Search results for: thermal noise
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4555

Search results for: thermal noise

3055 Influence of Organic Modifier Loading on Particle Dispersion of Biodegradable Polycaprolactone/Montmorillonite Nanocomposites

Authors: O. I. H. Dimitry, N. A. Mansour, A. L. G. Saad

Abstract:

Natural sodium montmorillonite (NaMMT), Cloisite Na+ and two organophilic montmorillonites (OMMTs), Cloisites 20A and 15A were used. Polycaprolactone (PCL)/MMT composites containing 1, 3, 5, and 10 wt% of Cloisite Na+ and PCL/OMMT nanocomposites containing 5 and 10 wt% of Cloisites 20A and 15A were prepared via solution intercalation technique to study the influence of organic modifier loading on particle dispersion of PCL/ NaMMT composites. Thermal stabilities of the obtained composites were characterized by thermal analysis using the thermogravimetric analyzer (TGA) which showed that in the presence of nitrogen flow the incorporation of 5 and 10 wt% of filler brings some decrease in PCL thermal stability in the sequence: Cloisite Na+>Cloisite 15A > Cloisite 20A, while in the presence of air flow these fillers scarcely influenced the thermoxidative stability of PCL by slightly accelerating the process. The interaction between PCL and silicate layers was studied by Fourier transform infrared (FTIR) spectroscopy which confirmed moderate interactions between nanometric silicate layers and PCL segments. The electrical conductivity (σ) which describes the ionic mobility of the systems was studied as a function of temperature and showed that σ of PCL was enhanced on increasing the modifier loading at filler content of 5 wt%, especially at higher temperatures in the sequence: Cloisite Na+<Cloisite 20A<Cloisite 15A, and was then decreased to some extent with a further increase to 10 wt%. The activation energy Eσ obtained from the dependency of σ on temperature using Arrhenius equation was found to be lowest for the nanocomposite containing 5 wt% of Cloisite 15A. The dispersed behavior of clay in PCL matrix was evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses which revealed partial intercalated structures in PCL/NaMMT composites and semi-intercalated/semi-exfoliated structures in PCL/OMMT nanocomposites containing 5 wt% of Cloisite 20A or Cloisite 15A.

Keywords: electrical conductivity, montmorillonite, nanocomposite, organoclay, polycaprolactone

Procedia PDF Downloads 366
3054 Valorization of Plastic and Cork Wastes in Design of Composite Materials

Authors: Svetlana Petlitckaia, Toussaint Barboni, Paul-Antoine Santoni

Abstract:

Plastic is a revolutionary material. However, the pollution caused by plastics damages the environment, human health and the economy of different countries. It is important to find new ways to recycle and reuse plastic material. The use of waste materials as filler and as a matrix for composite materials is receiving increasing attention as an approach to increasing the economic value of streams. In this study, a new composite material based on high-density polyethylene (HDPE) and polypropylene (PP) wastes from bottle caps and cork powder from unused cork (virgin cork), which has a high capacity for thermal insulation, was developed. The composites were prepared with virgin and modified cork. The composite materials were obtained through twin-screw extrusion and injection molding. The composites were produced with proportions of 0 %, 5 %, 10 %, 15 %, and 20 % of cork powder in a polymer matrix with and without coupling agent and flame retardant. These composites were investigated in terms of mechanical, structural and thermal properties. The effect of cork fraction, particle size and the use of flame retardant on the properties of composites were investigated. The properties of samples elaborated with the polymer and the cork were compared to them with the coupling agent and commercial flame retardant. It was observed that the morphology of HDPE/cork and PP/cork composites revealed good distribution and dispersion of cork particles without agglomeration. The results showed that the addition of cork powder in the polymer matrix reduced the density of the composites. However, the incorporation of natural additives doesn’t have a significant effect on water adsorption. Regarding the mechanical properties, the value of tensile strength decreases with the addition of cork powder, ranging from 30 MPa to 19 MPa for PP composites and from 19 MPa to 17 MPa for HDPE composites. The value of thermal conductivity of composites HDPE/cork and PP/ cork is about 0.230 W/mK and 0.170 W/mK, respectively. Evaluation of the flammability of the composites was performed using a cone calorimeter. The results of thermal analysis and fire tests show that it is important to add flame retardants to improve fire resistance. The samples elaborated with the coupling agent and flame retardant have better mechanical properties and fire resistance. The feasibility of the composites based on cork and PP and HDPE wastes opens new ways of valorizing plastic waste and virgin cork. The formulation of composite materials must be optimized.

Keywords: composite materials, cork and polymer wastes, flammability, modificated cork

Procedia PDF Downloads 69
3053 Three-Dimensional Fluid-Structure-Thermal Coupling Dynamics Simulation Model of a Gas-Filled Fluid-Resistance Damper and Experimental Verification

Authors: Wenxue Xu

Abstract:

Fluid resistance damper is an important damping element to attenuate vehicle vibration. It converts vibration energy into thermal energy dissipation through oil throttling. It is a typical fluid-solid-heat coupling problem. A complete three-dimensional flow-structure-thermal coupling dynamics simulation model of a gas-filled fluid-resistance damper was established. The flow-condition-based interpolation (FCBI) method and direct coupling calculation method, the unit's FCBI-C fluid numerical analysis method and iterative coupling calculation method are used to achieve the damper dynamic response of the piston rod under sinusoidal excitation; the air chamber inflation pressure, spring compression characteristics, constant flow passage cross-sectional area and oil parameters, etc. The system parameters, excitation frequency, and amplitude and other excitation parameters are analyzed and compared in detail for the effects of differential pressure characteristics, velocity characteristics, flow characteristics and dynamic response of valve opening, floating piston response and piston rod output force characteristics. Experiments were carried out on some simulation analysis conditions. The results show that the node-based FCBI (flow-condition-based interpolation) fluid numerical analysis method and direct coupling calculation method can better guarantee the conservation of flow field calculation, and the calculation step is larger, but the memory is also larger; if the chamber inflation pressure is too low, the damper will become cavitation. The inflation pressure will cause the speed characteristic hysteresis to increase, and the sealing requirements are too strict. The spring compression characteristics have a great influence on the damping characteristics of the damper, and reasonable damping characteristic needs to properly design the spring compression characteristics; the larger the cross-sectional area of the constant flow channel, the smaller the maximum output force, but the more stable when the valve plate is opening.

Keywords: damper, fluid-structure-thermal coupling, heat generation, heat transfer

Procedia PDF Downloads 132
3052 Short Term Tests on Performance Evaluation of Water-Washed and Dry-Washed Biodiesel from Used Cooking Oil

Authors: Shumani Ramuhaheli, Christopher C. Enweremadu, Hilary L. Rutto

Abstract:

In this study, biodiesel from used cooking oil was produced as purified by washing with water (water wash) and amberlite (dry wash). The work presents the results of short term tests on performance characteristics of diesel engine using both biodiesel-fuel samples. In this investigation, the water wash biodiesel and dry wash biodiesel and diesel were compared for performance using a four-cylinder diesel engine. The torque, brake power, specific fuel consumption and brake thermal efficiency were analyzed. The tests showed that in all cases, dry wash biodiesel performed marginally poorer compared to water wash biodiesel. Except for brake thermal efficiency, diesel fuel had better engine performance characteristics compared to the biodiesel-fuel samples. According to these results, dry washing of biodiesel has a marginal effect on engine performance.

Keywords: biodiesel, engine performance, used cooking oil, water wash, dry wash

Procedia PDF Downloads 344
3051 Optical-Based Lane-Assist System for Rowing Boats

Authors: Stephen Tullis, M. David DiDonato, Hong Sung Park

Abstract:

Rowing boats (shells) are often steered by a small rudder operated by one of the backward-facing rowers; the attention required of that athlete then slightly decreases the power that that athlete can provide. Reducing the steering distraction would then increase the overall boat speed. Races are straight 2000 m courses with each boat in a 13.5 m wide lane marked by small (~15 cm) widely-spaced (~10 m) buoys, and the boat trajectory is affected by both cross-currents and winds. An optical buoy recognition and tracking system has been developed that provides the boat’s location and orientation with respect to the lane edges. This information is provided to the steering athlete as either: a simple overlay on a video display, or fed to a simplified autopilot system giving steering directions to the athlete or directly controlling the rudder. The system is then effectively a “lane-assist” device but with small, widely-spaced lane markers viewed from a very shallow angle due to constraints on camera height. The image is captured with a lightweight 1080p webcam, and most of the image analysis is done in OpenCV. The colour RGB-image is converted to a grayscale using the difference of the red and blue channels, which provides good contrast between the red/yellow buoys and the water, sky, land background and white reflections and noise. Buoy detection is done with thresholding within a tight mask applied to the image. Robust linear regression using Tukey’s biweight estimator of the previously detected buoy locations is used to develop the mask; this avoids the false detection of noise such as waves (reflections) and, in particular, buoys in other lanes. The robust regression also provides the current lane edges in the camera frame that are used to calculate the displacement of the boat from the lane centre (lane location), and its yaw angle. The interception of the detected lane edges provides a lane vanishing point, and yaw angle can be calculated simply based on the displacement of this vanishing point from the camera axis and the image plane distance. Lane location is simply based on the lateral displacement of the vanishing point from any horizontal cut through the lane edges. The boat lane position and yaw are currently fed what is essentially a stripped down marine auto-pilot system. Currently, only the lane location is used in a PID controller of a rudder actuator with integrator anti-windup to deal with saturation of the rudder angle. Low Kp and Kd values decrease unnecessarily fast return to lane centrelines and response to noise, and limiters can be used to avoid lane departure and disqualification. Yaw is not used as a control input, as cross-winds and currents can cause a straight course with considerable yaw or crab angle. Mapping of the controller with rudder angle “overall effectiveness” has not been finalized - very large rudder angles stall and have decreased turning moments, but at less extreme angles the increased rudder drag slows the boat and upsets boat balance. The full system has many features similar to automotive lane-assist systems, but with the added constraints of the lane markers, camera positioning, control response and noise increasing the challenge.

Keywords: auto-pilot, lane-assist, marine, optical, rowing

Procedia PDF Downloads 116
3050 Future Housing Energy Efficiency Associated with the Auckland Unitary Plan

Authors: Bin Su

Abstract:

The draft Auckland Unitary Plan outlines the future land used for new housing and businesses with Auckland population growth over the next thirty years. According to Auckland Unitary Plan, over the next 30 years, the population of Auckland is projected to increase by one million, and up to 70% of total new dwellings occur within the existing urban area. Intensification will not only increase the number of median or higher density houses such as terrace house, apartment building, etc. within the existing urban area but also change mean housing design data that can impact building thermal performance under the local climate. Based on mean energy consumption and building design data, and their relationships of a number of Auckland sample houses, this study is to estimate the future mean housing energy consumption associated with the change of mean housing design data and evaluate housing energy efficiency with the Auckland Unitary Plan.

Keywords: Auckland Unitary Plan, building thermal design, housing design, housing energy efficiency

Procedia PDF Downloads 370
3049 The Impact of the Windows Opening on the Design of Buildings in Islamic Architecture

Authors: Salma I. Dwidar, Amal A. Abdel-Sattar

Abstract:

The window openings are the key to the relationship between the inside and the outside of any building. It is the eye that sees from, the lunges of the construction, and the ear to hear. The success of the building, as well as the comfort of the uses, depends mainly on this relationship. Usually, windows are affected by human factors like religious, social, political and economic factors as well as environmental factors like climatic, aesthetic and functional factors. In Islamic architecture, the windows were one of the most important elements of physiological and psychological comfort to the users of the buildings. Windows considered one of the main parameters in designing internal and external facade, where the window openings occupied a big part of the formation of the external facade of the buildings. This paper discusses the importance of the window openings and its relationship to residential buildings in the Islamic architecture. It addresses the rules that have been followed in the design of windows in Islamic architecture to achieve privacy and thermal comfort while there are no technological elements within the dwellings. Also, it demonstrates the effects of windows on the building form and identity and how it gives a distinctive fingerprint of the architecture buildings.

Keywords: window openings, thermal comfort, residential buildings, the Islamic architecture, human considerations

Procedia PDF Downloads 206
3048 Ultrahigh Thermal Stability of Dielectric Permittivity in 0.6Bi(Mg₁/₂Ti₁/₂)O₃-0.4Ba₀.₈Ca₀.₂(Ti₀.₈₇₅Nb₀.₁₂₅)O₃

Authors: Kaiyuan Chena, Senentxu Lanceros-Méndeza, Laijun Liub, Qi Zhanga

Abstract:

0.6Bi(Mg1/2Ti1/2)O3-0.4Ba0.8Ca0.2(Nb0.125Ti0.875)O3 (0.6BMT-0.4BCNT) ceramics with a pseudo-cubic structure and re-entrant dipole glass behavior have been investigated via X-ray diffraction and dielectric permittivity-temperature spectra. It shows an excellent dielectric-temperature stability with small variations of dielectric permittivity (± 5%, 420 - 802 K) and dielectric loss tangent (tanδ < 2.5%, 441 - 647 K) in a wide temperature range. Three dielectric anomalies are observed from 290 K to 1050 K. The low-temperature weakly coupled re-entrant relaxor behavior was described using Vogel-Fulcher law and the new glass model. The mid- and high-temperature dielectric anomalies are characterized by isothermal impedance and electrical modulus. The activation energy of both dielectric relaxation and conductivity follows the Arrhenius law in the temperature ranges of 633 - 753 K and 833 - 973 K, respectively. The ultrahigh thermal stability of the dielectric permittivity is attributed to the weakly coupling of polar clusters, the formation of diffuse phase transition (DPT) and the local phase transition of calcium-containing perovskite.

Keywords: permittivity, relaxor, electronic ceramics, activation energy

Procedia PDF Downloads 81
3047 Oblique Radiative Solar Nano-Polymer Gel Coating Heat Transfer and Slip Flow: Manufacturing Simulation

Authors: Anwar Beg, Sireetorn Kuharat, Rashid Mehmood, Rabil Tabassum, Meisam Babaie

Abstract:

Nano-polymeric solar paints and sol-gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variation with temperature which can be exploited in solar collector designs. Modern manufacturing processes for such nano-rheological materials frequently employ stagnation flow dynamics under high temperature which invokes radiative heat transfer. Motivated by elaborating in further detail the nanoscale heat, mass and momentum characteristics of such sol gels, the present article presents a mathematical and computational study of the steady, two-dimensional, non-aligned thermo-fluid boundary layer transport of copper metal-doped water-based nano-polymeric sol gels under radiative heat flux. To simulate real nano-polymer boundary interface dynamics, thermal slip is analysed at the wall. A temperature-dependent viscosity is also considered. The Tiwari-Das nanofluid model is deployed which features a volume fraction for the nanoparticle concentration. This approach also features a Maxwell-Garnet model for the nanofluid thermal conductivity. The conservation equations for mass, normal and tangential momentum and energy (heat) are normalized via appropriate transformations to generate a multi-degree, ordinary differential, non-linear, coupled boundary value problem. Numerical solutions are obtained via the stable, efficient Runge-Kutta-Fehlberg scheme with shooting quadrature in MATLAB symbolic software. Validation of solutions is achieved with a Variational Iterative Method (VIM) utilizing Langrangian multipliers. The impact of key emerging dimensionless parameters i.e. obliqueness parameter, radiation-conduction Rosseland number (Rd), thermal slip parameter (α), viscosity parameter (m), nanoparticles volume fraction (ϕ) on non-dimensional normal and tangential velocity components, temperature, wall shear stress, local heat flux and streamline distributions is visualized graphically. Shear stress and temperature are boosted with increasing radiative effect whereas local heat flux is reduced. Increasing wall thermal slip parameter depletes temperatures. With greater volume fraction of copper nanoparticles temperature and thermal boundary layer thickness is elevated. Streamlines are found to be skewed markedly towards the left with positive obliqueness parameter.

Keywords: non-orthogonal stagnation-point heat transfer, solar nano-polymer coating, MATLAB numerical quadrature, Variational Iterative Method (VIM)

Procedia PDF Downloads 122
3046 Dynamic and Thermal Characteristics of Three-Dimensional Turbulent Offset Jet

Authors: Ali Assoudi, Sabra Habli, Nejla Mahjoub Saïd, Philippe Bournot, Georges Le Palec

Abstract:

Studying the flow characteristics of a turbulent offset jet is an important topic among researchers across the world because of its various engineering applications. Some of the common examples include: injection and carburetor systems, entrainment and mixing process in gas turbine and boiler combustion chambers, Thrust-augmenting ejectors for V/STOL aircrafts and HVAC systems, environmental dischargers, film cooling and many others. An offset jet is formed when a jet discharges into a medium above a horizontal solid wall parallel to the axis of the jet exit but which is offset by a certain distance. The structure of a turbulent offset-jet can be described by three main regions. Close to the nozzle exit, an offset jet possesses characteristic features similar to those of free jets. Then, the entrainment of fluid between the jet, the offset wall and the bottom wall creates a low pressure zone, forcing the jet to deflect towards the wall and eventually attaches to it at the impingement point. This is referred to as the Coanda effect. Further downstream after the reattachment point, the offset jet has the characteristics of a wall jet flow. Therefore, the offset jet has characteristics of free, impingement and wall jets, and it is relatively more complex compared to these types of flows. The present study examines the dynamic and thermal evolution of a 3D turbulent offset jet with different offset height ratio (the ratio of the distance from the jet exit to the impingement bottom wall and the jet nozzle diameter). To achieve this purpose a numerical study was conducted to investigate a three-dimensional offset jet flow through the resolution of the different governing Navier–Stokes’ equations by means of the finite volume method and the RSM second-order turbulent closure model. A detailed discussion has been provided on the flow and thermal characteristics in the form of streamlines, mean velocity vector, pressure field and Reynolds stresses.

Keywords: offset jet, offset ratio, numerical simulation, RSM

Procedia PDF Downloads 292
3045 Performance Assessment Of An Existing Multi-effect Desalination System Driven By Solar Energy

Authors: B. Shahzamanian, S. Varga, D. C. Alarcón-Padilla

Abstract:

Desalination is considered the primary alternative to increase water supply for domestic, agricultural and industrial use. Sustainable desalination is only possible in places where renewable energy resources are available. Solar energy is the most relevant type of renewable energy to driving desalination systems since most of the areas suffering from water scarcity are characterized by a high amount of available solar radiation during the year. Multi-Effect Desalination (MED) technology integrated with solar thermal concentrators is a suitable combination for heat-driven desalination. It can also be coupled with thermal vapour compressors or absorption heat pumps to boost overall system performance. The most interesting advantage of MED is the suitability to be used with a transient source of energy like solar. An experimental study was carried out to assess the performance of the most important life-size multi-effect desalination plant driven by solar energy located in the Plataforma Solar de Almería (PSA). The MED plant is used as a reference in many studies regarding multi-effect distillation. The system consists of a 14-effect MED plant coupled with a double-effect absorption heat pump. The required thermal energy to run the desalination system is supplied by means of hot water generated from 60 static flat-plate solar collectors with a total aperture area of 606 m2. In order to compensate for the solar energy variation, a thermal storage system with two interconnected tanks and an overall volume of 40 m3 is coupled to the MED unit. The multi-effect distillation unit is built in a forward feed configuration, and the last effect is connected to a double-effect LiBr-H2O absorption heat pump. The heat pump requires steam at 180 ºC (10 bar a) that is supplied by a small-aperture parabolic trough solar field with a total aperture area of 230 m2. When needed, a gas boiler is used as an auxiliary heat source for operating the heat pump and the MED plant when solar energy is not available. A set of experiments was carried out for evaluating the impact of the heating water temperature (Th), top brine temperature (TBT) and temperature difference between effects (ΔT) on the performance ratio of the MED plant. The considered range for variation of Th, TBT and ΔT was 60-70°C, 54-63°C and 1.1-1.6°C, respectively. The performance ratio (PR), defined as kg of distillate produced for every 2326 kJ of thermal energy supplied to the MED system, was almost independent of the applied variables with a variation of less than 5% for all the cases. The maximum recorded PR was 12.4. The results indicated that the system demonstrated robustness for the whole range of operating conditions considered. Author gratitude is expressed to the PSA for providing access to its installations, the support of its scientific and technical staff, and the financial support of the SFERA-III project (Grant Agreement No 823802). Special thanks to the access provider staff members who ensured the access support.

Keywords: multi-effect distillation, performance ratio, robustness, solar energy

Procedia PDF Downloads 174
3044 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, Hemantkumar B. Mehta

Abstract:

Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.

Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant

Procedia PDF Downloads 274
3043 Dye Removal from Aqueous Solution by Regenerated Spent Bleaching Earth

Authors: Ahmed I. Shehab, Sabah M. Abdel Basir, M. A. Abdel Khalek, M. H. Soliman, G. Elgemeie

Abstract:

Spent bleaching earth (SBE) recycling and utilization as an adsorbent to eliminate dyes from aqueous solution was studied. Organic solvents and subsequent thermal treatment were carried out to recover and reactivate the SBE. The effect of pH, temperature, dye’s initial concentration, and contact time on the dye removal using recycled spent bleaching earth (RSBE) was investigated. Recycled SBE showed better removal affinity of cationic than anionic dyes. The maximum removal was achieved at pH 2 and 8 for anionic and cationic dyes, respectively. Kinetic data matched with the pseudo second-order model. The adsorption phenomenon governing this process was identified by the Langmuir and Freundlich isotherms for anionic dye while Freundlich model represented the sorption process for cationic dye. The changes of Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were computed and compared through thermodynamic study for both dyes.

Keywords: Spent bleaching earth, reactivation, regeneration, thermal treatment, dye removal, thermodynamic

Procedia PDF Downloads 157
3042 Sensor Registration in Multi-Static Sonar Fusion Detection

Authors: Longxiang Guo, Haoyan Hao, Xueli Sheng, Hanjun Yu, Jingwei Yin

Abstract:

In order to prevent target splitting and ensure the accuracy of fusion, system error registration is an important step in multi-static sonar fusion detection system. To eliminate the inherent system errors including distance error and angle error of each sonar in detection, this paper uses offline estimation method for error registration. Suppose several sonars from different platforms work together to detect a target. The target position detected by each sonar is based on each sonar’s own reference coordinate system. Based on the two-dimensional stereo projection method, this paper uses real-time quality control (RTQC) method and least squares (LS) method to estimate sensor biases. The RTQC method takes the average value of each sonar’s data as the observation value and the LS method makes the least square processing of each sonar’s data to get the observation value. In the underwater acoustic environment, matlab simulation is carried out and the simulation results show that both algorithms can estimate the distance and angle error of sonar system. The performance of the two algorithms is also compared through the root mean square error and the influence of measurement noise on registration accuracy is explored by simulation. The system error convergence of RTQC method is rapid, but the distribution of targets has a serious impact on its performance. LS method can not be affected by target distribution, but the increase of random noise will slow down the convergence rate. LS method is an improvement of RTQC method, which is widely used in two-dimensional registration. The improved method can be used for underwater multi-target detection registration.

Keywords: data fusion, multi-static sonar detection, offline estimation, sensor registration problem

Procedia PDF Downloads 152
3041 Use of Shipping Containers as Office Buildings in Brazil: Thermal and Energy Performance for Different Constructive Options and Climate Zones

Authors: Lucas Caldas, Pablo Paulse, Karla Hora

Abstract:

Shipping containers are present in different Brazilian cities, firstly used for transportation purposes, but which become waste materials and an environmental burden in their end-of-life cycle. In the last decade, in Brazil, some buildings made partly or totally from shipping containers started to appear, most of them for commercial and office uses. Although the use of a reused container for buildings seems a sustainable solution, it is very important to measure the thermal and energy aspects when they are used as such. In this context, this study aims to evaluate the thermal and energy performance of an office building totally made from a 12-meter-long, High Cube 40’ shipping container in different Brazilian Bioclimatic Zones. Four different constructive solutions, mostly used in Brazil were chosen: (1) container without any covering; (2) with internally insulated drywall; (3) with external fiber cement boards; (4) with both drywall and fiber cement boards. For this, the DesignBuilder with EnergyPlus was used for the computational simulation in 8760 hours. The EnergyPlus Weather File (EPW) data of six Brazilian capital cities were considered: Curitiba, Sao Paulo, Brasilia, Campo Grande, Teresina and Rio de Janeiro. Air conditioning appliance (split) was adopted for the conditioned area and the cooling setpoint was fixed at 25°C. The coefficient of performance (CoP) of air conditioning equipment was set as 3.3. Three kinds of solar absorptances were verified: 0.3, 0.6 and 0.9 of exterior layer. The building in Teresina presented the highest level of energy consumption, while the one in Curitiba presented the lowest, with a wide range of differences in results. The constructive option of external fiber cement and drywall presented the best results, although the differences were not significant compared to the solution using just drywall. The choice of absorptance showed a great impact in energy consumption, mainly compared to the case of containers without any covering and for use in the hottest cities: Teresina, Rio de Janeiro, and Campo Grande. This study brings as the main contribution the discussion of constructive aspects for design guidelines for more energy-efficient container buildings, considering local climate differences, and helps the dissemination of this cleaner constructive practice in the Brazilian building sector.

Keywords: bioclimatic zones, Brazil, shipping containers, thermal and energy performance

Procedia PDF Downloads 156
3040 Studies on the Characterization and Machinability of Duplex Stainless Steel 2205 during Dry Turning

Authors: Gaurav D. Sonawane, Vikas G. Sargade

Abstract:

The present investigation is a study of the effect of advanced Physical Vapor Deposition (PVD) coatings on cutting temperature residual stresses and surface roughness during Duplex Stainless Steel (DSS) 2205 turning. Austenite stabilizers like nickel, manganese, and molybdenum reduced the cost of DSS. Surface Integrity (SI) plays an important role in determining corrosion resistance and fatigue life. Resistance to various types of corrosion makes DSS suitable for applications with critical environments like Heat exchangers, Desalination plants, Seawater pipes and Marine components. However, lower thermal conductivity, poor chip control and non-uniform tool wear make DSS very difficult to machine. Cemented carbide tools (M grade) were used to turn DSS in a dry environment. AlTiN and AlTiCrN coatings were deposited using advanced PVD High Pulse Impulse Magnetron Sputtering (HiPIMS) technique. Experiments were conducted with cutting speed of 100 m/min, 140 m/min and 180 m/min. A constant feed and depth of cut of 0.18 mm/rev and 0.8 mm were used, respectively. AlTiCrN coated tools followed by AlTiN coated tools outperformed uncoated tools due to properties like lower thermal conductivity, higher adhesion strength and hardness. Residual stresses were found to be compressive for all the tools used for dry turning, increasing the fatigue life of the machined component. Higher cutting temperatures were observed for coated tools due to its lower thermal conductivity, which results in very less tool wear than uncoated tools. Surface roughness with uncoated tools was found to be three times higher than coated tools due to lower coefficient of friction of coating used.

Keywords: cutting temperature, DSS2205, dry turning, HiPIMS, surface integrity

Procedia PDF Downloads 117
3039 A Computational Investigation of Knocking Tendency in a Hydrogen-Fueled SI Engine

Authors: Hammam Aljabri, Hong G. Im

Abstract:

Hydrogen is a promising future fuel to support the transition of the energy sector toward carbon neutrality. The direct utilization of H2 in Internal Combustion Engines (ICEs) is possible, and this technology faces mainly two challenges; high NOx emissions and severe knocking at mid to high loads. In this study, we numerically investigated the potential of H2 combustion in a truck-size engine operated in SI mode. To mitigate the knocking nature of H2 combustion, we have focused on studying the effects of three primary parameters; the compression ratio (CR), the air-fuel ratio, and the spark time. The baseline case was set using a CR of 16.5 and an equivalence ratio of 0.35. In simulations, the auto-ignition tendency was evaluated based on the maximum pressure rise rate and the local pressure fluctuations at the monitoring points set along the wall of the combustion chamber. To mitigate the auto-ignition tendency while enabling a wider range of engine operation, the effect of lowering the compression ratio was assessed. The results indicate that by lowering the compression ratio from 16.5:1 to 12.5:1, an indicated thermal efficiency of 47.5% can be achieved. Aiming to restrain the auto-ignition while maintaining good efficiency, a reduction in the equivalence ratio was examined under different compression ratios. The result indicates that higher compression ratios will require lower equivalence ratios, and due to practical limitations, a lower equivalence ratio of 0.25 was set as the limit. Using a compression ratio of 13.5 combined with an equivalence ratio of 0.3 resulted in an indicated thermal efficiency of 48.6%, that is, at a fixed spark time. It is found that under such lean conditions, the incomplete combustion losses and exhaust losses were high. Thus, advancing the spark time was assessed as a possible solution. The results demonstrated the advantages of advancing the spark time, where an indicated thermal efficiency exceeding 50% was achieved using a compression ratio of 14.5:1 and an equivalence ratio of 0.25.

Keywords: hydrogen, combustion, engine knock, SI engine

Procedia PDF Downloads 115
3038 Development of a Nano-Alumina-Zirconia Composite Catalyst as an Active Thin Film in Biodiesel Production

Authors: N. Marzban, J. K. Heydarzadeh M. Pourmohammadbagher, M. H. Hatami, A. Samia

Abstract:

A nano-alumina-zirconia composite catalyst was synthesized by a simple aqueous sol-gel method using AlCl3.6H2O and ZrCl4 as precursors. Thermal decomposition of the precursor and subsequent formation of γ-Al2O3 and t-Zr were investigated by thermal analysis. XRD analysis showed that γ-Al2O3 and t-ZrO2 phases were formed at 700 °C. FT-IR analysis also indicated that the phase transition to γ-Al2O3 occurred in corroboration with X-ray studies. TEM analysis of the calcined powder revealed that spherical particles were in the range of 8-12 nm. The nano-alumina-zirconia composite particles were mesoporous and uniformly distributed in their crystalline phase. In order to measure the catalytic activity, esterification reaction was carried out. Biodiesel, as a renewable fuel, was formed in a continuous packed column reactor. Free fatty acid (FFA) was esterified with ethanol in a heterogeneous catalytic reactor. It was found that the synthesized γ-Al2O3/ZrO2 composite had the potential to be used as a heterogeneous base catalyst for biodiesel production processes.

Keywords: nano alumina-zirconia, composite catalyst, thin film, biodiesel

Procedia PDF Downloads 215
3037 Numerical Analysis of Fire Performance of Timber Structures

Authors: Van Diem Thi, Mourad Khelifa, Mohammed El Ganaoui, Yann Rogaume

Abstract:

An efficient numerical method has been developed to incorporate the effects of heat transfer in timber panels on partition walls exposed to real building fires. The procedure has been added to the software package Abaqus/Standard as a user-defined subroutine (UMATHT) and has been verified using both time-and spatially dependent heat fluxes in two- and three-dimensional problems. The aim is to contribute to the development of simulation tools needed to assist structural engineers and fire testing laboratories in technical assessment exercises. The presented method can also be used under the developmental stages of building components to optimize performance in real fire conditions. The accuracy of the used thermal properties and the finite element models was validated by comparing the predicted results with three different available fire tests in literature. It was found that the model calibrated to results from standard fire conditions provided reasonable predictions of temperatures within assemblies exposed to real building fire.

Keywords: Timber panels, heat transfer, thermal properties, standard fire tests

Procedia PDF Downloads 323
3036 Assessing the Geothermal Parameters by Integrating Geophysical and Geospatial Techniques at Siwa Oasis, Western Desert, Egypt

Authors: Eman Ghoneim, Amr S. Fahil

Abstract:

Many regions in Egypt are facing a reduction in crop productivity due to environmental degradation. One factor of crop deterioration includes the unsustainable drainage of surface water, leading to salinized soil conditions. Egypt has exerted time and effort to identify solutions to mitigate the surface water drawdown problem and its resulting effects by exploring renewable and sustainable sources of energy. Siwa Oasis represents one of the most favorable regions in Egypt for geothermal exploitation since it hosts an evident cluster of superficial thermal springs. Some of these hot springs are characterized by high surface temperatures and bottom hole temperatures (BHT) ranging between 20°C to 40 °C and 21 °C to 121.7°C, respectively. The depth to the Precambrian basement rock is commonly greater than 440 m, ranging from 440 m to 4724.4 m. It is this feature that makes the locality of Siwa Oasis sufficient for industrial processes and geothermal power production. In this study, BHT data from 27 deep oil wells were processed by applying the widely used Horner and Gulf of Mexico correction methods to obtain formation temperatures. BHT, commonly used in geothermal studies, remains the most abundant and readily available data source for subsurface temperature information. Outcomes of the present work indicated a geothermal gradient ranging from 18 to 42 °C/km, a heat flow ranging from 24.7 to 111.3 m.W.k⁻¹, and a thermal conductivity of 1.3–2.65 W.m⁻¹.k⁻¹. Remote sensing thermal infrared, topographic, geologic, and geothermal data were utilized to provide geothermal potential maps for the Siwa Oasis. Important physiographic variables (including surface elevation, lineament density, drainage density), geological and geophysical parameters (including land surface temperature, depth to basement, bottom hole temperature, magnetic, geothermal gradient, heat flow, thermal conductivity, and main rock units) were incorporated into GIS to produce a geothermal potential map (GTP) for the Siwa Oasis region. The model revealed that both the northeastern and southeastern sections of the study region are of high geothermal potential. The present work showed that combining bottom-hole temperature measurements and remote sensing data with the selected geospatial methodologies is a useful tool for geothermal prospecting in geologically and tectonically comparable settings in Egypt and East Africa. This work has implications for identifying sustainable resources needed to support food production and renewable energy resources.

Keywords: BHT, geothermal potential map, geothermal gradient, heat flow, thermal conductivity, satellite imagery, GIS

Procedia PDF Downloads 91
3035 MRI Quality Control Using Texture Analysis and Spatial Metrics

Authors: Kumar Kanudkuri, A. Sandhya

Abstract:

Typically, in a MRI clinical setting, there are several protocols run, each indicated for a specific anatomy and disease condition. However, these protocols or parameters within them can change over time due to changes to the recommendations by the physician groups or updates in the software or by the availability of new technologies. Most of the time, the changes are performed by the MRI technologist to account for either time, coverage, physiological, or Specific Absorbtion Rate (SAR ) reasons. However, giving properly guidelines to MRI technologist is important so that they do not change the parameters that negatively impact the image quality. Typically a standard American College of Radiology (ACR) MRI phantom is used for Quality Control (QC) in order to guarantee that the primary objectives of MRI are met. The visual evaluation of quality depends on the operator/reviewer and might change amongst operators as well as for the same operator at various times. Therefore, overcoming these constraints is essential for a more impartial evaluation of quality. This makes quantitative estimation of image quality (IQ) metrics for MRI quality control is very important. So in order to solve this problem, we proposed that there is a need for a robust, open-source, and automated MRI image control tool. The Designed and developed an automatic analysis tool for measuring MRI image quality (IQ) metrics like Signal to Noise Ratio (SNR), Signal to Noise Ratio Uniformity (SNRU), Visual Information Fidelity (VIF), Feature Similarity (FSIM), Gray level co-occurrence matrix (GLCM), slice thickness accuracy, slice position accuracy, High contrast spatial resolution) provided good accuracy assessment. A standardized quality report has generated that incorporates metrics that impact diagnostic quality.

Keywords: ACR MRI phantom, MRI image quality metrics, SNRU, VIF, FSIM, GLCM, slice thickness accuracy, slice position accuracy

Procedia PDF Downloads 143
3034 Simulation Modelling of the Transmission of Concentrated Solar Radiation through Optical Fibres to Thermal Application

Authors: M. Rahou, A. J. Andrews, G. Rosengarten

Abstract:

One of the main challenges in high-temperature solar thermal applications transfer concentrated solar radiation to the load with minimum energy loss and maximum overall efficiency. The use of a solar concentrator in conjunction with bundled optical fibres has potential advantages in terms of transmission energy efficiency, technical feasibility and cost-effectiveness compared to a conventional heat transfer system employing heat exchangers and a heat transfer fluid. In this paper, a theoretical and computer simulation method is described to estimate the net solar radiation transmission from a solar concentrator into and through optical fibres to a thermal application at the end of the fibres over distances of up to 100 m. A key input to the simulation is the angular distribution of radiation intensity at each point across the aperture plane of the optical fibre. This distribution depends on the optical properties of the solar concentrator, in this case, a parabolic mirror with a small secondary mirror with a common focal point and a point-focus Fresnel lens to give a collimated beam that pass into the optical fibre bundle. Since solar radiation comprises a broad band of wavelengths with very limited spatial coherence over the full range of spectrum only ray tracing models absorption within the fibre and reflections at the interface between core and cladding is employed, assuming no interference between rays. The intensity of the radiation across the exit plane of the fibre is found by integrating across all directions and wavelengths. Results of applying the simulation model to a parabolic concentrator and point-focus Fresnel lens with typical optical fibre bundle will be reported, to show how the energy transmission varies with the length of fibre.

Keywords: concentrated radiation, fibre bundle, parabolic dish, fresnel lens, transmission

Procedia PDF Downloads 548
3033 Pool Fire Tests of Dual Purpose Casks for Spent Nuclear Fuel

Authors: K. S. Bang, S. H. Yu, J. C. Lee, K. S. Seo, S. H. Lee

Abstract:

Dual purpose casks are used for storage and transport of spent nuclear fuel assemblies. Therefore, they satisfy the requirements prescribed in the Korea NSSC Act 2013-27, the IAEA Safety Standard Series No. SSR-6, and US 10 CFR Part 71. These regulatory guidelines classify the dual purpose cask as a Type B package, and state that a Type B package must be able to withstand a temperature of 800°C for a period of 30 min. Therefore, a fire test was conducted using a one-sixth slice of a real cask to estimate the thermal integrity of the dual purpose cask at a temperature of 800°C. The neutron shield reached a maximum temperature of 183°C, which indicates that dual purpose cask was properly insulated from the heat of the flames. The temperature rise of the basket during the fire test was 29°C. Therefore, the integrity of a spent nuclear fuel is estimated to be maintained. The temperature was lower when a cooling pin was installed. The neutron shielding was therefore protected adequately by cooling pin. As a result, the thermal integrity of the dual purpose cask was maintained and the cask is judged to be sufficiently safe for temperatures under 800°C.

Keywords: dual purpose cask, spent nuclear fuel, pool fire test, integrity

Procedia PDF Downloads 449
3032 Prediction of Welding Induced Distortion in Thin Metal Plates Using Temperature Dependent Material Properties and FEA

Authors: Rehan Waheed, Abdul Shakoor

Abstract:

Distortion produced during welding of thin metal plates is a problem in many industries. The purpose of this research was to study distortion produced during welding in 2mm Mild Steel plate by simulating the welding process using Finite Element Analysis. Simulation of welding process requires a couple field transient analyses. At first a transient thermal analysis is performed and the temperature obtained from thermal analysis is used as input in structural analysis to find distortion. An actual weld sample is prepared and the weld distortion produced is measured. The simulated and actual results were in quite agreement with each other and it has been found that there is profound deflection at center of plate. Temperature dependent material properties play significant role in prediction of weld distortion. The results of this research can be used for prediction and control of weld distortion in large steel structures by changing different weld parameters.

Keywords: welding simulation, FEA, welding distortion, temperature dependent mechanical properties

Procedia PDF Downloads 376
3031 Influence of Hygro-Thermo-Mechanical Loading on Buckling and Vibrational Behavior of FG-CNT Composite Beam with Temperature Dependent Characteristics

Authors: Puneet Kumar, Jonnalagadda Srinivas

Abstract:

The authors report here vibration and buckling analysis of functionally graded carbon nanotube-polymer composite (FG-CNTPC) beams under hygro-thermo-mechanical environments using higher order shear deformation theory. The material properties of CNT and polymer matrix are often affected by temperature and moisture content. A micromechanical model with agglomeration effect is employed to compute the elastic, thermal and moisture properties of the composite beam. The governing differential equation of FG-CNTRPC beam is developed using higher-order shear deformation theory to account shear deformation effects. The elastic, thermal and hygroscopic strain terms are derived from variational principles. Moreover, thermal and hygroscopic loads are determined by considering uniform, linear and sinusoidal variation of temperature and moisture content through the thickness. Differential equations of motion are formulated as an eigenvalue problem using appropriate displacement fields and solved by using finite element modeling. The obtained results of natural frequencies and critical buckling loads show a good agreement with published data. The numerical illustrations elaborate the dynamic as well as buckling behavior under uniaxial load for different environmental conditions, boundary conditions and volume fraction distribution profile, beam slenderness ratio. Further, comparisons are shown at different boundary conditions, temperatures, degree of moisture content, volume fraction as well as agglomeration of CNTs, slenderness ratio of beam for different shear deformation theories.

Keywords: hygrothermal effect, free vibration, buckling load, agglomeration

Procedia PDF Downloads 249
3030 Utilization of Municipal Solid Waste in Thermal Power Production: A Techno-Economic Study of Kasur City, Punjab, Pakistan

Authors: Hafiz Muhammad Umer Aslam, Mohammad Rafiq Khan

Abstract:

This techno-economic study reports the feasibility of generating thermoelectric power from municipal solid waste (MSW) of Kasur City by incineration process. The data was gathered from different establishments of Kasur, through appropriate permission from their heads, and processed to design different alternative projects for installation of a thermal power plant in the city of Kasur. A technique of discounted cash flow was used to evaluate alternative projects so that their Benefit to Cost Ratio, Net Present Value, Internal Rate of Return and Payback Period can be determined. The study revealed that Kasur City currently consumes 18MWh electricity and generates 179 tons/day MSW. The generated waste has the ability to produce 2.1MWh electricity at the cost of USD 0.0581/unit with an expenditure of USD 3,907,692 as initial fixed investment of forming about 1/7th of consumption of Kasur. The cost from this source, when compared to current rate of electricity in Pakistan (USD 0.1346), is roughly half.

Keywords: Kasur City, resource recovery, thermoelectric power, waste management

Procedia PDF Downloads 151
3029 Sleep Quality as Perceived by Critically Ill Patients at El Manial University Hospitals

Authors: Mohamed Adel Ahmed, Warda Youssef Morsy , Hanaa Ali El Feky

Abstract:

Background: Literature review cited that sleep is absolutely essential for surviving and reclamation of the quality of life. Critically ill patients often have poor sleep quality with prolonged sleep latency, sleep fragmentation, decreased sleep efficiency and frequent arousals. Nurses have a unique role for the early diagnosis of sleep disorders, decreasing stressors levels and providing the necessary environmental regulations to create a therapeutic ambiance. The aim of the study: to assess perceived sleep quality and identify factors affecting sleep quality among adult critically ill patients At El Manial University Hospital. Research Design: A descriptive exploratory design was utilized. Research questions: a) how do adult critically ill patients perceive sleep quality in the Critical Care Department of El Manial University Hospital? b) What are the factors affecting sleep quality among adult critically ill patients at El Manial University Hospital? Setting: selected critical and cardiac care units at El Manial University Hospital. Sample: A samples of convenience consisting of 100 adult male and female patients were included in the study. Tools of data collection: tool 1: Socio-demographic and Medical Data Sheet, tool 2: Modified St Mary's Hospital Sleep Questionnaire tool 3: Factors Affecting Sleep Quality Questionnaire among ICU Patients Results: The current study revealed that 76.0% of the studied sample had lack of sleep disturbance before hospitalization. However, 84 % had sleep disturbances during ICU stay, of these more than two-thirds (67 %) had moderate sleep disturbance. Presence of strange and bad odors, noise, having pain, fear of death and a loud voice produced by the ICU personnel had the most significant negative impact on patients’ sleep in percentage of 52.4, 50, 61.9, 45.2, 52.4, respectively. Conclusion: Sleep disturbances in the ICU are multifactorial, and ICU patients’ perceived degrees of sleep disturbance as a moderate. Recommendations: Based on findings of the present study, the following are recommended to be done by ICU nurses; create a healing ICU environment that should incorporate noise, light and temperature controls; decrease stimuli during night time hours to promote regulation of the circadian rhythm, allow usage of sleeping aids such as relaxing music, eye patches and earplugs into their daily nursing practice; cluster nursing activities and eliminate non-essential treatments during night time hours to allow uninterrupted sleep periods of at least 90 minutes to complete one sleep cycle , and minimize staff conversation, alarm noise and light during the quiet night time hours.

Keywords: sleep quality, critically ill, patients, perception

Procedia PDF Downloads 430
3028 Co-Gasification of Petroleum Waste and Waste Tires: A Numerical and CFD Study

Authors: Thomas Arink, Isam Janajreh

Abstract:

The petroleum industry generates significant amounts of waste in the form of drill cuttings, contaminated soil and oily sludge. Drill cuttings are a product of the off-shore drilling rigs, containing wet soil and total petroleum hydrocarbons (TPH). Contaminated soil comes from different on-shore sites and also contains TPH. The oily sludge is mainly residue or tank bottom sludge from storage tanks. The two main treatment methods currently used are incineration and thermal desorption (TD). Thermal desorption is a method where the waste material is heated to 450ºC in an anaerobic environment to release volatiles, the condensed volatiles can be used as a liquid fuel. For the thermal desorption unit dry contaminated soil is mixed with moist drill cuttings to generate a suitable mixture. By thermo gravimetric analysis (TGA) of the TD feedstock it was found that less than 50% of the TPH are released, the discharged material is stored in landfill. This study proposes co-gasification of petroleum waste with waste tires as an alternative to thermal desorption. Co-gasification with a high-calorific material is necessary since the petroleum waste consists of more than 60 wt% ash (soil/sand), causing its calorific value to be too low for gasification. Since the gasification process occurs at 900ºC and higher, close to 100% of the TPH can be released, according to the TGA. This work consists of three parts: 1. a mathematical gasification model, 2. a reactive flow CFD model and 3. experimental work on a drop tube reactor. Extensive material characterization was done by means of proximate analysis (TGA), ultimate analysis (CHNOS flash analysis) and calorific value measurements (Bomb calorimeter) for the input parameters of the mathematical and CFD model. The mathematical model is a zero dimensional model based on Gibbs energy minimization together with Lagrange multiplier; it is used to find the product species composition (molar fractions of CO, H2, CH4 etc.) for different tire/petroleum feedstock mixtures and equivalence ratios. The results of the mathematical model act as a reference for the CFD model of the drop-tube reactor. With the CFD model the efficiency and product species composition can be predicted for different mixtures and particle sizes. Finally both models are verified by experiments on a drop tube reactor (1540 mm long, 66 mm inner diameter, 1400 K maximum temperature).

Keywords: computational fluid dynamics (CFD), drop tube reactor, gasification, Gibbs energy minimization, petroleum waste, waste tires

Procedia PDF Downloads 507
3027 Studying the Effect of Different Sizes of Carbon Fiber on Locally Developed Copper Based Composites

Authors: Tahir Ahmad, Abubaker Khan, Muhammad Kamran, Muhammad Umer Manzoor, Muhammad Taqi Zahid Butt

Abstract:

Metal Matrix Composites (MMC) is a class of weight efficient structural materials that are becoming popular in engineering applications especially in electronic, aerospace, aircraft, packaging and various other industries. This study focuses on the development of carbon fiber reinforced copper matrix composite. Keeping in view the vast applications of metal matrix composites,this specific material is produced for its unique mechanical and thermal properties i.e. high thermal conductivity and low coefficient of thermal expansion at elevated temperatures. The carbon fibers were not pretreated but coated with copper by electroless plating in order to increase the wettability of carbon fiber with the copper matrix. Casting is chosen as the manufacturing route for the C-Cu composite. Four different compositions of the composite were developed by varying the amount of carbon fibers by 0.5, 1, 1.5 and 2 wt. % of the copper. The effect of varying carbon fiber content and sizes on the mechanical properties of the C-Cu composite is studied in this work. The tensile test was performed on the tensile specimens. The yield strength decreases with increasing fiber content while the ultimate tensile strength increases with increasing fiber content. Rockwell hardness test was also performed and the result followed the increasing trend for increasing carbon fibers and the hardness numbers are 30.2, 37.2, 39.9 and 42.5 for sample 1, 2, 3 and 4 respectively. The microstructures of the specimens were also examined under the optical microscope. Wear test and SEM also done for checking characteristic of C-Cu marix composite. Through casting may be a route for the production of the C-Cu matrix composite but still powder metallurgy is better to follow as the wettability of carbon fiber with matrix, in that case, would be better.

Keywords: copper based composites, mechanical properties, wear properties, microstructure

Procedia PDF Downloads 351
3026 Parameters Identification and Sensitivity Study for Abrasive WaterJet Milling Model

Authors: Didier Auroux, Vladimir Groza

Abstract:

This work is part of STEEP Marie-Curie ITN project, and it focuses on the identification of unknown parameters of the proposed generic Abrasive WaterJet Milling (AWJM) PDE model, that appears as an ill-posed inverse problem. The necessity of studying this problem comes from the industrial milling applications where the possibility to predict and model the final surface with high accuracy is one of the primary tasks in the absence of any knowledge of the model parameters that should be used. In this framework, we propose the identification of model parameters by minimizing a cost function, measuring the difference between experimental and numerical solutions. The adjoint approach based on corresponding Lagrangian gives the opportunity to find out the unknowns of the AWJM model and their optimal values that could be used to reproduce the required trench profile. Due to the complexity of the nonlinear problem and a large number of model parameters, we use an automatic differentiation software tool (TAPENADE) for the adjoint computations. By adding noise to the artificial data, we show that in fact the parameter identification problem is highly unstable and strictly depends on input measurements. Regularization terms could be effectively used to deal with the presence of data noise and to improve the identification correctness. Based on this approach we present results in 2D and 3D of the identification of the model parameters and of the surface prediction both with self-generated data and measurements obtained from the real production. Considering different types of model and measurement errors allows us to obtain acceptable results for manufacturing and to expect the proper identification of unknowns. This approach also gives us the ability to distribute the research on more complex cases and consider different types of model and measurement errors as well as 3D time-dependent model with variations of the jet feed speed.

Keywords: Abrasive Waterjet Milling, inverse problem, model parameters identification, regularization

Procedia PDF Downloads 303