Search results for: agents of learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8629

Search results for: agents of learning

7099 Estimating Gait Parameter from Digital RGB Camera Using Real Time AlphaPose Learning Architecture

Authors: Murad Almadani, Khalil Abu-Hantash, Xinyu Wang, Herbert Jelinek, Kinda Khalaf

Abstract:

Gait analysis is used by healthcare professionals as a tool to gain a better understanding of the movement impairment and track progress. In most circumstances, monitoring patients in their real-life environments with low-cost equipment such as cameras and wearable sensors is more important. Inertial sensors, on the other hand, cannot provide enough information on angular dynamics. This research offers a method for tracking 2D joint coordinates using cutting-edge vision algorithms and a single RGB camera. We provide an end-to-end comprehensive deep learning pipeline for marker-less gait parameter estimation, which, to our knowledge, has never been done before. To make our pipeline function in real-time for real-world applications, we leverage the AlphaPose human posture prediction model and a deep learning transformer. We tested our approach on the well-known GPJATK dataset, which produces promising results.

Keywords: gait analysis, human pose estimation, deep learning, real time gait estimation, AlphaPose, transformer

Procedia PDF Downloads 118
7098 Innovation in Traditional Game: A Case Study of Trainee Teachers' Learning Experiences

Authors: Malathi Balakrishnan, Cheng Lee Ooi, Chander Vengadasalam

Abstract:

The purpose of this study is to explore a case study of trainee teachers’ learning experience on innovating traditional games during the traditional game carnival. It explores issues arising from multiple case studies of trainee teachers learning experiences in innovating traditional games. A qualitative methodology was adopted through observations, semi-structured interviews and reflective journals’ content analysis of trainee teachers’ learning experiences creating and implementing innovative traditional games. Twelve groups of 36 trainee teachers who registered for Sports and Physical Education Management Course were the participants for this research during the traditional game carnival. Semi structured interviews were administrated after the trainee teachers learning experiences in creating innovative traditional games. Reflective journals were collected after carnival day and the content analyzed. Inductive data analysis was used to evaluate various data sources. All the collected data were then evaluated through the Nvivo data analysis process. Inductive reasoning was interpreted based on the Self Determination Theory (SDT). The findings showed that the trainee teachers had positive game participation experiences, game knowledge about traditional games and positive motivation to innovate the game. The data also revealed the influence of themes like cultural significance and creativity. It can be concluded from the findings that the organized game carnival, as a requirement of course work by the Institute of Teacher Training Malaysia, was able to enhance teacher trainers’ innovative thinking skills. The SDT, as a multidimensional approach to motivation, was utilized. Therefore, teacher trainers may have more learning experiences using the SDT.

Keywords: learning experiences, innovation, traditional games, trainee teachers

Procedia PDF Downloads 330
7097 Computer Assisted Learning Module (CALM) for Consumer Electronics Servicing

Authors: Edicio M. Faller

Abstract:

The use of technology in the delivery of teaching and learning is vital nowadays especially in education. Computer Assisted Learning Module (CALM) software is the use of computer in the delivery of instruction with a tailored fit program intended for a specific lesson or a set of topics. The CALM software developed in this study is intended to supplement the traditional teaching methods in technical-vocational (TECH-VOC) instruction specifically the Consumer Electronics Servicing course. There are three specific objectives of this study. First is to create a learning enhancement and review materials on the selected lessons. Second, is to computerize the end-of-chapter quizzes. Third, is to generate a computerized mock exam and summative assessment. In order to obtain the objectives of the study the researcher adopted the Agile Model where the development of the study undergoes iterative and incremental process of the Software Development Life Cycle. The study conducted an acceptance testing using a survey questionnaire to evaluate the CALM software. The results showed that CALM software was generally interpreted as very satisfactory. To further improve the CALM software it is recommended that the program be updated, enhanced and lastly, be converted from stand-alone to a client/server architecture.

Keywords: computer assisted learning module, software development life cycle, computerized mock exam, consumer electronics servicing

Procedia PDF Downloads 393
7096 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning

Authors: Shayan Mohajer Hamidi

Abstract:

Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.

Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning

Procedia PDF Downloads 75
7095 Learner Autonomy Transfer from Teacher Education Program to the Classroom: Teacher Training is not Enough

Authors: Ira Slabodar

Abstract:

Autonomous learning in English as a Foreign Language (EFL) refers to the use of target language, learner collaboration and students’ responsibility for their learning. Teachers play a vital role of mediators and facilitators in self-regulated method. Thus, their perception of self-guided practices dictates their implementation of this approach. While research has predominantly focused on inadequate administration of autonomous learning in school mostly due to lack of appropriate teacher training, this study examined whether novice teachers who were exposed to extensive autonomous practices were likely to implement this method in their teaching. Twelve novice teachers were interviewed to examine their perception of learner autonomy and their administration of this method. It was found that three-thirds of the respondents experienced a gap between familiarity with autonomous learning and a favorable attitude to this approach and their deficient integration of self-directed learning. Although learner-related and institution-oriented factors played a role in this gap, it was mostly caused by the respondents’ not being genuinely autonomous. This may be due to indirect exposure rather than explicit introduction of the learner autonomy approach. The insights of this research may assist curriculum designers and heads of teacher training programs to rethink course composition to guarantee the transfer of methodologies into EFL classes.

Keywords: learner autonomy, teacher training, english as a foreign language (efl), genuinely autonomous teachers, explicit instruction, self-determination theory

Procedia PDF Downloads 58
7094 Designing Modified Nanocarriers Containing Selenium Nanoparticles Extracted from the Lactobacillus acidophilus and Their Anticancer Properties

Authors: Mahnoosh Aliahmadi, Akbar Esmaeili

Abstract:

This study synthesized new modified imaging nanocapsules (NCs) of gallium@deferoxamine/folic acid/chitosan/polyaniline/polyvinyl alcohol (Ga@DFA/FA/CS/PANI/PVA) containing Morus nigra extract by selenium nanoparticles prepared from Lactobacillus acidophilus. Se nanoparticles were then deposited on (Ga@DFA/FA/CS/PANI/PVA) using the impregnation method. The modified contrast agents were mixed with M. nigra extract, and their antibacterial activities were investigated by applying them to L929 cell lines. The influence of variable factors including surfactant, solvent, aqueous phase, pH, buffer, minimum Inhibitory concentration (MIC), minimum bactericidal concentration (MBC), cytotoxicity on cancer cells, antibiotic, antibiogram, release and loading, stirring effect, the concentration of nanoparticle, olive oil, and thermotical methods was investigated. The structure and morphology of the synthesized contrast agents were characterized by zeta potential sizer analysis (ZPS), X-Ray diffraction (XRD), Fourier-transform infrared (FT-IR), and energy-dispersive X-ray (EDX), ultraviolet-visible (UV-Vis) spectra, and scanning electron microscope (SEM). The experimental section was conducted and monitored by response surface methods (RSM) and MTT conversion assay. Antibiogram testing of NCs on Pseudomonas aeruginosa bacteria was successful, and the MIC=2 factor was obtained with a less harmful effect.

Keywords: imaging contrast agent, nanoparticles, response surface method, Lactobacillus acidophilus, selenium

Procedia PDF Downloads 80
7093 Teachers as Agents of Change: A Qualitative Study of Master of Education Graduates from Pakistan

Authors: Mir Afzal Tajik

Abstract:

The 'Strengthening Teacher Education in Pakistan' (STEP) is an innovative programme jointly funded by the Government of Canada and the Aga Khan Foundation Canada and implemented by the Aga Khan University - Institute for Educational Development (AKU-IED) in partnership with the local governments, education departments and communities in the provinces of Balochistan, Sindh and Gilgit-Baltistan in Pakistan. One of the key components of the programme is professional development of teachers, head teachers and teacher educators through a variety of teacher education programmes including a two-year Masters of Education (MEd) Programme offered by AKU-IED. A number of teachers, head teachers and teacher educators from these provinces have been developed through the MEd Programme. This paper discusses a qualitative research study conducted to explore the nature, relevance, rigor and richness of the experiences of the MEd graduates, and how these experiences have fostered their own professional development and their ability to bring about positive changes in their schools. The findings of the study provide useful insights into the graduates’ self-actualization, transformation of their professional beliefs and practices, the difference they have made in their schools, and the challenges they face. The study also provides evidences of how the implementation of this multi-stakeholders and multi-partners STEP programme has led to the development of ‘communities of practice’ in schools. The study then makes a number of recommendations for policy and practice related to teacher education programmes as well as for partnerships in education.

Keywords: STEP, change agents, Pakistan, Canada, teacher education, MEd

Procedia PDF Downloads 368
7092 Assumption of Cognitive Goals in Science Learning

Authors: Mihail Calalb

Abstract:

The aim of this research is to identify ways for achieving sustainable conceptual understanding within science lessons. For this purpose, a set of teaching and learning strategies, parts of the theory of visible teaching and learning (VTL), is studied. As a result, a new didactic approach named "learning by being" is proposed and its correlation with educational paradigms existing nowadays in science teaching domain is analysed. In the context of VTL the author describes the main strategies of "learning by being" such as guided self-scaffolding, structuring of information, and recurrent use of previous knowledge or help seeking. Due to the synergy effect of these learning strategies applied simultaneously in class, the impact factor of learning by being on cognitive achievement of students is up to 93 % (the benchmark level is equal to 40% when an experienced teacher applies permanently the same conventional strategy during two academic years). The key idea in "learning by being" is the assumption by the student of cognitive goals. From this perspective, the article discusses the role of student’s personal learning effort within several teaching strategies employed in VTL. The research results emphasize that three mandatory student – related moments are present in each constructivist teaching approach: a) students’ personal learning effort, b) student – teacher mutual feedback and c) metacognition. Thus, a successful educational strategy will target to achieve an involvement degree of students into the class process as high as possible in order to make them not only know the learning objectives but also to assume them. In this way, we come to the ownership of cognitive goals or students’ deep intrinsic motivation. A series of approaches are inherent to the students’ ownership of cognitive goals: independent research (with an impact factor on cognitive achievement equal to 83% according to the results of VTL); knowledge of success criteria (impact factor – 113%); ability to reveal similarities and patterns (impact factor – 132%). Although it is generally accepted that the school is a public service, nonetheless it does not belong to entertainment industry and in most of cases the education declared as student – centered actually hides the central role of the teacher. Even if there is a proliferation of constructivist concepts, mainly at the level of science education research, we have to underline that conventional or frontal teaching, would never disappear. Research results show that no modern method can replace an experienced teacher with strong pedagogical content knowledge. Such a teacher will inspire and motivate his/her students to love and learn physics. The teacher is precisely the condensation point for an efficient didactic strategy – be it constructivist or conventional. In this way, we could speak about "hybridized teaching" where both the student and the teacher have their share of responsibility. In conclusion, the core of "learning by being" approach is guided learning effort that corresponds to the notion of teacher–student harmonic oscillator, when both things – guidance from teacher and student’s effort – are equally important.

Keywords: conceptual understanding, learning by being, ownership of cognitive goals, science learning

Procedia PDF Downloads 167
7091 Migrant Women English Instructors' Transformative Workplace Learning Experiences in Post-Secondary English Language Programs in Ontario, Canada

Authors: Justine Jun

Abstract:

This study aims to reveal migrant women English instructors' workplace learning experiences in Canadian post-secondary institutions in Ontario. Although many scholars have conducted research studies on internationally educated teachers and their professional and employment challenges, few studies have recorded migrant women English language instructors’ professional learning and support experiences in post-secondary English language programs in Canada. This study employs a qualitative research paradigm. Mezirow’s Transformative Learning Theory is an essential lens for the researcher to explain, analyze, and interpret the research data. It is a collaborative research project. The researcher and participants cooperatively create photographic or other artwork data responding to the research questions. Photovoice and arts-informed data collection methodology are the main methods. Research participants engage in the study as co-researchers and inquire about their own workplace learning experiences, actively utilizing their critical self-reflective and dialogic skills. Co-researchers individually select the forms of artwork they prefer to engage with to represent their transformative workplace learning experiences about the Canadian workplace cultures that they underwent while working with colleagues and administrators in the workplace. Once the co-researchers generate their cultural artifacts as research data, they collaboratively interpret their artworks with the researcher and other volunteer co-researchers. Co-researchers jointly investigate the themes emerging from the artworks. They also interpret the meanings of their own and others’ workplace learning experiences embedded in the artworks through interactive one-on-one or group interviews. The following are the research questions that the migrant women English instructor participants examine and answer: (1) What have they learned about their workplace culture and how do they explain their learning experiences?; (2) How transformative have their learning experiences been at work?; (3) How have their colleagues and administrators influenced their transformative learning?; (4) What kind of support have they received? What supports have been valuable to them and what changes would they like to see?; (5) What have their learning experiences transformed?; (6) What has this arts-informed research process transformed? The study findings implicate English language instructor support currently practiced in post-secondary English language programs in Ontario, Canada, especially for migrant women English instructors. This research is a doctoral empirical study in progress. This research has the urgency to address the research problem that few studies have investigated migrant English instructors’ professional learning and support issues in the workplace, precisely that of English instructors working with adult learners in Canada. While appropriate social and professional support for migrant English instructors is required throughout the country, the present workplace realities in Ontario's English language programs need to be heard soon. For that purpose, the conceptualization of this study is crucial. It makes the investigation of under-represented instructors’ under-researched social phenomena, workplace learning and support, viable and rigorous. This paper demonstrates the robust theorization of English instructors’ workplace experiences using Mezirow’s Transformative Learning Theory in the English language teacher education field.

Keywords: English teacher education, professional learning, transformative learning theory, workplace learning

Procedia PDF Downloads 129
7090 High-Capacity Image Steganography using Wavelet-based Fusion on Deep Convolutional Neural Networks

Authors: Amal Khalifa, Nicolas Vana Santos

Abstract:

Steganography has been known for centuries as an efficient approach for covert communication. Due to its popularity and ease of access, image steganography has attracted researchers to find secure techniques for hiding information within an innocent looking cover image. In this research, we propose a novel deep-learning approach to digital image steganography. The proposed method, DeepWaveletFusion, uses convolutional neural networks (CNN) to hide a secret image into a cover image of the same size. Two CNNs are trained back-to-back to merge the Discrete Wavelet Transform (DWT) of both colored images and eventually be able to blindly extract the hidden image. Based on two different image similarity metrics, a weighted gain function is used to guide the learning process and maximize the quality of the retrieved secret image and yet maintaining acceptable imperceptibility. Experimental results verified the high recoverability of DeepWaveletFusion which outperformed similar deep-learning-based methods.

Keywords: deep learning, steganography, image, discrete wavelet transform, fusion

Procedia PDF Downloads 90
7089 A Team-Based Learning Game Guided by a Social Robot

Authors: Gila Kurtz, Dan Kohen Vacs

Abstract:

Social robots (SR) is an emerging field striving to deploy computers capable of resembling human shapes and mimicking human movements, gestures, and behaviors. The evolving capability of SR to interact with human offers groundbreaking ways for learning and training opportunities. Studies show that SR can offer instructional experiences for fostering creativity, entertainment, enjoyment, and curiosity. These added values are essential for empowering instructional opportunities as gamified learning experiences. We present our project focused on deploying an activity to be experienced in an escape room aimed at team-based learning scaffolded by an SR, NAO. An escape room is a well-known approach for gamified activities focused on a simulated scenario experienced by team-based participants. Usually, the simulation takes place in a physical environment where participants must complete a series of challenges in a limited amount of time. During this experience, players learn something about the assigned topic of the room. In the current learning simulation, students must "save the nation" by locating sensitive information stolen and stored in a vault of four locks. Team members have to look for hints and solve riddles mediated by NAO. Each solution provides a unique code for opening one of the four locks. NAO is also used to provide ongoing feedback on the team's performance. We captured the proceeding of our activity and used it to conduct an evaluation study among ten experts in related areas. The experts were interviewed on their overall assessment of the learning activity and their perception of the added value related to the robot. The results were very encouraging on the feasibility that NAO can serve as a motivational tutor in adults' collaborative game-based learning. We believe that this study marks the first step toward a template for developing innovative team-based training using escape rooms supported by a humanoid robot.

Keywords: social robot, NAO, learning, team based activity, escape room

Procedia PDF Downloads 68
7088 Intrusion Detection Based on Graph Oriented Big Data Analytics

Authors: Ahlem Abid, Farah Jemili

Abstract:

Intrusion detection has been the subject of numerous studies in industry and academia, but cyber security analysts always want greater precision and global threat analysis to secure their systems in cyberspace. To improve intrusion detection system, the visualisation of the security events in form of graphs and diagrams is important to improve the accuracy of alerts. In this paper, we propose an approach of an IDS based on cloud computing, big data technique and using a machine learning graph algorithm which can detect in real time different attacks as early as possible. We use the MAWILab intrusion detection dataset . We choose Microsoft Azure as a unified cloud environment to load our dataset on. We implement the k2 algorithm which is a graphical machine learning algorithm to classify attacks. Our system showed a good performance due to the graphical machine learning algorithm and spark structured streaming engine.

Keywords: Apache Spark Streaming, Graph, Intrusion detection, k2 algorithm, Machine Learning, MAWILab, Microsoft Azure Cloud

Procedia PDF Downloads 147
7087 Heart Attack Prediction Using Several Machine Learning Methods

Authors: Suzan Anwar, Utkarsh Goyal

Abstract:

Heart rate (HR) is a predictor of cardiovascular, cerebrovascular, and all-cause mortality in the general population, as well as in patients with cardio and cerebrovascular diseases. Machine learning (ML) significantly improves the accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment while avoiding unnecessary treatment of others. This research examines relationship between the individual's various heart health inputs like age, sex, cp, trestbps, thalach, oldpeaketc, and the likelihood of developing heart disease. Machine learning techniques like logistic regression and decision tree, and Python are used. The results of testing and evaluating the model using the Heart Failure Prediction Dataset show the chance of a person having a heart disease with variable accuracy. Logistic regression has yielded an accuracy of 80.48% without data handling. With data handling (normalization, standardscaler), the logistic regression resulted in improved accuracy of 87.80%, decision tree 100%, random forest 100%, and SVM 100%.

Keywords: heart rate, machine learning, SVM, decision tree, logistic regression, random forest

Procedia PDF Downloads 138
7086 Open Educational Resource in Online Mathematics Learning

Authors: Haohao Wang

Abstract:

Technology, multimedia in Open Educational Resources, can contribute positively to student performance in an online instructional environment. Student performance data of past four years were obtained from an online course entitled Applied Calculus (MA139). This paper examined the data to determine whether multimedia (independent variable) had any impact on student performance (dependent variable) in online math learning, and how students felt about the value of the technology. Two groups of student data were analyzed, group 1 (control) from the online applied calculus course that did not use multimedia instructional materials, and group 2 (treatment) of the same online applied calculus course that used multimedia instructional materials. For the MA139 class, results indicate a statistically significant difference (p = .001) between the two groups, where group 1 had a final score mean of 56.36 (out of 100), group 2 of 70.68. Additionally, student testimonials were discussed in which students shared their experience in learning applied calculus online with multimedia instructional materials.

Keywords: online learning, open educational resources, multimedia, technology

Procedia PDF Downloads 376
7085 The Factors Affecting the Development of the Media and Animations for Vocational School in Thailand

Authors: Tanit Pruktara

Abstract:

The research aimed to study the students’ learning achievement and awareness level on electrical energy consumption and conservation and also to investigate the students’ attitude on the developed multimedia supplemented instructional unit for learning household electrical energy consumption and conservation in grade 10 Thailand student. This study used a quantitative method using MCQ for pre and post-achievement tests and Likert scales for awareness and attitude survey questionnaires. The results from this were employed to improve the multimedia to be appropriate for the classroom and with real life situations in the second phase, the main study. The experimental results showed that the developed learning unit significantly improved the students’ learning achievement as well as their awareness of electric energy conservation. Additional we found the student will enjoy participating in class activities when the lessons are taught using multimedia and helps them to develop the relevance between the course and real world situations.

Keywords: lesson plan, media and animations, training course, vocational school in Thailand

Procedia PDF Downloads 177
7084 Chemistry Teachers’ Perception of the Militating and Mitigating Factors Affecting the Use of Information and Communication Technology in Teaching and Learning of Chemistry

Authors: Peter I. I. Ikokwu

Abstract:

Recent developments in the world, both in the health and education sectors, have further popularized the importance of Information and Communication Technology (ICT). ICT is available for many purposes, including teaching and learning, and its use in education is believed to empower both teachers and students by making the educational process more effective and interactive. The study examined the perceptions of teachers on the factors affecting the use of ICT in the teaching and learning of chemistry and the mitigating factors. The study involved all the lecturers (herein referred to as teachers) in the Colleges of Education in South Eastern Nigeria. The survey design was employed. 35 teachers were selected by stratified random sampling from about 78 chemistry teachers in these Colleges. However, 34 questionnaires were recovered, comprising 13 males and 21 females. 3 research questions and 3 hypotheses guided the study. Results show that the teachers have a clear perception of the factors militating against the use of ICT in the teaching and learning of chemistry, with a pooled mean of 2.96. But there was no significant difference in the perceptions of male and female teachers. Also, they identified the mitigating factors highlighted with no significant difference between the perceptions of the males and females with pooled means of 3.23 and 3.11, respectively. In all, it is noteworthy that lack of funds, irregular and inadequate power supply, and inadequate time in the school timetable was among the militating factors. Recommendations were made for the consideration of the government, the teachers, and the Institutions.

Keywords: chemistry, teachers, perception, ICT, learning

Procedia PDF Downloads 93
7083 Augmented Reality for Children Vocabulary Learning: Case Study in a Macau Kindergarten

Authors: R. W. Chan, Kan Kan Chan

Abstract:

Augmented Reality (AR), with the affordance of bridging between real world and virtual world, brings users immersive experience. It has been applied in education gradually and even come into practice in student daily learning. However, a systematic review shows that there are limited researches in the area of vocabulary acquisition in early childhood education. Since kindergarten is a key stage where children acquire language and AR as an emerging and potential technology to support the vocabulary acquisition, this study aims to explore its value in in real classroom with teacher’s view. Participants were a class of 5 to 6 years old kids studying in a Macau school that follows Cambridge curriculum and emphasizes multicultural ethos. There were 11 boys, 13 girls, and in a total of 24 kids. They learnt animal vocabulary using mobile device and AR flashcards, IPad to scan AR flashcards and interact with pop-up virtual objects. In order to estimate the effectiveness of using Augmented Reality, children attended vocabulary pre-posttest. In addition, teacher interview was administrated after this learning activity to seek practitioner’s opinion towards this technology. For data analysis, paired samples t-test was utilized to measure the instructional effect based on the pre-posttest data. Result shows that Augmented Reality could significantly enhance children vocabulary learning with large effect size. Teachers indicated that children enjoyed the AR learning activity but clear instruction is needed. Suggestions for the future implementation of vocabulary acquisition using AR are suggested.

Keywords: augmented reality, kindergarten children, vocabulary learning, Macau

Procedia PDF Downloads 150
7082 The BL-5D Model: The Development of a Model of Instructional Design for Blended Learning Activities

Authors: Damian Gordon, Paul Doyle, Anna Becevel, Júlia Vilafranca Molero, Cinta Gascon, Arianna Vitiello, Tina Baloh

Abstract:

It has long been recognized that the creation of any teaching content can be enhanced if the development process follows a pre-defined approach, which is often referred to as an instructional design methodology. These methodologies typically define a number of stages, or phases, that an educator should undertake to help ensure the quality of the final teaching content that is developed. In this paper, we present an instructional design methodology that is focused specifically on the introduction of blended resources into a heretofore bricks-and-mortar course. To achieve this, research was undertaken concerning a range of models of instructional design, as well as literature covering some of the key challenges and “pain points” of blending. Following this, our model, the BL-5D model, is presented, which incorporates some key questions at each stage of this five-stage methodology to guide the development process. Finally, a discussion of some of the key themes and issues that have been uncovered in this work is presented, as well as a template for a blended learning case study that emerged from this approach.

Keywords: blended learning, challenges of blended learning, design methodologies, instructional design

Procedia PDF Downloads 119
7081 H₆P₂W₁₈O₆₂.14H₂O Catalyzed Synthesis of α-Aminophosphonates from Amino Acids Esters

Authors: Sarra Boughaba

Abstract:

α-aminophosphonates have found a wide range of applications in organic and medicinal chemistry; they are considered as pharmacological agents, anti-inflammatory antitumor agents, and antibiotics. A number of procedures have been developed for their synthesis. However, many of these methods suffer from some disadvantages such as long reaction times, environmental pollution, utilization of organic solvents, and expensive catalysts. In the past few years, heteropolyacids have received great attention as environmentally benign catalysts for organic synthetic processes, they possess unique physicochemical properties, such as super-acidity, high thermal and chemical stability, ability to accept and release electrons and high proton mobility, and the possibility of varying their acidity and oxidizing potential. In this context, an efficient and eco-friendly protocol has been described for the synthesis of α-aminophosphonates via one pot, three component reaction catalyzed by H₆P₂W₁₈O₆₂.14H₂O as reusable catalyst, by condensation of amino acids esters, various aromatic aldehydes and triethylphosphite under solvent-free conditions, the corresponding α-aminophosphonates were formed in good yields as racemic or diastereomericmixture. All the new products were systematically characterized by IR, MS, and ¹H, ¹³C-³¹P-NMR analyses. This method offers advantages such as simplicity workup with the green aspects by avoiding expensive catalysts and toxic solvents, good yields, short reaction times.

Keywords: amino acids esters, α-aminophosphonates, H₆P₂W₁₈O₆₂.14H₂O catalyst, green chemistry

Procedia PDF Downloads 127
7080 Review of Currently Adopted Intelligent Programming Tutors

Authors: Rita Garcia

Abstract:

Intelligent Programming Tutors, IPTs, are supplemental educational devices that assist in teaching software development. These systems provide customized learning allowing the user to select the presentation pace, pedagogical strategy, and to recall previous and additional teaching materials reinforcing learning objectives. In addition, IPTs automatically records individual’s progress, providing feedback to the instructor and student. These tutoring systems have an advantage over Tutoring Systems because Intelligent Programming Tutors are not limited to one teaching strategy and can adjust when it detects the user struggling with a concept. The Intelligent Programming Tutor is a category of Intelligent Tutoring Systems, ITS. ITS are available for many fields in education, supporting different learning objectives and integrate into other learning tools, improving the student's learning experience. This study provides a comparison of the IPTs currently adopted by the educational community and will focus on the different teaching methodologies and programming languages. The study also includes the ability to integrate the IPT into other educational technologies, such as massive open online courses, MOOCs. The intention of this evaluation is to determine one system that would best serve in a larger ongoing research project and provide findings for other institutions looking to adopt an Intelligent Programming Tutor.

Keywords: computer education tools, integrated software development assistance, intelligent programming tutors, tutoring systems

Procedia PDF Downloads 317
7079 Project Work with Design Thinking and Blended Learning: A Practical Report from Teaching in Higher Education

Authors: C. Vogeler

Abstract:

Change processes such as individualization and digitalization have an impact on higher education. Graduates are expected to cooperate in creative work processes in their professional life. During their studies, they need to be prepared accordingly. This includes modern learning scenarios that integrate the benefits of digital media. Therefore, design thinking and blended learning have been combined in the project-based seminar conception introduced here. The presented seminar conception has been realized and evaluated with students of information sciences since September 2017. Within the seminar, the students learn to work on a project. They apply the methods in a problem-based learning scenario. Task of the case study is to arrange a conference on the topic gaming in libraries. In order to collaborative develop creative possibilities of realization within the group of students the design thinking method has been chosen. Design thinking is a method, used to create user-centric, problem-solving and need-driven innovation through creative collaboration in multidisciplinary teams. Central characteristics are the openness of this approach to work results and the visualization of ideas. This approach is now also accepted in the field of higher education. Especially in problem-based learning scenarios, the method offers clearly defined process steps for creative ideas and their realization. The creative process can be supported by digital media, such as search engines and tools for the documentation of brainstorming, creation of mind maps, project management etc. Because the students have to do two-thirds of the workload in their private study, design thinking has been combined with a blended learning approach. This supports students’ preparation and follow-up of the joint work in workshops (flipped classroom scenario) as well as the communication and collaboration during the entire project work phase. For this purpose, learning materials are provided on a Moodle-based learning platform as well as various tools that supported the design thinking process as described above. In this paper, the seminar conception with a combination of design thinking and blended learning is described and the potentials and limitations of the chosen strategy for the development of a course with a multimedia approach in higher education are reflected.

Keywords: blended learning, design thinking, digital media tools and methods, flipped classroom

Procedia PDF Downloads 197
7078 Recommender Systems for Technology Enhanced Learning (TEL)

Authors: Hailah Alballaa, Azeddine Chikh

Abstract:

Several challenges impede the adoption of Recommender Systems for Technology Enhanced Learning (TEL): to collect and identify possible datasets; to select between different recommender approaches; to evaluate their performances. The aim is of this paper is twofold: First, it aims to introduce a survey on the most significant work in this area. Second, it aims at identifying possible research directions.

Keywords: datasets, content-based filtering, recommender systems, TEL

Procedia PDF Downloads 244
7077 A Study on Big Data Analytics, Applications and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 83
7076 A Study on Big Data Analytics, Applications, and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 95
7075 The Investigation of Students’ Learning Preference from Native English Speaking Instructor and Non-Native Speaking Instructor

Authors: Yingling Chen

Abstract:

Most current research has been focused on whether NESTs have advantages over NNESTs in English language Teaching. The purpose of this study was to investigate English learners’ preferences toward native English speaking teachers and non-English speaking teachers in four skills of English language learning. This qualitative study consists of 12 participants. Two open-ended questions were investigated and analyzed. The findings revealed that the participants held an overall preference for NESTs over NNESTs in reading, writing, and listening English skills; nevertheless, they believed both NESTs and NNESTs offered learning experiences strengths, and weaknesses to satisfy students’ need in their English instruction.

Keywords: EFL, instruction, Student Rating of Instructions (SRI), perception

Procedia PDF Downloads 214
7074 Scrum Challenges and Mitigation Practices in Global Software Development of an Integrated Learning Environment: Case Study of Science, Technology, Innovation, Mathematics, Engineering for the Young

Authors: Evgeniia Surkova, Manal Assaad, Hleb Makeyeu, Juho Makio

Abstract:

The main objective of STIMEY (Science, Technology, Innovation, Mathematics, Engineering for the Young) project is the delivery of a hybrid learning environment that combines multi-level components such as social media concepts, robotic artefacts, and radio, among others. It is based on a well-researched pedagogical framework to attract European youths to STEM (science, technology, engineering, and mathematics) education and careers. To develop and integrate these various components, STIMEY is executed in iterative research cycles leading to progressive improvements. Scrum was the development methodology of choice in the project, as studies indicated its benefits as an agile methodology in global software development, especially of e-learning and integrated learning projects. This paper describes the project partners’ experience with the Scrum framework, discussing the challenges faced in its implementation and the mitigation practices employed. The authors conclude with exploring user experience tools and principles for future research, as a novel direction in supporting the Scrum development team.

Keywords: e-learning, global software development, scrum, STEM education

Procedia PDF Downloads 179
7073 Professional Learning, Professional Development and Academic Identity of Sessional Teachers: Underpinning Theoretical Frameworks

Authors: Aparna Datey

Abstract:

This paper explores the theoretical frameworks underpinning professional learning, professional development, and academic identity. The focus is on sessional teachers (also called tutors or adjuncts) in architectural design studios, who may be practitioners, masters or doctoral students and academics hired ‘as needed’. Drawing from Schön’s work on reflective practice, learning and developmental theories of Vygotsky (social constructionism and zones of proximal development), informal and workplace learning, this research proposes that sessional teachers not only develop their teaching skills but also shape their identities through their 'everyday' work. Continuing academic staff develop their teaching through a combination of active teaching, self-reflection on teaching, as well as learning to teach from others via formalised programs and informally in the workplace. They are provided professional development and recognised for their teaching efforts through promotion, student citations, and awards for teaching excellence. The teaching experiences of sessional staff, by comparison, may be discontinuous and they generally have fewer opportunities and incentives for teaching development. In the absence of access to formalised programs, sessional teachers develop their teaching informally in workplace settings that may be supportive or unhelpful. Their learning as teachers is embedded in everyday practice applying problem-solving skills in ambiguous and uncertain settings. Depending on their level of expertise, they understand how to teach a subject such that students are stimulated to learn. Adult learning theories posit that adults have different motivations for learning and fall into a matrix of readiness, that an adult’s ability to make sense of their learning is shaped by their values, expectations, beliefs, feelings, attitudes, and judgements, and they are self-directed. The level of expertise of sessional teachers depends on their individual attributes and motivations, as well as on their work environment, the good practices they acquire and enhance through their practice, career training and development, the clarity of their role in the delivery of teaching, and other factors. The architectural design studio is ideal for study due to the historical persistence of the vocational learning or apprenticeship model (learning under the guidance of experts) and a pedagogical format using two key approaches: project-based problem solving and collaborative learning. Hence, investigating the theoretical frameworks underlying academic roles and informal professional learning in the workplace would deepen understanding of their professional development and how they shape their academic identities. This qualitative research is ongoing at a major university in Australia, but the growing trend towards hiring sessional staff to teach core courses in many disciplines is a global one. This research will contribute to including transient sessional teachers in the discourse on institutional quality, effectiveness, and student learning.

Keywords: academic identity, architectural design learning, pedagogy, teaching and learning, sessional teachers

Procedia PDF Downloads 124
7072 Insider Theft Detection in Organizations Using Keylogger and Machine Learning

Authors: Shamatha Shetty, Sakshi Dhabadi, Prerana M., Indushree B.

Abstract:

About 66% of firms claim that insider attacks are more likely to happen. The frequency of insider incidents has increased by 47% in the last two years. The goal of this work is to prevent dangerous employee behavior by using keyloggers and the Machine Learning (ML) model. Every keystroke that the user enters is recorded by the keylogging program, also known as keystroke logging. Keyloggers are used to stop improper use of the system. This enables us to collect all textual data, save it in a CSV file, and analyze it using an ML algorithm and the VirusTotal API. Many large companies use it to methodically monitor how their employees use computers, the internet, and email. We are utilizing the SVM algorithm and the VirusTotal API to improve overall efficiency and accuracy in identifying specific patterns and words to automate and offer the report for improved monitoring.

Keywords: cyber security, machine learning, cyclic process, email notification

Procedia PDF Downloads 57
7071 Documentary Project as an Active Learning Strategy in a Developmental Psychology Course

Authors: Ozge Gurcanli

Abstract:

Recent studies in active-learning focus on how student experience varies based on the content (e.g. STEM versus Humanities) and the medium (e.g. in-class exercises versus off-campus activities) of experiential learning. However, little is known whether the variation in classroom time and space within the same active learning context affects student experience. This study manipulated the use of classroom time for the active learning component of a developmental psychology course that is offered at a four-year university in the South-West Region of United States. The course uses a blended model: traditional and active learning. In the traditional learning component of the course, students do weekly readings, listen to lectures, and take midterms. In the active learning component, students make a documentary on a developmental topic as a final project. Students used the classroom time and space for the documentary in two ways: regular classroom time slots that were dedicated to the making of the documentary outside without the supervision of the professor (Classroom-time Outside) and lectures that offered basic instructions about how to make a documentary (Documentary Lectures). The study used the public teaching evaluations that are administered by the Office of Registrar’s. A total of two hundred and seven student evaluations were available across six semesters. Because the Office of Registrar’s presented the data separately without personal identifiers, One-Way ANOVA with four groups (Traditional, Experiential-Heavy: 19% Classroom-time Outside, 12% for Documentary Lectures, Experiential-Moderate: 5-7% for Classroom-time Outside, 16-19% for Documentary Lectures, Experiential Light: 4-7% for Classroom-time Outside, 7% for Documentary Lectures) was conducted on five key features (Organization, Quality, Assignments Contribution, Intellectual Curiosity, Teaching Effectiveness). Each measure used a five-point reverse-coded scale (1-Outstanding, 5-Poor). For all experiential conditions, the documentary counted towards 30% of the final grade. Organization (‘The instructors preparation for class was’), Quality (’Overall, I would rate the quality of this course as’) and Assignment Contribution (’The contribution of the graded work that made to the learning experience was’) did not yield any significant differences across four course types (F (3, 202)=1.72, p > .05, F(3, 200)=.32, p > .05, F(3, 203)=.43, p > .05, respectively). Intellectual Curiosity (’The instructor’s ability to stimulate intellectual curiosity was’) yielded a marginal effect (F (3, 201)=2.61, p = .053). Tukey’s HSD (p < .05) indicated that the Experiential-Heavy (M = 1.94, SD = .82) condition was significantly different than all other three conditions (M =1.57, 1.51, 1.58; SD = .68, .66, .77, respectively) showing that heavily active class-time did not elicit intellectual curiosity as much as others. Finally, Teaching Effectiveness (’Overall, I feel that the instructor’s effectiveness as a teacher was’) was significant (F (3, 198)=3.32, p <.05). Tukey’s HSD (p <.05) showed that students found the courses with moderate (M=1.49, SD=.62) to light (M=1.52, SD=.70) active class-time more effective than heavily active class-time (M=1.93, SD=.69). Overall, the findings of this study suggest that within the same active learning context, the time and the space dedicated to active learning results in different outcomes in intellectual curiosity and teaching effectiveness.

Keywords: active learning, learning outcomes, student experience, learning context

Procedia PDF Downloads 190
7070 Research on Knowledge Graph Inference Technology Based on Proximal Policy Optimization

Authors: Yihao Kuang, Bowen Ding

Abstract:

With the increasing scale and complexity of knowledge graph, modern knowledge graph contains more and more types of entity, relationship, and attribute information. Therefore, in recent years, it has been a trend for knowledge graph inference to use reinforcement learning to deal with large-scale, incomplete, and noisy knowledge graphs and improve the inference effect and interpretability. The Proximal Policy Optimization (PPO) algorithm utilizes a near-end strategy optimization approach. This allows for more extensive updates of policy parameters while constraining the update extent to maintain training stability. This characteristic enables PPOs to converge to improved strategies more rapidly, often demonstrating enhanced performance early in the training process. Furthermore, PPO has the advantage of offline learning, effectively utilizing historical experience data for training and enhancing sample utilization. This means that even with limited resources, PPOs can efficiently train for reinforcement learning tasks. Based on these characteristics, this paper aims to obtain a better and more efficient inference effect by introducing PPO into knowledge inference technology.

Keywords: reinforcement learning, PPO, knowledge inference

Procedia PDF Downloads 243