Search results for: serious gaming and artificial intelligence against cybercrime
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2806

Search results for: serious gaming and artificial intelligence against cybercrime

1306 The Impact of Artificial Intelligence on Student’s Behavior and Mind

Authors: Makarios Mosaad Thabet Ibrahim

Abstract:

the existing context paper targets to give the important position of ‘scholar voice’ and the track trainer inside the study room, which contributes to greater scholar-focused song training. The goal is to consciousness at the capabilities of the scholar voice via the tune spectrum, which has been born in the music school room, and the instructor’s methodologies and techniques used within the song classroom. The tune curriculum, the principles of pupil-centered song schooling, and the function of students and teachers as tune ambassadors have been taken into consideration the essential song parameters of scholar voice. The scholar- voice is a well worth-mentioning factor of a scholar-focused training, and all instructors have to take into account and sell its life in their lecture room. student affairs services play a critical function in contributing to the wholistic development and success of college students as they progress through their educational careers. The examine incorporates a multifaceted examination of student affairs carrier offerings among 10 personal and three public Baghdad universities. scholar affairs administrators (thirteen) have been surveyed together with over 300 students to determine university-subsidized services and pupil pride and attention. The pupil affairs service studies findings various drastically among non-public and public establishments and people that observed a country wide and international curriculum. Universities need to persist to conform to changing demographics and technological improvements to enhance students' private and academic successes, and pupil affairs services are key to preparing graduates to thrive in a diverse international world.

Keywords: college student-athletes, self-concept, use of social media training, social networking student affairs, student success, higher education, Iraq, universities, Baghdad student's voice, student-centered education, music ambassadors, music teachers

Procedia PDF Downloads 37
1305 Obstacle Avoidance Using Image-Based Visual Servoing Based on Deep Reinforcement Learning

Authors: Tong He, Long Chen, Irag Mantegh, Wen-Fang Xie

Abstract:

This paper proposes an image-based obstacle avoidance and tracking target identification strategy in GPS-degraded or GPS-denied environment for an Unmanned Aerial Vehicle (UAV). The traditional force algorithm for obstacle avoidance could produce local minima area, in which UAV cannot get away obstacle effectively. In order to eliminate it, an artificial potential approach based on harmonic potential is proposed to guide the UAV to avoid the obstacle by using the vision system. And image-based visual servoing scheme (IBVS) has been adopted to implement the proposed obstacle avoidance approach. In IBVS, the pixel accuracy is a key factor to realize the obstacle avoidance. In this paper, the deep reinforcement learning framework has been applied by reducing pixel errors through constant interaction between the environment and the agent. In addition, the combination of OpenTLD and Tensorflow based on neural network is used to identify the type of tracking target. Numerical simulation in Matlab and ROS GAZEBO show the satisfactory result in target identification and obstacle avoidance.

Keywords: image-based visual servoing, obstacle avoidance, tracking target identification, deep reinforcement learning, artificial potential approach, neural network

Procedia PDF Downloads 143
1304 Fuzzy Neuro Approach for Integrated Water Management System

Authors: Stuti Modi, Aditi Kambli

Abstract:

This paper addresses the need for intelligent water management and distribution system in smart cities to ensure optimal consumption and distribution of water for drinking and sanitation purposes. Water being a limited resource in cities require an effective system for collection, storage and distribution. In this paper, applications of two mostly widely used particular types of data-driven models, namely artificial neural networks (ANN) and fuzzy logic-based models, to modelling in the water resources management field are considered. The objective of this paper is to review the principles of various types and architectures of neural network and fuzzy adaptive systems and their applications to integrated water resources management. Final goal of the review is to expose and formulate progressive direction of their applicability and further research of the AI-related and data-driven techniques application and to demonstrate applicability of the neural networks, fuzzy systems and other machine learning techniques in the practical issues of the regional water management. Apart from this the paper will deal with water storage, using ANN to find optimum reservoir level and predicting peak daily demands.

Keywords: artificial neural networks, fuzzy systems, peak daily demand prediction, water management and distribution

Procedia PDF Downloads 187
1303 Detection of Alzheimer's Protein on Nano Designed Polymer Surfaces in Water and Artificial Saliva

Authors: Sevde Altuntas, Fatih Buyukserin

Abstract:

Alzheimer’s disease is responsible for irreversible neural damage of brain parts. One of the disease markers is Amyloid-β 1-42 protein that accumulates in the brain in the form plaques. The basic problem for detection of the protein is the low amount of protein that cannot be detected properly in body liquids such as blood, saliva or urine. To solve this problem, tests like ELISA or PCR are proposed which are expensive, require specialized personnel and can contain complex protocols. Therefore, Surface-enhanced Raman Spectroscopy (SERS) a good candidate for detection of Amyloid-β 1-42 protein. Because the spectroscopic technique can potentially allow even single molecule detection from liquid and solid surfaces. Besides SERS signal can be improved by using nanopattern surface and also is specific to molecules. In this context, our study proposes to fabricate diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin - T to detect low concentrations of Amyloid-β 1-42 protein in water and artificial saliva medium by the enhancement of protein SERS signal. The nanopatterned PC surface that was used to enhance SERS signal was fabricated by using Anodic Alumina Membranes (AAM) as a template. It is possible to produce AAMs with different column structures and varying thicknesses depending on voltage and anodization time. After fabrication process, the pore diameter of AAMs can be arranged with dilute acid solution treatment. In this study, two different columns structures were prepared. After a surface modification to decrease their surface energy, AAMs were treated with PC solution. Following the solvent evaporation, nanopatterned PC films with tunable pillared structures were peeled off from the membrane surface. The PC film was then modified with Au and Thioflavin-T for the detection of Amyloid-β 1-42 protein. The protein detection studies were conducted first in water via this biosensor platform. Same measurements were conducted in artificial saliva to detect the presence of Amyloid Amyloid-β 1-42 protein. SEM, SERS and contact angle measurements were carried out for the characterization of different surfaces and further demonstration of the protein attachment. SERS enhancement factor calculations were also completed via experimental results. As a result, our research group fabricated diagnostic test models that utilize Au-coated nanopatterned polycarbonate (PC) surfaces modified with Thioflavin-T to detect low concentrations of Alzheimer’s Amiloid – β protein in water and artificial saliva medium. This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) Grant No: 214Z167.

Keywords: alzheimer, anodic aluminum oxide, nanotopography, surface enhanced Raman spectroscopy

Procedia PDF Downloads 291
1302 Solar Radiation Time Series Prediction

Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs

Abstract:

A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled DNI field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.

Keywords: artificial neural networks, resilient propagation, solar radiation, time series forecasting

Procedia PDF Downloads 385
1301 Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique

Authors: Kritiyaporn Kunsook

Abstract:

Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively.

Keywords: artificial neural networks, decision tree, support vector machines, naïve Bayes, ensemble classifier by voting

Procedia PDF Downloads 375
1300 Strategies and Approaches for Curriculum Development and Training of Faculty in Cybersecurity Education

Authors: Lucy Tsado

Abstract:

As cybercrime and cyberattacks continue to increase, the need to respond will follow suit. When cybercrimes occur, the duty to respond sometimes falls on law enforcement. However, criminal justice students are not taught concepts in cybersecurity and digital forensics. There is, therefore, an urgent need for many more institutions to begin teaching cybersecurity and related courses to social science students especially criminal justice students. However, many faculty in universities, colleges, and high schools are not equipped to teach these courses or do not have the knowledge and resources to teach important concepts in cybersecurity or digital forensics to criminal justice students. This research intends to develop curricula and training programs to equip faculty with the skills to meet this need. There is a current call to involve non-technical fields to fill the cybersecurity skills gap, according to experts. There is a general belief among non-technical fields that cybersecurity education is only attainable within computer science and technologically oriented fields. As seen from current calls, this is not entirely the case. Transitioning into the field is possible through curriculum development, training, certifications, internships and apprenticeships, and competitions. There is a need to identify how a cybersecurity eco-system can be created at a university to encourage/start programs that will lead to an interest in cybersecurity education as well as attract potential students. A short-term strategy can address this problem through curricula development, while a long-term strategy will address developing training faculty to teach cybersecurity and digital forensics. Therefore this research project addresses this overall problem in two parts, through curricula development for the criminal justice discipline; and training of faculty in criminal justice to teaching the important concepts of cybersecurity and digital forensics.

Keywords: cybersecurity education, criminal justice, curricula development, nontechnical cybersecurity, cybersecurity, digital forensics

Procedia PDF Downloads 105
1299 Influence of Socio-Economic Factors on Crime Perpetuation Among Inmates of Correctional Facilities in South-West Nigeria

Authors: Ebenezer Bayode Agboola

Abstract:

The study investigated the influence of socioeconomic factors on crime perpetuation among inmates of correctional facilities in South West Nigeria. A sample size of two hundred and forty-four inmates was drawn from Ado, Akure and Ilesha correctional facilities. The sample size consisted of both male and female inmates. Individual inmate was drawn through systematic sampling with the use of inmates’ register at the correctional facilities. The study employed a mixed design, which allowed the blend of both quantitative and qualitative methods. For the quantitative method, data was collected through the use of a questionnaire and for the qualitative method; data was collected with the aid of an in-depth interview (ID. Four research questions were raised for the study and analysed descriptively using simple frequency count and percentage. Five research hypotheses were formulated for the study and tested using Analysis of Variance (ANOVA) and Multiple Regressions. Based on the data analysis, findings revealed that there was a significant relationship between family history and perpetuation of crime among inmates. Though no significant relationship was found between employment and the perpetuation of crime, however, the rate of crime perpetuation by individuals was significantly found to be related to peer pressure. Also, the study further found that there was a significant relationship between the use of substances and perpetuation of crime. Lastly, it was found that there was a significant relationship between family history, employment, and peer pressure. The study recommended that Parents should pay adequate attention to their children, especially during the adolescent stage and that the Government should enact relevant laws that will checkmate the rising involvement of young people in cybercrime or internet fraud.

Keywords: crime, socio economic factor, inmates, correctional facilities, Southwest

Procedia PDF Downloads 89
1298 Gender-Specific Association between Obstructive Sleep Apnea and Cognitive Impairment among Adults: A Population-based UK Biobank Study

Authors: Ke Qiu, Minzi Mao, Jianjun Ren, Yu Zhao

Abstract:

Although much has been done to investigate the influence of obstructive sleep apnea (OSA) on cognitive function, little attention has been paid to the role which gender differences play in this association. In the present study, we aim to explore the gender-specific association between OSA and cognitive impairment. Participants from UK biobank who have completed at least one of the five baseline cognitive tests (visuospatial memory, prospective memory, fluid intelligence, short numeric memory and reaction time) were included and were further categorized into three groups: (1) OSA, (2) self-reported snoring but without OSA, and (3) healthy controls (without OSA or snoring). Multivariable regression analysis was performed to examine the associations among snoring, OSA and performance of each of the five cognitive domains. A total of 267,889 participants (47% male, mean age: 57 years old) were included in our study. In the multivariable regression analysis, female participants in the OSA group had a higher risk of having poor prospective memory (OR: 1.24, 95% CI: 1.02~1.50, p = 0.03). Meanwhile, among female participants, OSA were inversely associated with the performances of fluid intelligence (β: -0.29, 95% CI: -0.46~-0.13, p < 0.001) and short-numeric memory (β: -0.14, 95% CI: -0.35~0.08, p = 0.02). In contrast, among male participants, no significant association was observed between OSA and impairment of the five cognitive domains. Overall, OSA was significantly associated with cognitive impairment in female participants rather than in male participants, indicating that more special attention and timely interventions should be given to female OSA patients to prevent further cognitive impairment.

Keywords: obstructive sleep apnea (OSA), cognitive impairment, gender-specific association, UK biobank

Procedia PDF Downloads 152
1297 Artificial Neural Network for Forecasting of Daily Reservoir Inflow: Case Study of the Kotmale Reservoir in Sri Lanka

Authors: E. U. Dampage, Ovindi D. Bandara, Vinushi S. Waraketiya, Samitha S. R. De Silva, Yasiru S. Gunarathne

Abstract:

The knowledge of water inflow figures is paramount in decision making on the allocation for consumption for numerous purposes; irrigation, hydropower, domestic and industrial usage, and flood control. The understanding of how reservoir inflows are affected by different climatic and hydrological conditions is crucial to enable effective water management and downstream flood control. In this research, we propose a method using a Long Short Term Memory (LSTM) Artificial Neural Network (ANN) to assist the aforesaid decision-making process. The Kotmale reservoir, which is the uppermost reservoir in the Mahaweli reservoir complex in Sri Lanka, was used as the test bed for this research. The ANN uses the runoff in the Kotmale reservoir catchment area and the effect of Sea Surface Temperatures (SST) to make a forecast for seven days ahead. Three types of ANN are tested; Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and LSTM. The extensive field trials and validation endeavors found that the LSTM ANN provides superior performance in the aspects of accuracy and latency.

Keywords: convolutional neural network, CNN, inflow, long short-term memory, LSTM, multi-layer perceptron, MLP, neural network

Procedia PDF Downloads 152
1296 Development of PCI Prediction Models for Distress Evaluation of Asphalt Pavements

Authors: Hamid Noori

Abstract:

A scientific approach is essential for evaluating pavement surface conditions at the network level. The Pavement Condition Index (PCI) is widely used to assess surface conditions and determine appropriate treatments. This study examines three national highways using a network survey vehicle to collect distress data. The first two corridors were used for evaluation and comparison, while the third corridor validated the predicted PCI values. Multiple linear regression (MLR) initially modeled the relationship between PCI and distress variables but showed poor predictive accuracy. Therefore, K-nearest neighbors (KNN) and artificial neural network (ANN) models were developed, providing better results. A methodology for prioritizing pavement sections was introduced, and the pavement sections were based on PCI, IRI, and rut values through Combined Index Rankings (CIR). In addition, a methodology has been proposed for the selection of appropriate treatment of the ranked candidate pavement section. The proposed treatment selection process considers PCI, IRI, rutting, and FWD test results, aligning with a customized PCI rating scale. A Decision Tree was developed to recommend suitable treatments based on these criteria.

Keywords: pavement distresses, pavement condition index, multiple linear regression, artificial neural network, k-nearest neighbors, combined index ranking

Procedia PDF Downloads 0
1295 Indium-Gallium-Zinc Oxide Photosynaptic Device with Alkylated Graphene Oxide for Optoelectronic Spike Processing

Authors: Seyong Oh, Jin-Hong Park

Abstract:

Recently, neuromorphic computing based on brain-inspired artificial neural networks (ANNs) has attracted huge amount of research interests due to the technological abilities to facilitate massively parallel, low-energy consuming, and event-driven computing. In particular, research on artificial synapse that imitate biological synapses responsible for human information processing and memory is in the spotlight. Here, we demonstrate a photosynaptic device, wherein a synaptic weight is governed by a mixed spike consisting of voltage and light spikes. Compared to the device operated only by the voltage spike, ∆G in the proposed photosynaptic device significantly increased from -2.32nS to 5.95nS with no degradation of nonlinearity (NL) (potentiation/depression values were changed from 4.24/8 to 5/8). Furthermore, the Modified National Institute of Standards and Technology (MNIST) digit pattern recognition rates improved from 36% and 49% to 50% and 62% in ANNs consisting of the synaptic devices with 20 and 100 weight states, respectively. We expect that the photosynaptic device technology processed by optoelectronic spike will play an important role in implementing the neuromorphic computing systems in the future.

Keywords: optoelectronic synapse, IGZO (Indium-Gallium-Zinc Oxide) photosynaptic device, optoelectronic spiking process, neuromorphic computing

Procedia PDF Downloads 175
1294 The Effect of Artificial Intelligence on Digital Factory

Authors: Sherif Fayez Lewis Ghaly

Abstract:

up to datefacupupdated planning has the mission of designing merchandise, plant life, procedures, enterprise, regions, and the development of a up to date. The requirements for up-to-date planning and the constructing of a updated have changed in recent years. everyday restructuring is turning inupupdated greater essential up-to-date hold the competitiveness of a manufacturing facilityupdated. restrictions in new regions, shorter existence cycles of product and manufacturing generation up-to-date a VUCA global (Volatility, Uncertainty, Complexity & Ambiguity) up-to-date greater frequent restructuring measures inside a manufacturing facilityupdated. A virtual up-to-date model is the making plans basis for rebuilding measures and up-to-date an fundamental up-to-date. short-time period rescheduling can now not be handled through on-web site inspections and manual measurements. The tight time schedules require 3177227fc5dac36e3e5ae6cd5820dcaa making plans fashions. updated the high variation fee of facup-to-dateries defined above, a method for rescheduling facupdatedries on the idea of a modern-day digital up to datery dual is conceived and designed for sensible software in updated restructuring projects. the point of interest is on rebuild approaches. The purpose is up-to-date preserve the planning basis (virtual up-to-date model) for conversions within a up to datefacupupdated updated. This calls for the application of a methodology that reduces the deficits of present techniques. The goal is up-to-date how a digital up to datery version may be up to date up to date during ongoing up to date operation. a method up-to-date on phoup to dategrammetry technology is presented. the focus is on developing a easy and fee-powerful up to date tune the numerous adjustments that arise in a manufacturing unit constructing in the course of operation. The method is preceded with the aid of a hardware and software assessment up-to-date become aware of the most cost effective and quickest version.

Keywords: building information modeling, digital factory model, factory planning, maintenance digital factory model, photogrammetry, restructuring

Procedia PDF Downloads 29
1293 Representation of Pashtuns in the Context of Terrorism: A Comparative Study of Bollywood and Lollywood Movies After 9/11

Authors: Aamir Ayub, Yasir Shehzad, Shakeel Ahmad

Abstract:

This research paper aims to understand how the Pashtuns have been represented in relationship to terrorism in post-9/11 Bollywood and Lollywood movies. It focuses particularly on ‘Torbaaz’ from Bollywood and ‘Waar’ from Lollywood in order to define the nature of Pashtun characterization, the functioning of intelligence agencies, as well as the socio-political side of the represented narratives. In this research, the analytical approach developed is applied to contemplate how these films represent or fail to represent Pashtun identity, taking into consideration the cultural, historical and social dimensions. The study also aims to examine the effects of the media, particularly on the different ethnic groups’ perceptions of terrorism. In this case, it covers how the movie relates actual events in society – specifically, socio-political – to the messages in the film regarding the Pashtun people and their portrayal. Such elements may constitute the portrayal of intelligence agencies and their fight against terrorism, state-security dynamics, and the Pashtun society. In conclusion, this research paper focuses on the representation of Pashtuns in films after 9/11 and addresses the issue concerning the representation of ethnic groups in the method of the theme of terrorism. It provides ideas about the role of media in influencing the mind of the society and their attitude towards certain communities after geopolitics upheavals.

Keywords: pashtun representation, terrorism, 9/11 attacks, socio-political implications, ethnic representation in media

Procedia PDF Downloads 25
1292 Use of a Business Intelligence Software for Interactive Visualization of Data on the Swiss Elite Sports System

Authors: Corinne Zurmuehle, Andreas Christoph Weber

Abstract:

In 2019, the Swiss Federal Institute of Sport Magglingen (SFISM) conducted a mixed-methods study on the Swiss elite sports system, which yielded a large quantity of research data. In a quantitative online survey, 1151 elite sports athletes, 542 coaches, and 102 Performance Directors of national sports federations (NF) have submitted their perceptions of the national support measures of the Swiss elite sports system. These data provide an essential database for the further development of the Swiss elite sports system. The results were published in a report presenting the results divided into 40 Olympic summer and 14 winter sports (Olympic classification). The authors of this paper assume that, in practice, this division is too unspecific to assess where further measures would be needed. The aim of this paper is to find appropriate parameters for data visualization in order to identify disparities in sports promotion that allow an assessment of where further interventions by Swiss Olympic (NF umbrella organization) are required. Method: First, the variable 'salary earned from sport' was defined as a variable to measure the impact of elite sports promotion. This variable was chosen as a measure as it represents an important indicator for the professionalization of elite athletes and therefore reflects national level sports promotion measures applied by Swiss Olympic. Afterwards, the variable salary was tested with regard to the correlation between Olympic classification [a], calculating the Eta coefficient. To estimate the appropriate parameters for data visualization, the correlation between salary and four further parameters was analyzed by calculating the Eta coefficient: [a] sport; [b] prioritization (from 1 to 5) of the sports by Swiss Olympic; [c] gender; [d] employment level in sports. Results & Discussion: The analyses reveal a very small correlation between salary and Olympic classification (ɳ² = .011, p = .005). Gender demonstrates an even small correlation (ɳ² = .006, p = .014). The parameter prioritization was correlating with small effect (ɳ² = .017, p = .001) as did employment level (ɳ² = .028, p < .001). The highest correlation was identified by the parameter sport with a moderate effect (ɳ² = .075, p = .047). The analyses show that the disparities in sports promotion cannot be determined by a particular parameter but presumably explained by a combination of several parameters. We argue that the possibility of combining parameters for data visualization should be enabled when the analysis is provided to Swiss Olympic for further strategic decision-making. However, the inclusion of multiple parameters massively multiplies the number of graphs and is therefore not suitable for practical use. Therefore, we suggest to apply interactive dashboards for data visualization using Business Intelligence Software. Practical & Theoretical Contribution: This contribution provides the first attempt to use Business Intelligence Software for strategic decision-making in national level sports regarding the prioritization of national resources for sports and athletes. This allows to set specific parameters with a significant effect as filters. By using filters, parameters can be combined and compared against each other and set individually for each strategic decision.

Keywords: data visualization, business intelligence, Swiss elite sports system, strategic decision-making

Procedia PDF Downloads 90
1291 Analysis of Cardiovascular Diseases Using Artificial Neural Network

Authors: Jyotismita Talukdar

Abstract:

In this paper, a study has been made on the possibility and accuracy of early prediction of several Heart Disease using Artificial Neural Network. (ANN). The study has been made in both noise free environment and noisy environment. The data collected for this analysis are from five Hospitals. Around 1500 heart patient’s data has been collected and studied. The data is analysed and the results have been compared with the Doctor’s diagnosis. It is found that, in noise free environment, the accuracy varies from 74% to 92%and in noisy environment (2dB), the results of accuracy varies from 62% to 82%. In the present study, four basic attributes considered are Blood Pressure (BP), Fasting Blood Sugar (FBS), Thalach (THAL) and Cholesterol (CHOL.). It has been found that highest accuracy(93%), has been achieved in case of PPI( Post-Permanent-Pacemaker Implementation ), around 79% in case of CAD(Coronary Artery disease), 87% in DCM (Dilated Cardiomyopathy), 89% in case of RHD&MS(Rheumatic heart disease with Mitral Stenosis), 75 % in case of RBBB +LAFB (Right Bundle Branch Block + Left Anterior Fascicular Block), 72% for CHB(Complete Heart Block) etc. The lowest accuracy has been obtained in case of ICMP (Ischemic Cardiomyopathy), about 38% and AF( Atrial Fibrillation), about 60 to 62%.

Keywords: coronary heart disease, chronic stable angina, sick sinus syndrome, cardiovascular disease, cholesterol, Thalach

Procedia PDF Downloads 176
1290 Robotic Exoskeleton Response During Infant Physiological Knee Kinematics

Authors: Breanna Macumber, Victor A. Huayamave, Emir A. Vela, Wangdo Kim, Tamara T. Chamber, Esteban Centeno

Abstract:

Spina bifida is a type of neural tube defect that affects the nervous system and can lead to problems such as total leg paralysis. Treatment requires physical therapy and rehabilitation. Robotic exoskeletons have been used for rehabilitation to train muscle movement and assist in injury recovery; however, current models focus on the adult populations and not on the infant population. The proposed framework aims to couple a musculoskeletal infant model with a robotic exoskeleton using vacuum-powered artificial muscles to provide rehabilitation to infants affected by spina bifida. The study that drove the input values for the robotic exoskeleton used motion capture technology to collect data from the spontaneous kicking movement of a 2.4-month-old infant lying supine. OpenSim was used to develop the musculoskeletal model, and Inverse kinematics was used to estimate hip joint angles. A total of 4 kicks (A, B, C, D) were selected, and the selection was based on range, transient response, and stable response. Kicks had at least 5° of range of motion with a smooth transient response and a stable period. The robotic exoskeleton used a Vacuum-Powered Artificial Muscle (VPAM) the structure comprised of cells that were clipped in a collapsed state and unclipped when desired to simulate infant’s age. The artificial muscle works with vacuum pressure. When air is removed, the muscle contracts and when air is added, the muscle relaxes. Bench testing was performed using a 6-month-old infant mannequin. The previously developed exoskeleton worked really well with controlled ranges of motion and frequencies, which are typical of rehabilitation protocols for infants suffering with spina bifida. However, the random kicking motion in this study contained high frequency kicks and was not able to accurately replicate all the investigated kicks. Kick 'A' had a greater error when compared to the other kicks. This study has the potential to advance the infant rehabilitation field.

Keywords: musculoskeletal modeling, soft robotics, rehabilitation, pediatrics

Procedia PDF Downloads 120
1289 The Impact of Artificial Intelligence on Pharmacology

Authors: Ramy Reda Morgan Kamel

Abstract:

generation-greater education gear are being unexpectedly included into health packages globally. these gadget provide an interactive platform for students and may be used to deliver topics in various modes which include video games and simulations. Simulations are of particular hobby to healthcare education, wherein they are hired to enhance clinical know-how and help to bridge the distance among precept and exercise. Simulations will regularly test talents for practical responsibilities, but restrained research examines the effects of simulation on student perceptions of their getting to know. The aim of this observe become to determine the effects of an interactive virtual patient simulation for pharmacology schooling and clinical workout on scholar know-how, skills and confidence. Ethics popularity of the examine end up received from Griffith college studies Ethics Committee (PHM/eleven/14/HREC). The simulation became intended to duplicate the pharmacy surroundings and affected man or woman interaction. The content material material come to be designed to beautify know-how of proton-pump inhibitor pharmacology, role in therapeutics and secure deliver to sufferers. The tool changed into deployed into a 3rd-year scientific pharmacology and therapeutics course. a number of core exercise regions were examined along with the competency domains of wondering, counselling, referral and product provision. Baseline measures of pupil self-stated knowledge, capabilities and self warranty were taken preceding to the simulation using a especially designed questionnaire. A greater substantial questionnaire became deployed following the virtual affected character simulation, which moreover blanketed measures of scholar engagement with the hobby. A quiz assessing scholar proper and conceptual understanding of proton-pump inhibitor pharmacology and associated counselling statistics changed into also included in both questionnaires.

Keywords: electromagnetic solar system, nano-material, nano pharmacology, pharmacovigilance, quantum theoryclinical simulation, education, pharmacology, simulation, clinical pharmacology, pharmacometrics, career development pathways

Procedia PDF Downloads 14
1288 An Analysis of a Relational Frame Skills Training Intervention to Increase General Intelligence in Early Childhood

Authors: Ian M. Grey, Bryan Roche, Anna Dillon, Justin Thomas, Sarah Cassidy, Dylan Colbert, Ian Stewart

Abstract:

This paper presents findings from a study conducted in two schools in Abu Dhabi. The hypothesis is that teaching young children to derive various relations between stimuli leads to increases in full-scale IQ scores of typically developing children. In the experimental group, sixteen 6-7-year-old children were exposed over six weeks to an intensive training intervention designed specifically for their age group. This training intervention, presented on a tablet, aimed to improve their understanding of the relations Same, Opposite, Different, contextual control over the concept of Sameness and Difference, and purely arbitrary derived relational responding for Sameness and Difference. In the control group, sixteen 6-7-year-old children interacted with KIBO robotics over six weeks. KIBO purports to improve cognitive skills through engagement with STEAM activities. Increases in full-scale IQ were recorded for most children in the experimental group, while no increases in full-scale IQ were recorded for the control group. These findings support the hypothesis that relational skills underlie many aspects of general cognitive ability.

Keywords: early childhood, derived relational responding, intelligence, relational frame theory, relational skills

Procedia PDF Downloads 186
1287 Immersing Socio-Affective Instruction within the Constructs of the Academic Curriculum: A Study of Gifted and Talented Programs

Authors: R. Granger-Ellis, R. B. Speaker, Jr., P. J. Austin

Abstract:

This research study examined more than 340 gifted and talented students enrolled in various gifted and talented programs in a large southeastern United States metropolitan area (creative arts, urban charters, suburban public schools) for socio-affective psychological development and whether a particular curriculum encouraged developmental growth. This study focused on students receiving distinctive gifted and talented curricula (creative arts, arts-integrated, and academic acceleration) and analyzed for (1) socio-affective development levels and (2) whether a particular curriculum encouraged developmental growth. Research questions guiding the study: (1) How do academically and artistically gifted 10th and 11th grade students perform on psychological scales of social and emotional intelligence? (2) Do adolescents receiving distinctive gifted and talented curriculum differ in their socio-affective developmental profiles? Students’ performances on psychometric scales were compared over time and by curriculum type. Over the first semester of the academic year, participants took pre- and post-tests assessing socio-affective intelligence (BarOn EQ-I: YV). Differences in growth on these psychological scales (individuals and programs) were examined. Program artifacts provided insight for curriculum correlation.

Keywords: gifted and talented curriculum, social and emotional development, moral development, socio-affective curriculum

Procedia PDF Downloads 371
1286 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas

Authors: Ahmet Kayabasi, Ali Akdagli

Abstract:

In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.

Keywords: a-shaped compact microstrip antenna, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM)

Procedia PDF Downloads 443
1285 Exoskeleton Response During Infant Physiological Knee Kinematics And Dynamics

Authors: Breanna Macumber, Victor A. Huayamave, Emir A. Vela, Wangdo Kim, Tamara T. Chamber, Esteban Centeno

Abstract:

Spina bifida is a type of neural tube defect that affects the nervous system and can lead to problems such as total leg paralysis. Treatment requires physical therapy and rehabilitation. Robotic exoskeletons have been used for rehabilitation to train muscle movement and assist in injury recovery; however, current models focus on the adult populations and not on the infant population. The proposed framework aims to couple a musculoskeletal infant model with a robotic exoskeleton using vacuum-powered artificial muscles to provide rehabilitation to infants affected by spina bifida. The study that drove the input values for the robotic exoskeleton used motion capture technology to collect data from the spontaneous kicking movement of a 2.4-month-old infant lying supine. OpenSim was used to develop the musculoskeletal model, and Inverse kinematics was used to estimate hip joint angles. A total of 4 kicks (A, B, C, D) were selected, and the selection was based on range, transient response, and stable response. Kicks had at least 5° of range of motion with a smooth transient response and a stable period. The robotic exoskeleton used a Vacuum-Powered Artificial Muscle (VPAM) the structure comprised of cells that were clipped in a collapsed state and unclipped when desired to simulate infant’s age. The artificial muscle works with vacuum pressure. When air is removed, the muscle contracts and when air is added, the muscle relaxes. Bench testing was performed using a 6-month-old infant mannequin. The previously developed exoskeleton worked really well with controlled ranges of motion and frequencies, which are typical of rehabilitation protocols for infants suffering with spina bifida. However, the random kicking motion in this study contained high frequency kicks and was not able to accurately replicate all the investigated kicks. Kick 'A' had a greater error when compared to the other kicks. This study has the potential to advance the infant rehabilitation field.

Keywords: musculoskeletal modeling, soft robotics, rehabilitation, pediatrics

Procedia PDF Downloads 88
1284 The Academic-Practitioner Nexus in Countering Terrorism in New Zealand

Authors: John Battersby, Rhys Ball

Abstract:

After the 15 March 2019 Mosque attacks in Christchurch, the New Zealand security sector has had to address its training and preparedness levels for dealing with contemporary terrorist threats as well as potential future manifestations of terrorism. From time to time, members of the academic community from Australia and New Zealand have been asked to assist agencies in this endeavour. In the course of 2018, New Zealand security sector professionals working in the counter-terrorism area were interviewed about how they regarded academic contributions to understanding terrorism and counter-terrorism. Responses were mixed, ranging from anti-intellectualism, a belief that the inability to access classified material rendered academic work practically useless - to some genuine interest and desire for broad based academic studies on issues practitioners did not have the time to look at. Twelve months later, researchers have revisited those spoken to prior to the Brenton Tarrant 15 March shooting to establish if there has been a change in the way academic research is perceived, viewed and valued, and what key factors have contributed to this shift in thinking. This paper takes this data, combined with a consideration of the literature on higher education within professional police and intelligence forces, and on the general perception of academics by practitioners, to present a series of findings that will contribute to a more proactive and effective set of engagements, between two distinct but important security sectors, that reflect more closely with international practice.

Keywords: academic, counter terrorism, intelligence, practitioner, research, security

Procedia PDF Downloads 108
1283 Sociodemographic Approach to Juveniles Directed to Delinquent Behaviour in Zonguldak

Authors: Riza Yilmaz, Samet Kiyak, Sezin Nur Yilmaz, Yasemin Yilmaz

Abstract:

Child delinquency has been increasing in our country as well as in many countries of the world. Child intelligence, abilities, family's social environment and life conditions are the factors which affect the child delinquency. The reports of 73 cases ages of 12-15 which were sent to the University of Bulent Ecevit, School of Medicine, Forensic Medicine Department between January 2011-September 2015, in order to evaluate medically, children pushed to crime by the judicial authorities are examined in terms of age, gender, educational background, place of residence, reasons for being sent, whether it’s a repeating crime or not, type of intelligence test, results revealed by forensic medicine and department of mental and neurological disorders. When children pushed to crime examined in terms of their crimes, the most common type of crime was identified as theft (n = 24). The crimes with 19 physical attacks and 12 sexual abuse were seen. Following that other 12 crimes were determined as damage to property, hemp crop, insult, incitement to crime, forgery of private documents, illegal excavation, threatening, involuntary manslaughter. The alleged crimes in 6 cases were more than one. The children pushed to crime are one of the major social problems of many countries. In this sense, it is not only the responsibility of government agencies to protect children pushed to crime, also, the civil society organizations should take place in this struggle.

Keywords: delinquent behaviour, forensic medicine, crime, punishment

Procedia PDF Downloads 439
1282 The “Bright Side” of COVID-19: Effects of Livestream Affordances on Consumer Purchase Willingness: Explicit IT Affordances Perspective

Authors: Isaac Owusu Asante, Yushi Jiang, Hailin Tao

Abstract:

Live streaming marketing, the new electronic commerce element, became an optional marketing channel following the COVID-19 pandemic. Many sellers have leveraged the features presented by live streaming to increase sales. Studies on live streaming have focused on gaming and consumers’ loyalty to brands through live streaming, using interview questionnaires. This study, however, was conducted to measure real-time observable interactions between consumers and sellers. Based on the affordance theory, this study conceptualized constructs representing the interactive features and examined how they drive consumers’ purchase willingness during live streaming sessions using 1238 datasets from Amazon Live, following the manual observation of transaction records. Using structural equation modeling, the ordinary least square regression suggests that live viewers, new followers, live chats, and likes positively affect purchase willingness. The Sobel and Monte Carlo tests show that new followers, live chats, and likes significantly mediate the relationship between live viewers and purchase willingness. The study introduces a new way of measuring interactions in live streaming commerce and proposes a way to manually gather data on consumer behaviors in live streaming platforms when the application programming interface (API) of such platforms does not support data mining algorithms.

Keywords: livestreaming marketing, live chats, live viewers, likes, new followers, purchase willingness

Procedia PDF Downloads 83
1281 Brain-Computer Interfaces That Use Electroencephalography

Authors: Arda Ozkurt, Ozlem Bozkurt

Abstract:

Brain-computer interfaces (BCIs) are devices that output commands by interpreting the data collected from the brain. Electroencephalography (EEG) is a non-invasive method to measure the brain's electrical activity. Since it was invented by Hans Berger in 1929, it has led to many neurological discoveries and has become one of the essential components of non-invasive measuring methods. Despite the fact that it has a low spatial resolution -meaning it is able to detect when a group of neurons fires at the same time-, it is a non-invasive method, making it easy to use without possessing any risks. In EEG, electrodes are placed on the scalp, and the voltage difference between a minimum of two electrodes is recorded, which is then used to accomplish the intended task. The recordings of EEGs include, but are not limited to, the currents along dendrites from synapses to the soma, the action potentials along the axons connecting neurons, and the currents through the synaptic clefts connecting axons with dendrites. However, there are some sources of noise that may affect the reliability of the EEG signals as it is a non-invasive method. For instance, the noise from the EEG equipment, the leads, and the signals coming from the subject -such as the activity of the heart or muscle movements- affect the signals detected by the electrodes of the EEG. However, new techniques have been developed to differentiate between those signals and the intended ones. Furthermore, an EEG device is not enough to analyze the data from the brain to be used by the BCI implication. Because the EEG signal is very complex, to analyze it, artificial intelligence algorithms are required. These algorithms convert complex data into meaningful and useful information for neuroscientists to use the data to design BCI devices. Even though for neurological diseases which require highly precise data, invasive BCIs are needed; non-invasive BCIs - such as EEGs - are used in many cases to help disabled people's lives or even to ease people's lives by helping them with basic tasks. For example, EEG is used to detect before a seizure occurs in epilepsy patients, which can then prevent the seizure with the help of a BCI device. Overall, EEG is a commonly used non-invasive BCI technique that has helped develop BCIs and will continue to be used to detect data to ease people's lives as more BCI techniques will be developed in the future.

Keywords: BCI, EEG, non-invasive, spatial resolution

Procedia PDF Downloads 73
1280 Human Factors Interventions for Risk and Reliability Management of Defence Systems

Authors: Chitra Rajagopal, Indra Deo Kumar, Ila Chauhan, Ruchi Joshi, Binoy Bhargavan

Abstract:

Reliability and safety are essential for the success of mission-critical and safety-critical defense systems. Humans are part of the entire life cycle of defense systems development and deployment. The majority of industrial accidents or disasters are attributed to human errors. Therefore, considerations of human performance and human reliability are critical in all complex systems, including defense systems. Defense systems are operating from the ground, naval and aerial platforms in diverse conditions impose unique physical and psychological challenges to the human operators. Some of the safety and mission-critical defense systems with human-machine interactions are fighter planes, submarines, warships, combat vehicles, aerial and naval platforms based missiles, etc. Human roles and responsibilities are also going through a transition due to the infusion of artificial intelligence and cyber technologies. Human operators, not accustomed to such challenges, are more likely to commit errors, which may lead to accidents or loss events. In such a scenario, it is imperative to understand the human factors in defense systems for better systems performance, safety, and cost-effectiveness. A case study using Task Analysis (TA) based methodology for assessment and reduction of human errors in the Air and Missile Defense System in the context of emerging technologies were presented. Action-oriented task analysis techniques such as Hierarchical Task Analysis (HTA) and Operator Action Event Tree (OAET) along with Critical Action and Decision Event Tree (CADET) for cognitive task analysis was used. Human factors assessment based on the task analysis helps in realizing safe and reliable defense systems. These techniques helped in the identification of human errors during different phases of Air and Missile Defence operations, leading to meet the requirement of a safe, reliable and cost-effective mission.

Keywords: defence systems, reliability, risk, safety

Procedia PDF Downloads 136
1279 Design of a Backlight Hyperspectral Imaging System for Enhancing Image Quality in Artificial Vision Food Packaging Online Inspections

Authors: Ferran Paulí Pla, Pere Palacín Farré, Albert Fornells Herrera, Pol Toldrà Fernández

Abstract:

Poor image acquisition is limiting the promising growth of industrial vision in food control. In recent years, the food industry has witnessed a significant increase in the implementation of automation in quality control through artificial vision, a trend that continues to grow. During the packaging process, some defects may appear, compromising the proper sealing of the products and diminishing their shelf life, sanitary conditions and overall properties. While failure to detect a defective product leads to major losses, food producers also aim to minimize over-rejection to avoid unnecessary waste. Thus, accuracy in the evaluation of the products is crucial, and, given the large production volumes, even small improvements have a significant impact. Recently, efforts have been focused on maximizing the performance of classification neural networks; nevertheless, their performance is limited by the quality of the input data. Monochrome linear backlight systems are most commonly used for online inspections of food packaging thermo-sealing zones. These simple acquisition systems fit the high cadence of the production lines imposed by the market demand. Nevertheless, they provide a limited amount of data, which negatively impacts classification algorithm training. A desired situation would be one where data quality is maximized in terms of obtaining the key information to detect defects while maintaining a fast working pace. This work presents a backlight hyperspectral imaging system designed and implemented replicating an industrial environment to better understand the relationship between visual data quality and spectral illumination range for a variety of packed food products. Furthermore, results led to the identification of advantageous spectral bands that significantly enhance image quality, providing clearer detection of defects.

Keywords: artificial vision, food packaging, hyperspectral imaging, image acquisition, quality control

Procedia PDF Downloads 23
1278 Artificial Intelligence Protecting Birds against Collisions with Wind Turbines

Authors: Aleksandra Szurlej-Kielanska, Lucyna Pilacka, Dariusz Górecki

Abstract:

The dynamic development of wind energy requires the simultaneous implementation of effective systems minimizing the risk of collisions between birds and wind turbines. Wind turbines are installed in more and more challenging locations, often close to the natural environment of birds. More and more countries and organizations are defining guidelines for the necessary functionality of such systems. The minimum bird detection distance, trajectory tracking, and shutdown time are key factors in eliminating collisions. Since 2020, we have continued the survey on the validation of the subsequent version of the BPS detection and reaction system. Bird protection system (BPS) is a fully automatic camera system which allows one to estimate the distance of the bird to the turbine, classify its size and autonomously undertake various actions depending on the bird's distance and flight path. The BPS was installed and tested in a real environment at a wind turbine in northern Poland and Central Spain. The performed validation showed that at a distance of up to 300 m, the BPS performs at least as well as a skilled ornithologist, and large bird species are successfully detected from over 600 m. In addition, data collected by BPS systems installed in Spain showed that 60% of the detections of all birds of prey were from individuals approaching the turbine, and these detections meet the turbine shutdown criteria. Less than 40% of the detections of birds of prey took place at wind speeds below 2 m/s while the turbines were not working. As shown by the analysis of the data collected by the system over 12 months, the system classified the improved size of birds with a wingspan of more than 1.1 m in 90% and the size of birds with a wingspan of 0.7 - 1 m in 80% of cases. The collected data also allow the conclusion that some species keep a certain distance from the turbines at a wind speed of over 8 m/s (Aquila sp., Buteo sp., Gyps sp.), but Gyps sp. and Milvus sp. remained active at this wind speed on the tested area. The data collected so far indicate that BPS is effective in detecting and stopping wind turbines in response to the presence of birds of prey with a wingspan of more than 1 m.

Keywords: protecting birds, birds monitoring, wind farms, green energy, sustainable development

Procedia PDF Downloads 76
1277 Arboretum: Community Mixed Reality Nature Environment

Authors: Radek Richtr, Petr Paus

Abstract:

The connection to the primal environment, living and growing nature is disappearing for most of the residents in urban core areas nowadays. Most of the residents perceive scattered green mass like more technical objects than sentient living organisms. The Arboretum is a type of application from the 'serious games' genre -it is a research experiment masked as a gaming environment. In used virtual and augmented reality environments, every city district is represented by central objects; Pillars created as a result of resident’s consensus. Every player can furthermore plant and grow virtual organic seeds everywhere he wants. Seeds sprout, and their form is determined by both players’ choice and nearest pillar. Every house, private rooms, and even workspace get their new living virtual avatar-connected 'residents' growing from player-planted seeds. Every room or workspace is transformed into (calming) nature scene, reflecting in some way both players and community spirit and together create a vicinity environment. The conceptual design phase of the project is crucial and allows for the identification of the fundamental problems through abstraction. The project that centers on wide community usage needs a clear and accessible interface. Simultaneously the conceptual design allows early sharing of project ideas and creating public concern. The paper discusses the current conceptual model of an Arboretum project (which is part of a whole widespread project) and its validation.

Keywords: augmented reality, conceptual design, mixed reality, social engineering

Procedia PDF Downloads 231