Search results for: Collective Intelligence
727 Awareness in the Code of Ethics for Nurse Educators among Nurse Educators, Nursing Students and Professional Nurses at the Royal Thai Army, Thailand
Authors: Wallapa Boonrod
Abstract:
Thai National Education Act 1999 required all educational institutions received external quality evaluation at least once every five years. The purpose of this study was to compare the awareness in the code of ethics for nurse educators among nurse educators, professional nurses, and nursing students under The Royal Thai Army Nurse College. The sample consisted of 51 of nurse educators 200 nursing students and 340 professional nurses from Army nursing college and hospital by stratified random sampling techniques. The descriptive statistics indicated that the nurse educators, nursing students and professional nurses had different levels of awareness in the 9 roles of nurse educators: Nurse, Reliable Sacrifice, Intelligence, Giver, Nursing Skills, Teaching Responsibility, Unbiased Care, Tie to Organization, and Role Model. The code of ethics for nurse educators (CENE) measurement models from the awareness of nurse educators, professional nurses, and nursing students were well fitted with the empirical data. The CENE models from them were invariant in forms, but variant in factor loadings. Thai Army nurse educators strive to create a learning environment that nurtures the highest nursing potential and standards in their nursing students.Keywords: awareness of the code of ethics for nurse educators, nursing college and hospital under The Royal Thai Army, Thai Army nurse educators, professional nurses
Procedia PDF Downloads 452726 Design, Optimize the Damping System for Optical Scanning Equipment
Authors: Duy Nhat Tran, Van Tien Pham, Quang Trung Trinh, Tien Hai Tran, Van Cong Bui
Abstract:
In recent years, artificial intelligence and the Internet of Things have experienced significant advancements. Collecting image data and real-time analysis and processing of tasks have become increasingly popular in various aspects of life. Optical scanning devices are widely used to observe and analyze different environments, whether fixed outdoors, mounted on mobile devices, or used in unmanned aerial vehicles. As a result, the interaction between the physical environment and these devices has become more critical in terms of safety. Two commonly used methods for addressing these challenges are active and passive approaches. Each method has its advantages and disadvantages, but combining both methods can lead to higher efficiency. One solution is to utilize direct-drive motors for position control and real-time feedback within the operational range to determine appropriate control parameters with high precision. If the maximum motor torque is smaller than the inertial torque and the rotor reaches the operational limit, the spring system absorbs the impact force. Numerous experiments have been conducted to demonstrate the effectiveness of device protection during operation.Keywords: optical device, collision safety, collision absorption, precise mechanics
Procedia PDF Downloads 63725 Mailchimp AI Application For Marketing Employees
Authors: Alia El Akhrass, Raheed Al Jifri, Sara Babalghoum, Jana Bushnag
Abstract:
This project delves into exploring the functionalities of Mailchimp, an artificial intelligence application. The objective is to comprehend its operations through the AI tools it offers. To achieve this, a survey was conducted among peers, seeking insights into Mailchimp's functionality, accessibility, efficiency, and overall benefits. The survey aimed to gather valuable feedback for analysis. Subsequently, a thorough analysis of the collected data was performed to identify trends, patterns, and areas of improvement. Visual representations were then crafted to effectively summarize the findings, aiding in conveying the research outcomes clearly. Founded in 2001, Mailchimp initially provided email marketing services but has since expanded into a comprehensive marketing platform. Its focus on simplicity and accessibility has contributed to its success among businesses of all sizes. Alternative platforms such as Constant Contact, AWeber, and GetResponse offer similar services with their own unique strengths. Mailchimp's journey exemplifies the importance of vision and adaptability in the ever-evolving digital marketing landscape. By prioritizing innovation, user-centricity, and customer service, Mailchimp has established itself as a trusted partner in the field of digital marketing, enabling businesses to effectively connect with their customers and achieve their marketing goals.Keywords: email marketing, ai tool, connect, communicate, generate
Procedia PDF Downloads 42724 Evaluation of Different Waste Management Planning Strategies in an Industrial City
Authors: Leila H. Khiabani, Mohammadreza Vafaee, Farshad Hashemzadeh
Abstract:
Industrial waste management regulates different stages of production, storage, transfer, recycling and waste disposal. There are several common practices for industrial waste management. However, due to various local health, economic, social, environmental and aesthetic considerations, the most optimal principles and measures often vary at each specific industrial zone. In addition, waste management strategies are heavily impacted by local administrative, legal, and financial regulations. In this study, a hybrid qualitative and quantitative research methodology has been designed for waste management planning in an industrial city. Firstly, following a qualitative research methodology, the most relevant waste management strategies for the specific industrial city were identified through interviews with environmental planning and waste management experts. Forty experts participated in this study. Alborz industrial city in Iran, which hosts more than one thousand industrial units in nine hundred acres, was chosen as the sample industrial city in this study. The findings from the expert interviews at the first phase were then used to design a quantitative questionnaire for the second phase of the study. The aim of the questionnaire was to quantify the relative impact of different waste management strategies in the sample industrial city. Eight waste management strategies and three implementation policies were included in the questionnaire. The experts were asked to rank the relative effectiveness of each strategy for environmental planning of the sample industrial city. They were also asked to rank the relative effectiveness of each planning policy on each of the waste management strategies. In the end, the weighted average of all the responses was calculated to identify the most effective waste management strategy and planning policies for the sample industrial city. The results suggested that among the eight suggested waste management strategies, industrial composting is the most effective (31%) strategy based on the collective evaluation of the local expert. Additionally, the results suggested that the most effective policy (58%) in the city’s environmental planning is to reduce waste generation by prolonging the effective life of industrial products using higher quality and recyclable materials. These findings can provide useful expert guidelines for prioritization between different waste management strategies in the city’s overall environmental planning roadmap. The findings may also be applicable to similar industrial cities. In addition, a similar methodology can be utilized in the environmental planning of other industrial cities.Keywords: environmental planning, industrial city, quantitative research, waste management
Procedia PDF Downloads 132723 The Regionalism Paradox in the Fight against Human Trafficking: Indonesia and the Limits of Regional Cooperation in ASEAN
Authors: Nur Iman Subono, Meidi Kosandi
Abstract:
This paper examines the role of regional cooperation in the Association of Southeast Asian Nations (ASEAN) in the fight against human trafficking for Indonesia. Many among scholars suggest that regional cooperation is necessary for combating human trafficking for its transnational and organized character as a crime against humanity. ASEAN members have been collectively active in responding transnational security issues with series of talks and collaboration agreement since early 2000s. Lately in 2015, ASEAN agreed on ASEAN Convention against Trafficking in Persons, particularly Women and Children (ACTIP) that requires each member to collaborate in information sharing and providing effective safeguard and protection of victims. Yet, the frequency of human trafficking crime occurrence remains high and tend to increase in Indonesian in 2017-2018. The objective of this paper is to examine the effectiveness and success of ACTIP implementation in the fight against human trafficking in Indonesia. Based on two years of research (2017-2018) in three provinces with the largest number of victims in Indonesia, this paper shows the tendency of persisting crime despite the implementation of regional and national anti-trafficking policies. The research was conducted by archive study, literature study, discourse analysis, and depth interviews with local government officials, police, prosecutors, victims, and traffickers. This paper argues that the relative success of ASEAN in establishing convention at the high-level meetings has not been followed with the success in its implementation in the society. Three main factors have contributed to the ineffectiveness of the agreements, i.e. (1) ASEAN institutional arrangement as a collection of sovereign states instead of supranational organization with binding authority; (2) the lack of commitment of ASEAN sovereign member-states to the agreements; and (3) the complexity and variety of the nature of the crime in each member-state. In effect, these factors have contributed to generating the regionalism paradox in ASEAN where states tend to revert to national policies instead of seeking regional collective solution.Keywords: human trafficking, transnational security, regionalism, anti trafficking policy
Procedia PDF Downloads 164722 AI as a Tool Hindering Digital Education
Authors: Justyna Żywiołek, Marek Matulewski
Abstract:
The article presents the results of a survey conducted among students from various European countries. The aim of the study was to understand how artificial intelligence (AI) affects educational processes in a digital environment. The survey covered a wide range of topics, including students' understanding and use of AI, its impact on motivation and engagement, interaction and support issues, accessibility and equity, and data security and privacy concerns. Most respondents admitted having difficulties comprehending the advanced functions of AI in educational tools. Many students believe that excessive use of AI in education can decrease their motivation for self-study and active participation in classes. Additionally, students reported that interaction with AI-based tools is often less satisfying compared to direct contact with teachers. Furthermore, the survey highlighted inequalities in access to advanced AI tools, which can widen the educational gap between students from different economic backgrounds. Students also expressed concerns about the security and privacy of their personal data collected and processed by AI systems. The findings suggest that while AI has the potential to support digital education, significant challenges need to be addressed to make these tools more effective and acceptable for students. Recommendations include increasing training for students and teachers on using AI, providing more interactive and engaging forms of education, and implementing stricter regulations on data protection.Keywords: AI, digital education, education tools, motivation and engagement
Procedia PDF Downloads 29721 Technology for Enhancing the Learning and Teaching Experience in Higher Education
Authors: Sara M. Ismael, Ali H. Al-Badi
Abstract:
The rapid development and growth of technology has changed the method of obtaining information for educators and learners. Technology has created a new world of collaboration and communication among people. Incorporating new technology into the teaching process can enhance learning outcomes. Billions of individuals across the world are now connected together, and are cooperating and contributing their knowledge and intelligence. Time is no longer wasted in waiting until the teacher is ready to share information as learners can go online and get it immediately. The objectives of this paper are to understand the reasons why changes in teaching and learning methods are necessary, to find ways of improving them, and to investigate the challenges that present themselves in the adoption of new ICT tools in higher education institutes. To achieve these objectives two primary research methods were used: questionnaires, which were distributed among students at higher educational institutes and multiple interviews with faculty members (teachers) from different colleges and universities, which were conducted to find out why teaching and learning methodology should change. The findings show that both learners and educators agree that educational technology plays a significant role in enhancing instructors’ teaching style and students’ overall learning experience; however, time constraints, privacy issues, and not being provided with enough up-to-date technology do create some challenges.Keywords: e-books, educational technology, educators, e-learning, learners, social media, Web 2.0, LMS
Procedia PDF Downloads 277720 Bhumastra “Unmanned Ground Vehicle”
Authors: Vivek Krishna, Nikhil Jain, A. Mary Posonia A., Albert Mayan J
Abstract:
Terrorism and insurgency are significant global issues that require constant attention and effort from governments and scientists worldwide. To combat these threats, nations invest billions of dollars in developing new defensive technologies to protect civilians. Breakthroughs in vehicle automation have led to the use of sophisticated machines for many dangerous and critical anti-terrorist activities. Our concept of an "Unmanned Ground Vehicle" can carry out tasks such as border security, surveillance, mine detection, and active combat independently or in tandem with human control. The robot's movement can be wirelessly controlled by a person in a distant location or can travel to a pre-programmed destination autonomously in situations where personal control is not feasible. Our defence system comprises two units: the control unit that regulates mobility and the motion tracking unit. The remote operator robot uses the camera's live visual feed to manually operate both units, and the rover can automatically detect movement. The rover is operated by manpower who controls it using a joystick or mouse, and a wireless modem enables a soldier in a combat zone to control the rover via an additional controller feature.Keywords: robotics, computer vision, Machine learning, Artificial intelligence, future of AI
Procedia PDF Downloads 126719 The Ambivalent Dealing with Diversity: An Ethnographic Study of Diversity and Its Different Faces of Managing in a Mixed Neighborhood in Germany
Authors: Nina Berding
Abstract:
Migration and the ensuing diversity are integral parts of urban societies. However, engaging with the urban society and its diversification is rarely perceived as something trivial but rather as a difficult task and a major challenge. A central aspect of the discourse is the current migration of refugees from countries of the southern hemisphere to Europe and the resulting challenges for cities, their municipalities and the civil society as a whole. Based on exploratory field research in a German inner-city neighborhood, it is aimed to show that the discourses about migration and diversity are completely contrary to the everyday life actions of the urban society. Processes of migration that include leaving one’s hometown and moving to other places, searching for ‘safe’ environments or better opportunities are, historically speaking, not a new phenomenon. The urban dwellers have a large repertoire of strategies in managing processes of difference in everyday life situations, guided them well for centuries and also in these contemporary processes with an increased mobility and diversity. So there is obviously a considerable discrepancy between what is practically lived in everyday life, and how it is talked about. The results of the study demonstrate that the current discourse about the challenges of migration seems to legitimize interventions beyond humanist approaches where migrants serve as collective scapegoats for social problems and affected by different discrimination and criminalization processes. On the one hand, everyone takes advantage of the super-mobility and super-diversity in their daily lives and on the other hand, powerful stakeholders and designated authorities operate a sort of retro- nationalism and identity collectivism. Political players, the municipalities and other stakeholders then follow an urban public policy that takes actions (increasing police presence, concepts and activities for special groups, exclusion from active social life, preventing participation etc.) towards different ‘groups’ of residents, produced along ‘ethnic’ lines. The results also show that, despite the obstacles and adversities placed in their way, the excluded residents perpetually relocate and re-position themselves and attempt to empower themselves by redefining their identities in their neighborhood.Keywords: coexistence, everyday life, migration and diversity regimes, urban policy
Procedia PDF Downloads 248718 Food Sharing App and the Ubuntu Ssharing Economy: Accessing the Impact of Technology of Food Waste Reduction
Authors: Gabriel Sunday Ayayia
Abstract:
Food waste remains a critical global challenge with significant environmental, economic, and ethical implications. In an era where food waste and food insecurity coexist, innovative technology-driven solutions have emerged, aiming to bridge the gap between surplus food and those in need. Simultaneously, disparities in food access persist, exacerbating issues of hunger and malnutrition. Emerging food-sharing apps offer a promising avenue to mitigate these problems but require further examination within the context of the Ubuntu sharing economy. This study seeks to understand the impact of food-sharing apps, guided by the principles of Ubuntu, on reducing food waste and enhancing food access. The study examines how specific food-sharing apps within the Ubuntu sharing economy could contribute to fostering community resilience and reducing food waste. Ubuntu underscores the idea that we are all responsible for the well-being of our community members. In the context of food waste, this means that individuals and businesses have a collective responsibility to ensure that surplus food is shared rather than wasted. Food-sharing apps align with this principle by facilitating the sharing of excess food with those in need, transforming waste into a communal resource. This research employs a mixed-methods approach of both quantitative analysis and qualitative inquiry. Large-scale surveys will be conducted to assess user behavior, attitudes, and experiences with food-sharing apps, focusing on the frequency of use, motivations, and perceived impacts. Qualitative interviews with app users, community organizers, and stakeholders will explore the Ubuntu-inspired aspects of food-sharing apps and their influence on reducing food waste and improving food access. Quantitative data will be analyzed using statistical techniques, while qualitative data will undergo thematic analysis to identify key patterns and insights. This research addresses a critical gap in the literature by examining the role of food-sharing apps in reducing food waste and enhancing food access, particularly within the Ubuntu sharing economy framework. Findings will offer valuable insights for policymakers, technology developers, and communities seeking to leverage technology to create a more just and sustainable food system.Keywords: sharing economy, food waste reduction, technology, community- based approach
Procedia PDF Downloads 69717 A Web Application for Screening Dyslexia in Greek Students
Authors: Antonios Panagopoulos, Stamoulis Georgios
Abstract:
Dyslexia's diagnosis is made taking into account reading and writing skills and is carried out by qualified scientific staff. In addition, there are screening tests that are designed to give an indication of possible dyslexic difficulties. Their main advantage is that they create a pleasant environment for the user and reduce the stress that can lead to false results. An online application was created for the first time, as far as authors' knowledge, for screening Dyslexia in Greek high school students named «DyScreTe». Thus, a sample of 240 students between 16 and 18 years old in Greece was taken, of which 120 were diagnosed with dyslexia by an official authority in Greece, and 120 were typically developed. The main hypothesis that was examined is that students who were diagnosed with dyslexia by official authorities in Greece had significantly lower performance in the respective software tests. The results verified the hypothesis we made those children with dyslexia in each test had a lower performance com-pared to the type developed in successful responses, except for the intelligence test. After random sampling, it was shown that the new online application was a useful tool for screening dyslexia. However, computer evaluation cannot replace the diagnosis by a professional expert, but with the results of this application, the interdisciplinary team that deals with the differential diagnosis will create and evaluate, at a later time, the appropriate intervention program.Keywords: dyslexia, screening tests, deficits, application
Procedia PDF Downloads 85716 Perceptions of College Students on Whether an Intelligent Tutoring System Is a Tutor
Authors: Michael Smalenberger
Abstract:
Intelligent tutoring systems (ITS) are computer-based platforms which can incorporate artificial intelligence to provide step-by-step guidance as students practice problem-solving skills. ITS can replicate the benefits of one-on-one tutoring, foster transactivity in collaborative environments, and lead to substantial learning gains when used to supplement the instruction of a teacher or when used as the sole method of instruction. Developments improving the ease of ITS creation have recently increased their proliferation, leading many K-12 schools and institutions of higher education in the United States to regularly use ITS within classrooms. We investigated how students perceive their experience using an ITS. In this study, 111 undergraduate students used an ITS in a college-level introductory statistics course and were subsequently asked for feedback on their experience. Results show that their perceptions were generally favorable of the ITS, and most would seek to use an ITS both for STEM and non-STEM courses in the future. Along with detailed transaction-level data, this feedback also provides insights on the design of user-friendly interfaces, guidance on accessibility for students with impairments, the sequencing of exercises, students’ expectation of achievement, and comparisons to other tutoring experiences. We discuss how these findings are important for the creation, implementation, and evaluation of ITS as a mode and method of teaching and learning.Keywords: college statistics course, intelligent tutoring systems, in vivo study, student perceptions of tutoring
Procedia PDF Downloads 102715 The Role of Online Platforms in Economic Growth and the Introduction of Local Culture in Tourist Areas
Authors: Maryam Nzari
Abstract:
Today, with the advancement of Internet technology, one of the tools used by humans is a tool that allows them to do what they need easily. Online platforms in different forms and by providing different services make it possible for users to communicate with each other and users with platforms. Audience communication with mass media is not the same as in the past. Today the conditions are different; With online platforms that provide the latest news minute by minute, he has access to all the content and can choose more quickly and easily. According to professionals Galloway, Apple, Amazon, Facebook and Google companies create a wide range. They are among the products and services that are connected with the daily life of billions of people all over the planet. Over time, platforms gain high economic value and in this way gain power that will influence the social, cultural, economic and political aspects of people’s lives. As a result of the effects of the process of platformization on all areas of individual and collective life, we now live in a platform society, which communicates It is close to “platform politics”. Nowadays, with social media platforms, users can interact with many people and people can share their data on various topics with others in this space. In this research, what will be investigated is the role of these online platforms in economic growth and the introduction of local culture areas in tourist areas. Tourism in a region is linked with various factors; One of the important factors that attract tourists to a region is its culture, and on the other hand, this culture can also affect economic growth. Without a proper understanding of the culture of these tourist areas, it is not possible to plan properly for the growth of the tourism industry and the subsequent increase in economic growth. The interaction of local people and tourists will have social and cultural effects on each other and will give them the opportunity to get to know each other. Therefore, the purpose of this research is to examine issues such as the role that online platforms play in cultural interaction in tourist areas and to understand that online platforms are only seeking to show the good aspects of a region and then generate enough extra income or that platforms can They play a role beyond what we imagine and introduce the culture of a region in a proper way so that we don’t see disagreements in the tourism planning of that region. in this article It has been tried by using library and field methods Answer the questions.Keywords: online platforms, economic growth, culture Indigenous, tourism
Procedia PDF Downloads 58714 Continuous Differential Evolution Based Parameter Estimation Framework for Signal Models
Authors: Ammara Mehmood, Aneela Zameer, Muhammad Asif Zahoor Raja, Muhammad Faisal Fateh
Abstract:
In this work, the strength of bio-inspired computational intelligence based technique is exploited for parameter estimation for the periodic signals using Continuous Differential Evolution (CDE) by defining an error function in the mean square sense. Multidimensional and nonlinear nature of the problem emerging in sinusoidal signal models along with noise makes it a challenging optimization task, which is dealt with robustness and effectiveness of CDE to ensure convergence and avoid trapping in local minima. In the proposed scheme of Continuous Differential Evolution based Signal Parameter Estimation (CDESPE), unknown adjustable weights of the signal system identification model are optimized utilizing CDE algorithm. The performance of CDESPE model is validated through statistics based various performance indices on a sufficiently large number of runs in terms of estimation error, mean squared error and Thiel’s inequality coefficient. Efficacy of CDESPE is examined by comparison with the actual parameters of the system, Genetic Algorithm based outcomes and from various deterministic approaches at different signal-to-noise ratio (SNR) levels.Keywords: parameter estimation, bio-inspired computing, continuous differential evolution (CDE), periodic signals
Procedia PDF Downloads 304713 Characterising Performative Technological Innovation: Developing a Strategic Framework That Incorporates the Social Mechanisms That Promote Change within a Technological Environment
Authors: Joan Edwards, J. Lawlor
Abstract:
Technological innovation is frequently defined in terms of bringing a new invention to market through a relatively straightforward process of diffusion. In reality, this process is complex and non-linear in nature, and includes social and cognitive factors that influence the development of an emerging technology and its related market or environment. As recent studies contend technological trajectory is part of technological paradigms, which arise from the expectations and desires of industry agents and results in co-evolution, it may be realised that social factors play a major role in the development of a technology. It is conjectured that collective social behaviour is fuelled by individual motivations and expectations, which inform the possibilities and uses for a new technology. The individual outlook highlights the issues present at the micro-level of developing a technology. Accordingly, this may be zoomed out to realise how these embedded social structures, influence activities and expectations at a macro level and can ultimately strategically shape the development and use of a technology. These social factors rely on communication to foster the innovation process. As innovation may be defined as the implementation of inventions, technological change results from the complex interactions and feedback occurring within an extended environment. The framework presented in this paper, recognises that social mechanisms provide the basis for an iterative dialogue between an innovator, a new technology, and an environment - within which social and cognitive ‘identity-shaping’ elements of the innovation process occur. Identity-shaping characteristics indicate that an emerging technology has a performative nature that transforms, alters, and ultimately configures the environment to which it joins. This identity–shaping quality is termed as ‘performative’. This paper examines how technologies evolve within a socio-technological sphere and how 'performativity' facilitates the process. A framework is proposed that incorporates the performative elements which are identified as feedback, iteration, routine, expectations, and motivations. Additionally, the concept of affordances is employed to determine how the role of the innovator and technology change over time - constituting a more conducive environment for successful innovation.Keywords: affordances, framework, performativity, strategic innovation
Procedia PDF Downloads 206712 The Impact of Artificial Intelligence on Rural Life
Authors: Triza Edwar Fawzi Deif
Abstract:
In the process of urbanization in China, new rural construction is on the ascendant, which is becoming more and more popular. Under the driving effect of rural urbanization, the house pattern and tectonic methods of traditional vernacular houses have shown great differences from the family structure and values of contemporary peasant families. Therefore, it is particularly important to find a prototype, form and strategy to make a balance between the traditional memory and modern functional requirements. In order for research to combine the regional culture with modern life, under the situation of the current batch production of new rural residences, Badie village, in Zhejiang province, is taken as the case. This paper aims to put forward a prototype which can not only meet the demand of modern life but also ensure the continuation of traditional culture and historical context for the new rural dwellings design. This research not only helps to extend the local context in the construction of the new site but also contributes to the fusion of old and new rural dwellings in the old site construction. Through the study and research of this case, the research methodology and results can be drawn as reference for the new rural construction in other areas.Keywords: steel slag, co-product, primary coating, steel aggregate capital, rural areas, rural planning, rural governance village, design strategy, new rural dwellings, regional context, regional expression
Procedia PDF Downloads 58711 The Effect of Artificial Intelligence on International Law, Legal Security and Privacy Issues
Authors: Akram Waheb Nasef Alzordoky
Abstract:
The wars and armed conflicts have frequently ended in violations of global humanitarian law and regularly devote the maximum severe global crimes, which include war crimes, crimes towards humanity, aggression and genocide. But, simplest inside the XX century, the guideline changed into an articulated idea of establishing a frame of worldwide criminal justice so that you can prosecute those crimes and their perpetrators. The first steps on this subject were made with the aid of setting up the worldwide army tribunals for warfare crimes at Nuremberg and Tokyo, and the formation of ad hoc tribunals for the former Yugoslavia and Rwanda. Ultimately, the global criminal courtroom was established in Rome in 1998 with the aim of justice and that allows you to give satisfaction to the sufferers of crimes and their families. The aim of the paper was to provide an ancient and comparative analysis of the establishments of worldwide criminal justice primarily based on which those establishments de lege lata fulfilled the goals of individual criminal responsibility and justice. Moreover, the authors endorse de lege ferenda that the everlasting global crook Tribunal, in addition to the potential case, additionally takes over the current ICTY and ICTR cases.Keywords: social networks privacy issues, social networks security issues, social networks privacy precautions measures, social networks security precautions measures
Procedia PDF Downloads 23710 Design of EV Steering Unit Using AI Based on Estimate and Control Model
Authors: Seong Jun Yoon, Jasurbek Doliev, Sang Min Oh, Rodi Hartono, Kyoojae Shin
Abstract:
Electric power steering (EPS), which is commonly used in electric vehicles recently, is an electric-driven steering device for vehicles. Compared to hydraulic systems, EPS offers advantages such as simple system components, easy maintenance, and improved steering performance. However, because the EPS system is a nonlinear model, difficult problems arise in controller design. To address these, various machine learning and artificial intelligence approaches, notably artificial neural networks (ANN), have been applied. ANN can effectively determine relationships between inputs and outputs in a data-driven manner. This research explores two main areas: designing an EPS identifier using an ANN-based backpropagation (BP) algorithm and enhancing the EPS system controller with an ANN-based Levenberg-Marquardt (LM) algorithm. The proposed ANN-based BP algorithm shows superior performance and accuracy compared to linear transfer function estimators, while the LM algorithm offers better input angle reference tracking and faster response times than traditional PID controllers. Overall, the proposed ANN methods demonstrate significant promise in improving EPS system performance.Keywords: ANN backpropagation modelling, electric power steering, transfer function estimator, electrical vehicle driving system
Procedia PDF Downloads 46709 Breast Cancer Diagnosing Based on Online Sequential Extreme Learning Machine Approach
Authors: Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Fahad Taha Al-Dhief, Mohammad Kamrul Hasan
Abstract:
Breast Cancer (BC) is considered one of the most frequent reasons of cancer death in women between 40 to 55 ages. The BC is diagnosed by using digital images of the FNA (Fine Needle Aspirate) for both benign and malignant tumors of the breast mass. Therefore, this work proposes the Online Sequential Extreme Learning Machine (OSELM) algorithm for diagnosing BC by using the tumor features of the breast mass. The current work has used the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, which contains 569 samples (i.e., 357 samples for benign class and 212 samples for malignant class). Further, numerous measurements of assessment were used in order to evaluate the proposed OSELM algorithm, such as specificity, precision, F-measure, accuracy, G-mean, MCC, and recall. According to the outcomes of the experiment, the highest performance of the proposed OSELM was accomplished with 97.66% accuracy, 98.39% recall, 95.31% precision, 97.25% specificity, 96.83% F-measure, 95.00% MCC, and 96.84% G-Mean. The proposed OSELM algorithm demonstrates promising results in diagnosing BC. Besides, the performance of the proposed OSELM algorithm was superior to all its comparatives with respect to the rate of classification.Keywords: breast cancer, machine learning, online sequential extreme learning machine, artificial intelligence
Procedia PDF Downloads 113708 Political Coercion from Within: Theoretical Convergence in the Strategies of Terrorist Groups, Insurgencies, and Social Movements
Authors: John Hardy
Abstract:
The early twenty-first century national security environment has been characterized by political coercion. Despite an abundance of political commentary on the various forms of non-state coercion leveraged against the state, there is a lack of literature which distinguishes between the mechanisms and the mediums of coercion. Frequently non-state movements seeking to coerce the state are labelled by their tactics, not their strategies. Terrorists, insurgencies and social movements are largely defined by the ways in which they seek to influence the state, rather than by their political aims. This study examines the strategies of coercion used by non-state actors against states. This approach includes terrorist groups, insurgencies, and social movements who seek to coerce state politics. Not all non-state actors seek political coercion, so not all examples of different group types are considered. This approach also excludes political coercion by states, focusing on the non-state actor as the primary unit of analysis. The study applies a general theory of political coercion, which is defined as attempts to change the policies or action of a polity against its will, to the strategies employed by terrorist groups, insurgencies, and social movements. This distinguishes non-state actors’ strategic objectives from their actions and motives, which are variables that are often used to differentiate between types of non-state actors and the labels commonly used to describe them. It also allows for a comparative analysis of theoretical perspectives from the disciplines of terrorism, insurgency and counterinsurgency, and social movements. The study finds that there is a significant degree of overlap in the way that different disciplines conceptualize the mechanism of political coercion by non-state actors. Studies of terrorism and counterterrorism focus more on the notions of cost tolerance and collective punishment, while studies of insurgency focus on a contest of legitimacy between actors, and social movement theory tend to link political objectives, social capital, and a mechanism of influence to leverage against the state. Each discipline has a particular vernacular for the mechanism of coercion, which is often linked to the means of coercion, but they converge on three core theoretical components of compelling a polity to change its policies or actions: exceeding resistance to change, using political or violent punishments, and withholding legitimacy or consent from a government.Keywords: counter terrorism, homeland security, insurgency, political coercion, social movement theory, terrorism
Procedia PDF Downloads 177707 Contactless Heart Rate Measurement System based on FMCW Radar and LSTM for Automotive Applications
Authors: Asma Omri, Iheb Sifaoui, Sofiane Sayahi, Hichem Besbes
Abstract:
Future vehicle systems demand advanced capabilities, notably in-cabin life detection and driver monitoring systems, with a particular emphasis on drowsiness detection. To meet these requirements, several techniques employ artificial intelligence methods based on real-time vital sign measurements. In parallel, Frequency-Modulated Continuous-Wave (FMCW) radar technology has garnered considerable attention in the domains of healthcare and biomedical engineering for non-invasive vital sign monitoring. FMCW radar offers a multitude of advantages, including its non-intrusive nature, continuous monitoring capacity, and its ability to penetrate through clothing. In this paper, we propose a system utilizing the AWR6843AOP radar from Texas Instruments (TI) to extract precise vital sign information. The radar allows us to estimate Ballistocardiogram (BCG) signals, which capture the mechanical movements of the body, particularly the ballistic forces generated by heartbeats and respiration. These signals are rich sources of information about the cardiac cycle, rendering them suitable for heart rate estimation. The process begins with real-time subject positioning, followed by clutter removal, computation of Doppler phase differences, and the use of various filtering methods to accurately capture subtle physiological movements. To address the challenges associated with FMCW radar-based vital sign monitoring, including motion artifacts due to subjects' movement or radar micro-vibrations, Long Short-Term Memory (LSTM) networks are implemented. LSTM's adaptability to different heart rate patterns and ability to handle real-time data make it suitable for continuous monitoring applications. Several crucial steps were taken, including feature extraction (involving amplitude, time intervals, and signal morphology), sequence modeling, heart rate estimation through the analysis of detected cardiac cycles and their temporal relationships, and performance evaluation using metrics such as Root Mean Square Error (RMSE) and correlation with reference heart rate measurements. For dataset construction and LSTM training, a comprehensive data collection system was established, integrating the AWR6843AOP radar, a Heart Rate Belt, and a smart watch for ground truth measurements. Rigorous synchronization of these devices ensured data accuracy. Twenty participants engaged in various scenarios, encompassing indoor and real-world conditions within a moving vehicle equipped with the radar system. Static and dynamic subject’s conditions were considered. The heart rate estimation through LSTM outperforms traditional signal processing techniques that rely on filtering, Fast Fourier Transform (FFT), and thresholding. It delivers an average accuracy of approximately 91% with an RMSE of 1.01 beat per minute (bpm). In conclusion, this paper underscores the promising potential of FMCW radar technology integrated with artificial intelligence algorithms in the context of automotive applications. This innovation not only enhances road safety but also paves the way for its integration into the automotive ecosystem to improve driver well-being and overall vehicular safety.Keywords: ballistocardiogram, FMCW Radar, vital sign monitoring, LSTM
Procedia PDF Downloads 73706 The Impact of Artificial Intelligence on Food Nutrition
Authors: Antonyous Fawzy Boshra Girgis
Abstract:
Nutrition labels are diet-related health policies. They help individuals improve food-choice decisions and reduce intake of calories and unhealthy food elements, like cholesterol. However, many individuals do not pay attention to nutrition labels or fail to appropriately understand them. According to the literature, thinking and cognitive styles can have significant effects on attention to nutrition labels. According to the author's knowledge, the effect of global/local processing on attention to nutrition labels has not been previously studied. Global/local processing encourages individuals to attend to the whole/specific parts of an object and can have a significant impact on people's visual attention. In this study, this effect was examined with an experimental design using the eye-tracking technique. The research hypothesis was that individuals with local processing would pay more attention to nutrition labels, including nutrition tables and traffic lights. An experiment was designed with two conditions: global and local information processing. Forty participants were randomly assigned to either global or local conditions, and their processing style was manipulated accordingly. Results supported the hypothesis for nutrition tables but not for traffic lights.Keywords: nutrition, public health, SA Harvest, foodeye-tracking, nutrition labelling, global/local information processing, individual differencesmobile computing, cloud computing, nutrition label use, nutrition management, barcode scanning
Procedia PDF Downloads 43705 Synthesis of Deformed Nuclei 260Rf, 261Rf and 262Rf in the Decay of 266Rf*Formed via Different Fusion Reactions: Entrance Channel Effects
Authors: Niyti, Aman Deep, Rajesh Kharab, Sahila Chopra, Raj. K. Gupta
Abstract:
Relatively long-lived transactinide elements (i.e., elements with atomic number Z≥104) up to Z = 108 have been produced in nuclear reactions between low Z projectiles (C to Al) and actinide targets. Cross sections have been observed to decrease steeply with increasing Z. Recently, production cross sections of several picobarns have been reported for comparatively neutron-rich nuclides of 112 through 118 produced via hot fusion reactions with 48Ca and actinide targets. Some of those heavy nuclides are reported to have lifetimes on the order of seconds or longer. The relatively high cross sections in these hot fusion reactions are not fully understood and this has renewed interest in systematic studies of heavy-ion reactions with actinide targets. The main aim of this work is to understand the dynamics hot fusion reactions 18O+ 248Cm and 22Ne+244Pu (carried out at RIKEN and TASCA respectively) using the collective clusterization technique, carried out by undertaking the decay of the compound nucleus 266Rf∗ into 4n, 5n and 6n neutron evaporation channels. Here we extend our earlier study of the excitation functions (EFs) of 266Rf∗, formed in fusion reaction 18O+248Cm, based on Dynamical Cluster-decay Model (DCM) using the pocket formula for nuclear proximity potential, to the use of other nuclear interaction potentials derived from Skyrme energy density formalism (SEDF) based on semiclassical extended Thomas Fermi (ETF) approach and also study entrance channel effects by considering the synthesis of 266Rf* in 22Ne+244Pu reaction. The Skyrme forces used are the old force SIII, and new forces GSkI and KDE0(v1). Here, the EFs for the production of 260Rf, 261Rf and 262Rf isotope via 6n, 5n and 4n decay channel from the 266Rf∗ compound nucleus are studied at Elab = 88.2 to 125 MeV, including quadrupole deformations β2i and ‘hot-optimum’ orientations θi. The calculations are made within the DCM where the neck-length ∆R is the only parameter representing the relative separation distance between two fragments and/or clusters Ai which assimilates the neck formation effects.Keywords: entrance channel effects, fusion reactions, skyrme force, superheavy nucleus
Procedia PDF Downloads 254704 Computational, Human, and Material Modalities: An Augmented Reality Workflow for Building form Found Textile Structures
Authors: James Forren
Abstract:
This research paper details a recent demonstrator project in which digital form found textile structures were built by human craftspersons wearing augmented reality (AR) head-worn displays (HWDs). The project utilized a wet-state natural fiber / cementitious matrix composite to generate minimal bending shapes in tension which, when cured and rotated, performed as minimal-bending compression members. The significance of the project is that it synthesizes computational structural simulations with visually guided handcraft production. Computational and physical form-finding methods with textiles are well characterized in the development of architectural form. One difficulty, however, is physically building computer simulations: often requiring complicated digital fabrication workflows. However, AR HWDs have been used to build a complex digital form from bricks, wood, plastic, and steel without digital fabrication devices. These projects utilize, instead, the tacit knowledge motor schema of the human craftsperson. Computational simulations offer unprecedented speed and performance in solving complex structural problems. Human craftspersons possess highly efficient complex spatial reasoning motor schemas. And textiles offer efficient form-generating possibilities for individual structural members and overall structural forms. This project proposes that the synthesis of these three modalities of structural problem-solving – computational, human, and material - may not only develop efficient structural form but offer further creative potentialities when the respective intelligence of each modality is productively leveraged. The project methodology pertains to its three modalities of production: 1) computational, 2) human, and 3) material. A proprietary three-dimensional graphic statics simulator generated a three-legged arch as a wireframe model. This wireframe was discretized into nine modules, three modules per leg. Each module was modeled as a woven matrix of one-inch diameter chords. And each woven matrix was transmitted to a holographic engine running on HWDs. Craftspersons wearing the HWDs then wove wet cementitious chords within a simple falsework frame to match the minimal bending form displayed in front of them. Once the woven components cured, they were demounted from the frame. The components were then assembled into a full structure using the holographically displayed computational model as a guide. The assembled structure was approximately eighteen feet in diameter and ten feet in height and matched the holographic model to under an inch of tolerance. The construction validated the computational simulation of the minimal bending form as it was dimensionally stable for a ten-day period, after which it was disassembled. The demonstrator illustrated the facility with which computationally derived, a structurally stable form could be achieved by the holographically guided, complex three-dimensional motor schema of the human craftsperson. However, the workflow traveled unidirectionally from computer to human to material: failing to fully leverage the intelligence of each modality. Subsequent research – a workshop testing human interaction with a physics engine simulation of string networks; and research on the use of HWDs to capture hand gestures in weaving seeks to develop further interactivity with rope and chord towards a bi-directional workflow within full-scale building environments.Keywords: augmented reality, cementitious composites, computational form finding, textile structures
Procedia PDF Downloads 176703 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches
Authors: Aya Salama
Abstract:
Digital Twin is an emerging research topic that attracted researchers in the last decade. It is used in many fields, such as smart manufacturing and smart healthcare because it saves time and money. It is usually related to other technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, Human digital twin (HDT), in specific, is still a novel idea that still needs to prove its feasibility. HDT expands the idea of Digital Twin to human beings, which are living beings and different from the inanimate physical entities. The goal of this research was to create a Human digital twin that is responsible for real-time human replies automation by simulating human behavior. For this reason, clustering, supervised classification, topic extraction, and sentiment analysis were studied in this paper. The feasibility of the HDT for personal replies generation on social messaging applications was proved in this work. The overall accuracy of the proposed approach in this paper was 63% which is a very promising result that can open the way for researchers to expand the idea of HDT. This was achieved by using Random Forest for clustering the question data base and matching new questions. K-nearest neighbor was also applied for sentiment analysis.Keywords: human digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification, clustering
Procedia PDF Downloads 87702 English Grammatical Errors of Arabic Sentence Translations Done by Machine Translations
Authors: Muhammad Fathurridho
Abstract:
Grammar as a rule used by every language to be understood by everyone is always related to syntax and morphology. Arabic grammar is different with another languages’ grammars. It has more rules and difficulties. This paper aims to investigate and describe the English grammatical errors of machine translation systems in translating Arabic sentences, including declarative, exclamation, imperative, and interrogative sentences, specifically in year 2018 which can be supported with artificial intelligence’s role. The Arabic sample sentences which are divided into two; verbal and nominal sentence of several Arabic published texts will be examined as the source language samples. The translated sentences done by several popular online machine translation systems, including Google Translate, Microsoft Bing, Babylon, Facebook, Hellotalk, Worldlingo, Yandex Translate, and Tradukka Translate are the material objects of this research. Descriptive method that will be taken to finish this research will show the grammatical errors of English target language, and classify them. The conclusion of this paper has showed that the grammatical errors of machine translation results are varied and generally classified into morphological, syntactical, and semantic errors in all type of Arabic words (Noun, Verb, and Particle), and it will be one of the evaluations for machine translation’s providers to correct them in order to improve their understandable results.Keywords: Arabic, Arabic-English translation, machine translation, grammatical errors
Procedia PDF Downloads 155701 The Impact of Artificial Intelligence on Construction Projects
Authors: Muller Salah Zaky Toudry
Abstract:
The complexity arises in defining the development great due to its notion, based on inherent market situations and their requirements, the diverse stakeholders itself and their desired output. An quantitative survey based totally approach was adopted in this optimistic examine. A questionnaire-primarily based survey was performed for the assessment of production fine belief and expectations within the context of excellent development technique. The survey feedback of experts of the leading creation corporations/companies of Pakistan production industry have been analyzed. The monetary ability, organizational shape, and production revel in of the construction companies shaped basis for their selection. The great belief become located to be venture-scope-orientated and taken into consideration as an extra cost for a production assignment. Any excellent improvement technique changed into expected to maximize the profit for the employer, via enhancing the productiveness in a creation project. The look at is beneficial for the construction specialists to evaluate the prevailing creation great perception and the expectations from implementation of any pleasant improvement approach in production projects.Keywords: correlation analysis, lean construction tools, lean construction, logistic regression analysis, risk management, safety construction quality, expectation, improvement, perception client loyalty, NPS, pre-construction, schedule reduction
Procedia PDF Downloads 17700 The Regulation of Reputational Information in the Sharing Economy
Authors: Emre Bayamlıoğlu
Abstract:
This paper aims to provide an account of the legal and the regulative aspects of the algorithmic reputation systems with a special emphasis on the sharing economy (i.e., Uber, Airbnb, Lyft) business model. The first section starts with an analysis of the legal and commercial nature of the tripartite relationship among the parties, namely, the host platform, individual sharers/service providers and the consumers/users. The section further examines to what extent an algorithmic system of reputational information could serve as an alternative to legal regulation. Shortcomings are explained and analyzed with specific examples from Airbnb Platform which is a pioneering success in the sharing economy. The following section focuses on the issue of governance and control of the reputational information. The section first analyzes the legal consequences of algorithmic filtering systems to detect undesired comments and how a delicate balance could be struck between the competing interests such as freedom of speech, privacy and the integrity of the commercial reputation. The third section deals with the problem of manipulation by users. Indeed many sharing economy businesses employ certain techniques of data mining and natural language processing to verify consistency of the feedback. Software agents referred as "bots" are employed by the users to "produce" fake reputation values. Such automated techniques are deceptive with significant negative effects for undermining the trust upon which the reputational system is built. The third section is devoted to explore the concerns with regard to data mobility, data ownership, and the privacy. Reputational information provided by the consumers in the form of textual comment may be regarded as a writing which is eligible to copyright protection. Algorithmic reputational systems also contain personal data pertaining both the individual entrepreneurs and the consumers. The final section starts with an overview of the notion of reputation as a communitarian and collective form of referential trust and further provides an evaluation of the above legal arguments from the perspective of public interest in the integrity of reputational information. The paper concludes with certain guidelines and design principles for algorithmic reputation systems, to address the above raised legal implications.Keywords: sharing economy, design principles of algorithmic regulation, reputational systems, personal data protection, privacy
Procedia PDF Downloads 466699 A Web-Based Systems Immunology Toolkit Allowing the Visualization and Comparative Analysis of Publically Available Collective Data to Decipher Immune Regulation in Early Life
Authors: Mahbuba Rahman, Sabri Boughorbel, Scott Presnell, Charlie Quinn, Darawan Rinchai, Damien Chaussabel, Nico Marr
Abstract:
Collections of large-scale datasets made available in public repositories can be used to identify and fill gaps in biomedical knowledge. But first, these data need to be made readily accessible to researchers for analysis and interpretation. Here a collection of transcriptome datasets was made available to investigate the functional programming of human hematopoietic cells in early life. Thirty two datasets were retrieved from the NCBI Gene Expression Omnibus (GEO) and loaded in a custom, interactive web application called the Gene Expression browser (GXB), designed for visualization and query of integrated large-scale data. Multiple sample groupings and gene rank lists were created based on the study design and variables in each dataset. Web links to customized graphical views can be generated by users and subsequently be used to graphically present data in manuscripts for publication. The GXB tool also enables browsing of a single gene across datasets, which can provide information on the role of a given molecule across biological systems. The dataset collection is available online. As a proof-of-principle, one of the datasets (GSE25087) was re-analyzed to identify genes that are differentially expressed by regulatory T cells in early life. Re-analysis of this dataset and a cross-study comparison using multiple other datasets in the above mentioned collection revealed that PMCH, a gene encoding a precursor of melanin-concentrating hormone (MCH), a cyclic neuropeptide, is highly expressed in a variety of other hematopoietic cell types, including neonatal erythroid cells as well as plasmacytoid dendritic cells upon viral infection. Our findings suggest an as yet unrecognized role of MCH in immune regulation, thereby highlighting the unique potential of the curated dataset collection and systems biology approach to generate new hypotheses which can be tested in future mechanistic studies.Keywords: early-life, GEO datasets, PMCH, interactive query, systems biology
Procedia PDF Downloads 297698 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study
Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman
Abstract:
Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.Keywords: artificial neural network, data mining, classification, students’ evaluation
Procedia PDF Downloads 615