In the crystal lattice, the asymmetric unit is bound by hydrogen bonds.Keywords: synthene, acyl-hydrazone, 3D transition metal complex, application
Procedia PDF Downloads 572769 Population Dynamics of Early Oak Defoliators in Correlation with Micro-climatic Temperature Conditions in Kragujevac Area in Serbia
Authors: Miroslava Marković, Renata Gagić, Serdar, Aleksandar Lučić, Ljubinko Rakonjac
Abstract:
Forest dieback that comes in waves since the early 20th century has lately grown into an epidemic, in particular in oak stands. For this reason, research was conducted of the population dynamics of early oak defoliators, which represent a grave danger in oak stands due to their gradogenic attributes. The research was carried out over a 5-year period in oak forests in the area of forest administrations Kragujevac and Gornji Milanovac. The samples used in the research were collected from bottom branches, where Geometridae were found in the largest numbers, as well as from the mid and upper parts of the crowns, where other species were found. Population levels of these pests were presented in laboratory conditions on winter branch samples and in newly foliated stands on site, depending on the basic parameters of the climatic conditions. The greatest deviation of the population level of early oak defoliators was noted in 2018 on all 6 presented localities through the analysis of winter branches and the analysis of their presence in newly foliated stands on site, and it was followed by the highest average air temperature.Keywords: defoliators, oak, population level, population dynamics
Procedia PDF Downloads 962768 The Conceptual Design Model of an Automated Supermarket
Authors: V. Sathya Narayanan, P. Sidharth, V. R. Sanal Kumar
Abstract:
The success of any retail business is predisposed by its swift response and its knack in understanding the constraints and the requirements of customers. In this paper a conceptual design model of an automated customer-friendly supermarket has been proposed. In this model a 10-sided, space benefited, regular polygon shaped gravity shelves have been designed for goods storage and effective customer-specific algorithms have been built-in for quick automatic delivery of the randomly listed goods. The algorithm is developed with two main objectives, viz., delivery time and priority. For meeting these objectives the randomly listed items are reorganized according to the critical-path of the robotic arm specific to the identified shop and its layout and the items are categorized according to the demand, shape, size, similarity and nature of the product for an efficient pick-up, packing and delivery process. We conjectured that the proposed automated supermarket model reduces business operating costs with much customer satisfaction warranting a win-win situation.Keywords: automated supermarket, electronic shopping, polygon-shaped rack, shortest path algorithm for shopping
Procedia PDF Downloads 406