Search results for: regression analysis (RA)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 29379

Search results for: regression analysis (RA)

27879 Fine-Grained Sentiment Analysis: Recent Progress

Authors: Jie Liu, Xudong Luo, Pingping Lin, Yifan Fan

Abstract:

Facebook, Twitter, Weibo, and other social media and significant e-commerce sites generate a massive amount of online texts, which can be used to analyse people’s opinions or sentiments for better decision-making. So, sentiment analysis, especially fine-grained sentiment analysis, is a very active research topic. In this paper, we survey various methods for fine-grained sentiment analysis, including traditional sentiment lexicon-based methods, machine learning-based methods, and deep learning-based methods in aspect/target/attribute-based sentiment analysis tasks. Besides, we discuss their advantages and problems worthy of careful studies in the future.

Keywords: sentiment analysis, fine-grained, machine learning, deep learning

Procedia PDF Downloads 265
27878 Evidence of a Negativity Bias in the Keywords of Scientific Papers

Authors: Kseniia Zviagintseva, Brett Buttliere

Abstract:

Science is fundamentally a problem-solving enterprise, and scientists pay more attention to the negative things, that cause them dissonance and negative affective state of uncertainty or contradiction. While this is agreed upon by philosophers of science, there are few empirical demonstrations. Here we examine the keywords from those papers published by PLoS in 2014 and show with several sentiment analyzers that negative keywords are studied more than positive keywords. Our dataset is the 927,406 keywords of 32,870 scientific articles in all fields published in 2014 by the journal PLOS ONE (collected from Altmetric.com). Counting how often the 47,415 unique keywords are used, we can examine whether those negative topics are studied more than positive. In order to find the sentiment of the keywords, we utilized two sentiment analysis tools, Hu and Liu (2004) and SentiStrength (2014). The results below are for Hu and Liu as these are the less convincing results. The average keyword was utilized 19.56 times, with half of the keywords being utilized only 1 time and the maximum number of uses being 18,589 times. The keywords identified as negative were utilized 37.39 times, on average, with the positive keywords being utilized 14.72 times and the neutral keywords - 19.29, on average. This difference is only marginally significant, with an F value of 2.82, with a p of .05, but one must keep in mind that more than half of the keywords are utilized only 1 time, artificially increasing the variance and driving the effect size down. To examine more closely, we looked at those top 25 most utilized keywords that have a sentiment. Among the top 25, there are only two positive words, ‘care’ and ‘dynamics’, in position numbers 5 and 13 respectively, with all the rest being identified as negative. ‘Diseases’ is the most studied keyword with 8,790 uses, with ‘cancer’ and ‘infectious’ being the second and fourth most utilized sentiment-laden keywords. The sentiment analysis is not perfect though, as the words ‘diseases’ and ‘disease’ are split by taking 1st and 3rd positions. Combining them, they remain as the most common sentiment-laden keyword, being utilized 13,236 times. More than just splitting the words, the sentiment analyzer logs ‘regression’ and ‘rat’ as negative, and these should probably be considered false positives. Despite these potential problems, the effect is apparent, as even the positive keywords like ‘care’ could or should be considered negative, since this word is most commonly utilized as a part of ‘health care’, ‘critical care’ or ‘quality of care’ and generally associated with how to improve it. All in all, the results suggest that negative concepts are studied more, also providing support for the notion that science is most generally a problem-solving enterprise. The results also provide evidence that negativity and contradiction are related to greater productivity and positive outcomes.

Keywords: bibliometrics, keywords analysis, negativity bias, positive and negative words, scientific papers, scientometrics

Procedia PDF Downloads 189
27877 Investigation of a Natural Convection Heat Sink for LEDs Based on Micro Heat Pipe Array-Rectangular Channel

Authors: Wei Wang, Yaohua Zhao, Yanhua Diao

Abstract:

The exponential growth of the lighting industry has rendered traditional thermal technologies inadequate for addressing the thermal management challenges inherent to high-power light-emitting diode (LED) technology. To enhance the thermal management of LEDs, this study proposes a heat sink configuration that integrates a miniature heat pipe array based on phase change technology with rectangular channels. The thermal performance of the heat sink was evaluated through experimental testing, and the results demonstrated that when the input power was 100W, 150W, and 200W, the temperatures of the LED substrate were 47.64℃, 56.78℃, and 69.06℃, respectively. Additionally, the maximum temperature difference of the MHPA in the vertical direction was observed to be 0.32℃, 0.30℃, and 0.30℃, respectively. The results demonstrate that the heat sink not only effectively dissipates the heat generated by the LEDs, but also exhibits excellent temperature uniformity. In consideration of the experimental measurement outcomes, a corresponding numerical model was developed as part of this study. Following the model validation, the effect of the structural parameters of the heat sink on its heat dissipation efficacy was examined through the use of response surface methodology (RSM) analysis. The rectangular channel width, channel height, channel length, number of channel cross-sections, and channel cross-section spacing were selected as the input parameters, while the LED substrate temperature and the total mass of the heat sink were regarded as the response variables. Subsequently, the response was subjected to an analysis of variance (ANOVA), which yielded a regression model that predicted the response based on the input variables. This offers some direction for the design of the radiator.

Keywords: light-emitting diodes, heat transfer, heat pipe, natural convection, response surface methodology

Procedia PDF Downloads 41
27876 River Catchment’s Demography and the Dynamics of Access to Clean Water in the Rural South Africa

Authors: Yiseyon Sunday Hosu, Motebang Dominic Vincent Nakin, Elphina N. Cishe

Abstract:

Universal access to clean and safe drinking water and basic sanitation is one of the targets of the 6th Sustainable Development Goals (SDGs). This paper explores the evidence-based indicators of Water Rights Acts (2013) among households in the rural communities in the Mthatha River catchment of OR Tambo District Municipality of South Africa. Daily access to minimum 25 litres/person and the factors influencing clean water access were investigated in the catchment. A total number of 420 households were surveyed in the upper, peri-urban, lower and coastal regions of Mthatha Rivier catchment. Descriptive and logistic regression analyses were conducted on the data collected from the households to elicit vital information on domestic water security among rural community dwellers. The results show that approximately 68 percent of total households surveyed have access to the required minimum 25 litre/person/day, with 66.3 percent in upper region, 76 per cent in the peri-urban, 1.1 percent in the lower and 2.3 percent in the coastal regions. Only 30 percent among the total surveyed households had access to piped water either in the house or public taps. The logistic regression showed that access to clean water was influenced by lack of water infrastructure, proximity to urban regions, daily flow of pipe-borne water, household size and distance to public taps. This paper recommends that viable integrated rural community-based water infrastructure provision strategies between NGOs and local authority and the promotion of point of use (POU) technologies to enhance better access to clean water.

Keywords: domestic water, household technology, water security, rural community

Procedia PDF Downloads 358
27875 Identification of Three Strategies to Enhance University Students’ Professional Identity, Using Hierarchical Regression Analysis

Authors: Alba Barbara-i-Molinero, Rosalia Cascon-Pereira, Ana Beatriz Hernandez

Abstract:

Students’ transitions from high school to the university have been challenged by the lack of continuity between both contexts. This mismatch directly affects students by generating feelings of anxiety and uncertainty, which increases the dropout rates and reduces students’ academic success. This discontinuity emanates because ‘transitions concern a restructuring of what the person does and who the person perceives him or herself to be’. Hence, identity becomes essential in these transitions. Generally, identity is the answer to questions such as who am I? or who are we? This is integrated by personal identity, and as many social identities as groups, the individual feels he/she is a part. A case in point to construct a social identity is the identification with a profession. For this reason, a way to lighten the generated tension during transitions is applying strategies orientated to enhance students’ professional identity in their point of entry to the higher education institution. That would create a sense of continuity between high school and higher education contexts, increasing their Professional Identity Strength. To develop the strategies oriented to enhance students Professional Identity, it is important to analyze what influences it. There exist several influencing factors that influence Professional Identity (e.g., professional status, the recommendation of family and peers, the academic environment, or the chosen bachelor degree). There is a gap in the literature analyzing the impact of these factors on more than one bachelor degree. In this regards, our study takes an additional step with the aim of evaluating the influence of several factors on Professional Identity using a cohort of university students from multiple degrees between the ages of 17-19 years. To do so, we used hierarchical regression analyses to assess the impact of the following factors: External Motivation Conditionals (EMC), Educational Experience Conditionals (EEC) and Personal Motivational Conditional (PMP). After conducting the analyses, we found that the assessed factors influenced students’ professional identity differently according to their bachelor degree and discipline. For example, PMC and EMC positively affected science students, while architecture, law and economics and engineering students were just influenced by PMC. Basing on that influences, we proposed three different strategies aimed to enhance students’ professional identity, in the short and long term. These strategies are: to enhance students’ professional identity before the incorporation to university through campuses and icebreaker activities; to apply recruitment strategies aimed to provide realistic information of the bachelor degree; and to incorporate different activities, such as in-vitro, in situ and self-directed activities aimed to enhance longitudinally students’ professional identity from the university. From these results, theoretical contributions and practical implications arise. First, we contribute to the literature by identifying which factors influence students from different bachelor degrees since there is still no evidence. And, second, using as a benchmark the obtained results, we contribute from a practical perspective, by proposing several alternative strategies to increase students’ professional identity strength aiming to lighten their transition from high school to higher education.

Keywords: professional identity, higher education, educational strategies , students

Procedia PDF Downloads 149
27874 Modeling the Demand for the Healthcare Services Using Data Analysis Techniques

Authors: Elizaveta S. Prokofyeva, Svetlana V. Maltseva, Roman D. Zaitsev

Abstract:

Rapidly evolving modern data analysis technologies in healthcare play a large role in understanding the operation of the system and its characteristics. Nowadays, one of the key tasks in urban healthcare is to optimize the resource allocation. Thus, the application of data analysis in medical institutions to solve optimization problems determines the significance of this study. The purpose of this research was to establish the dependence between the indicators of the effectiveness of the medical institution and its resources. Hospital discharges by diagnosis; hospital days of in-patients and in-patient average length of stay were selected as the performance indicators and the demand of the medical facility. The hospital beds by type of care, medical technology (magnetic resonance tomography, gamma cameras, angiographic complexes and lithotripters) and physicians characterized the resource provision of medical institutions for the developed models. The data source for the research was an open database of the statistical service Eurostat. The choice of the source is due to the fact that the databases contain complete and open information necessary for research tasks in the field of public health. In addition, the statistical database has a user-friendly interface that allows you to quickly build analytical reports. The study provides information on 28 European for the period from 2007 to 2016. For all countries included in the study, with the most accurate and complete data for the period under review, predictive models were developed based on historical panel data. An attempt to improve the quality and the interpretation of the models was made by cluster analysis of the investigated set of countries. The main idea was to assess the similarity of the joint behavior of the variables throughout the time period under consideration to identify groups of similar countries and to construct the separate regression models for them. Therefore, the original time series were used as the objects of clustering. The hierarchical agglomerate algorithm k-medoids was used. The sampled objects were used as the centers of the clusters obtained, since determining the centroid when working with time series involves additional difficulties. The number of clusters used the silhouette coefficient. After the cluster analysis it was possible to significantly improve the predictive power of the models: for example, in the one of the clusters, MAPE error was only 0,82%, which makes it possible to conclude that this forecast is highly reliable in the short term. The obtained predicted values of the developed models have a relatively low level of error and can be used to make decisions on the resource provision of the hospital by medical personnel. The research displays the strong dependencies between the demand for the medical services and the modern medical equipment variable, which highlights the importance of the technological component for the successful development of the medical facility. Currently, data analysis has a huge potential, which allows to significantly improving health services. Medical institutions that are the first to introduce these technologies will certainly have a competitive advantage.

Keywords: data analysis, demand modeling, healthcare, medical facilities

Procedia PDF Downloads 147
27873 Analysis Customer Loyalty Characteristic and Segmentation Analysis in Mobile Phone Category in Indonesia

Authors: A. B. Robert, Adam Pramadia, Calvin Andika

Abstract:

The main purpose of this study is to explore consumer loyalty characteristic of mobile phone category in Indonesia. Second, this research attempts to identify consumer segment and to explore their profile in each segment as the basis of marketing strategy formulation. This study used some tools of multivariate analysis such as discriminant analysis and cluster analysis. Discriminate analysis used to discriminate consumer loyal and not loyal by using particular variables. Cluster analysis used to reveal various segment in mobile phone category. In addition to having better customer understanding in each segment, this study used descriptive analysis and cross tab analysis in each segment defined by cluster analysis. This study expected several findings. First, consumer can be divided into two large group of loyal versus not loyal by set of variables. Second, this study identifies customer segment in mobile phone category. Third, exploring customer profile in each segment that has been identified. This study answer a call for additional empirical research into different product categories. Therefore, a replication research is advisable. By knowing the customer loyalty characteristic, and deep analysis of their consumption behavior and profile for each segment, this study is very advisable for high impact marketing strategy development. This study contributes body of knowledge by adding empirical study of consumer loyalty, segmentation analysis in mobile phone category by multiple brand analysis.

Keywords: customer loyalty, segmentation, marketing strategy, discriminant analysis, cluster analysis, mobile phone

Procedia PDF Downloads 598
27872 The Role of Macroeconomic Condition and Volatility in Credit Risk: An Empirical Analysis of Credit Default Swap Index Spread on Structural Models in U.S. Market during Post-Crisis Period

Authors: Xu Wang

Abstract:

This research builds linear regressions of U.S. macroeconomic condition and volatility measures in the investment grade and high yield Credit Default Swap index spreads using monthly data from March 2009 to July 2016, to study the relationship between different dimensions of macroeconomy and overall credit risk quality. The most significant contribution of this research is systematically examining individual and joint effects of macroeconomic condition and volatility on CDX spreads by including macroeconomic time series that captures different dimensions of the U.S. economy. The industrial production index growth, non-farm payroll growth, consumer price index growth, 3-month treasury rate and consumer sentiment are introduced to capture the condition of real economic activity, employment, inflation, monetary policy and risk aversion respectively. The conditional variance of the macroeconomic series is constructed using ARMA-GARCH model and is used to measure macroeconomic volatility. The linear regression model is conducted to capture relationships between monthly average CDX spreads and macroeconomic variables. The Newey–West estimator is used to control for autocorrelation and heteroskedasticity in error terms. Furthermore, the sensitivity factor analysis and standardized coefficients analysis are conducted to compare the sensitivity of CDX spreads to different macroeconomic variables and to compare relative effects of macroeconomic condition versus macroeconomic uncertainty respectively. This research shows that macroeconomic condition can have a negative effect on CDX spread while macroeconomic volatility has a positive effect on determining CDX spread. Macroeconomic condition and volatility variables can jointly explain more than 70% of the whole variation of the CDX spread. In addition, sensitivity factor analysis shows that the CDX spread is the most sensitive to Consumer Sentiment index. Finally, the standardized coefficients analysis shows that both macroeconomic condition and volatility variables are important in determining CDX spread but macroeconomic condition category of variables have more relative importance in determining CDX spread than macroeconomic volatility category of variables. This research shows that the CDX spread can reflect the individual and joint effects of macroeconomic condition and volatility, which suggests that individual investors or government should carefully regard CDX spread as a measure of overall credit risk because the CDX spread is influenced by macroeconomy. In addition, the significance of macroeconomic condition and volatility variables, such as Non-farm Payroll growth rate and Industrial Production Index growth volatility suggests that the government, should pay more attention to the overall credit quality in the market when macroecnomy is low or volatile.

Keywords: autoregressive moving average model, credit spread puzzle, credit default swap spread, generalized autoregressive conditional heteroskedasticity model, macroeconomic conditions, macroeconomic uncertainty

Procedia PDF Downloads 171
27871 An Investigation into the Levels of Human Development, Contraceptives’ Usage and Maternal Health in Indian States

Authors: Divyanshi Singh

Abstract:

Women’s right to have choices, sense of self-worth and their right to have access to opportunities have been a subject of serious concern. The health of women and their children in Indian society is adversely affected by the woman’s inferior status within households. The level of human development in society is a reflection of the better status of a woman, which has a clear impact on the usage of contraceptive methods and maternal health. The study is an attempt to assess the performance of Indian states on the parameters of levels of development and to see how the developmental trajectory is influencing the choice for contraception and maternal health. The objective of the paper is to study the relationship between usage of contraception, maternal health and levels of human development in Indian states. Data from NFHS-4th round, AHS (2012-13) and census 2011 is used. Three indicators of human development (effective literacy, infant mortality and gross district domestic product) have been taken. Maternal health for the study has been measured in MMR, IMR and pregnancy resulted in abortions, stillbirths and miscarriage. The multiple regression analysis has been done to analyze the relationship between them. The Developmental factor is found to be greatly influencing the choice of family planning and thus they both show strong relation with maternal health.

Keywords: human development, contraceptive usage, maternal health, effective literacy

Procedia PDF Downloads 203
27870 Hotel and Service Industry in USA: Is It Leveraged? Case Study of Seven Important Hotel Chains

Authors: Azadeh Shahbazi

Abstract:

This study tries to find out the determinants of capital structure in hotel industry in 7 important hotel chains in USA within the period of 12 years of 2000 to 2012. The study is used a panel pooled regression to realize the relation among different variables. Results show that the variables which could make changes in the capital structure of firms are Non-Debt Tax Shield and Tangibility.

Keywords: capital structure, service industry, hospitality, finance

Procedia PDF Downloads 474
27869 Long-Term Otitis Media with Effusion and Related Hearing Loss and Its Impact on Developmental Outcomes

Authors: Aleema Rahman

Abstract:

Introduction: This study aims to estimate the prevalence of long-term otitis media with effusion (OME) and hearing loss in a prospective longitudinal cohort studyand to study the relationship between the condition and educational and psychosocial outcomes. Methods: Analysis of data from the Avon Longitudinal Study of Parents and Children (ALSPAC) will be undertaken. ALSPAC is a longitudinal birth cohort study carried out in the UK, which has collected detailed measures of hearing on ~7000 children from the age of seven. A descriptive analysis of the data will be undertaken to estimate the prevalence of OME and hearing loss (defined as having average hearing levels > 20dB and type B tympanogram) at 7, 9, 11, and 15 years as well as that of long-term OME and hearing loss. Logistic and linear regression analyses will be conducted to examine associations between long-term OME and hearing loss and educational outcomes (grades obtained from standardised national attainment tests) and psychosocial outcomes such as anxiety, social fears, and depression at ages 10-11 and 15-16 years. Results: Results will be presented in terms of the prevalence of OME and hearing loss in the population at each age. The prevalence of long-term OME and hearing loss, defined as having OME and hearing loss at two or more time points, will also be reported. Furthermore, any associations between long-term OME and hearing loss and the educational and psychosocial outcomes will be presented. Analyses will take into account demographic factors such as sex and social deprivation and relevant confounders, including socioeconomic status, ethnicity, and IQ. Discussion: Findings from this study will provide new epidemiological information on the prevalence of long-term OME and hearing loss. The research will provide new knowledge on the impact of OME for the small group of children who do not grow out of condition by age 7 but continue to have hearing loss and need clinical care through later childhood. The study could have clinical implications and may influence service delivery for this group of children.

Keywords: educational attainment, hearing loss, otitis media with effusion, psychosocial development

Procedia PDF Downloads 142
27868 Relationships among Parentification, Self-Differentiation, and Ambivalence over Emotional Expression for Children of Migratory Families

Authors: Wan-Chun Chang, Yi-Jung Lee

Abstract:

Due to cultural factors, expressing emotions may not be encouraged in collectivist cultures, which emphasize the needs of the group over the needs of the individual. This phenomenon is more prominent for children of migratory families. Due to the absence of one parent, children were often parentified by adults, which then impacted on their self-differentiation process. It made them more difficult to express their needs and emotions freely and openly. This study aimed to investigate the meditation effect of self-differentiation between parentification, and ambivalence over emotional expression for children of migratory families in Taiwan. Participants included 460 (326 females, 134 males) Taiwanese adults (age 18-25 years). The data were collected through questionnaires and analyzed using descriptive statistics and multiple regression analysis. The questionnaire included informed consent form, 'Filial Responsibility Scale-Adult', 'Chinese version of the Differentiation of Self Inventory', 'Ambivalence over Emotion Expressiveness Questionnaire', and the demographic sheet. Results indicated that self-differentiation mediated the relationship between parentified experience and ambivalence over emotional expression. In other words, parentified experience itself does not have the power to affect ambivalence over emotional expression. Only by affecting self-differentiation can it make an actual difference. The results were as expected and confirmed the hypothesis. Implications for clinical practice, research, and training were discussed.

Keywords: ambivalence over emotional expression, children of migratory families, parentification, self-differentiation

Procedia PDF Downloads 139
27867 Factors Affecting the Wages of Native Workers in Thailand's Construction Industry

Authors: C. Noknoi, W. Boripunt, K. Boomid, S. Suwitphanwong

Abstract:

This research studies the factors influencing the wages of native workers in Thailand's construction industry. The sample used comprised some 156 native construction workers from Songkhla Province, Thailand. The utilized research instrument was a questionnaire, with the data being analyzed according to frequency, percentage, and regression analysis. The results revealed that in general, native Thai construction workers are generally married males aged between 26 and 37 years old. They typically have four to six years of education, are employed as laborers with an average salary of 4,000–9,200 baht per month, and have fewer than five years of work experience. Most Thai workers work five days a week. Each establishment typically has 10–30 employees, with fewer than 10 of these being migrant workers in general. Most Thai workers are at a 20% to 40% risk from work, and they have never changed employer. The average wage of Thai workers was found to be 10,843.03 baht per month with a standard deviation of 4,898.31 baht per month. Hypothesis testing revealed that position, work experience, and the number of times they had switched employer were the factors most affecting the wages of native Thai construction workers. These three factors alone explain the salaries of Thai construction workers at 51.9%.  

Keywords: construction industry, native workers, Thailand, wages

Procedia PDF Downloads 236
27866 Factors Influencing the Choice of Multi-Month Drug Dispensing Model Amongst Children and Adolescents Living with HIV (C/ALHIV) in Eswatini

Authors: Mbuso Siwela

Abstract:

Background: The Sub-Saharan Africa region has the greatest number of people eligible to receive antiretroviral treatment (ART). Multi-month Drug dispensing (MMD) of antiretroviral treatment (ART) aims to reduce patient-related barriers to access long-term treatment and improve health system efficiency. In Eswatini, however, few children and adolescents are on MMD. Young Heroes is implementing an HIV program that aims to avert new HIV infections in children and youth and improve treatment outcomes for children and adolescents living with HIV (C/ALHIV: 0-19 Years) and OVC caregivers with HIV prevention and impact mitigation interventions that prevent new HIV infections and reduce vulnerability. Aim of the study: The study aimed to ascertain factors that are associated with the assignment of the MMD model on C/ALHIVs. Methodology: The project provides treatment adherence support through well-trained community cadres (Home Visitors - HVs) at both community and health facility levels. During door-to-door visits, HVs track all C/ALHIV enrolled in the project monthly and refer any who might have stopped or interrupted treatment. C/ALHIV with unsuppressed viral load is supported through case conferencing and teen clubs. A quantitative cross-sectional analysis was conducted using STATA for children and adolescents living with HIV enrolled in the project. Bivariate analysis was conducted, and the Logistic Regression model was used to ascertain the effects of duration on ART on the choice of MMD model. Results: Data for 544 C/ALHIV (0-19 Years) was analyzed in STATA. Results show a strong association between (duration on ART, Age, being in teen club) and enrolment in an MMD model. Duration on ART is a major predictor for the choice of MMD model at (95% CI: 0.0012905 – 0.0039812; P = <0.0001). C/ALHIV who have been on ART for less than a year are less likely to be on MMD. C/ALHIVs who are 1 or more years on ART are more likely to be in 3 months dispensing, while those who are 5 years or more are most likely to be in 6 months model.

Keywords: C/ALHIV, OVC, HIV, treatment

Procedia PDF Downloads 50
27865 An Examination of Some Determinates of Work Performance in Kuwaiti Business Organizations

Authors: Ali Muhammad

Abstract:

The study investigates the effect of some determinates of work performance in Kuwaiti business organizations. The study postulates that employee attitudes (organizational commitment, job satisfaction), behaviors (organizational citizenship behavior, job involvement), and emotional intelligence will have positive effects on work performance. Survey data were collected from 204 employees working in eight Kuwaiti work organizations. Data were analyzed using descriptive statistics, Pearson correlation, Cronbach alpha, and regression analysis. Results confirmed the study hypotheses; employee attitudes of organizational commitment and job satisfaction was found to have a significant positive effect on work performance. Organizational citizenship behavior and job involvement were also found to have positive effect on work performance. Findings also revealed that an in increase in emotional intelligent will cause performance to increase. Results of the current study were compared and contrasted to findings of previous studies. The theoretical and empirical application of the findings were explained. Limitation of the current study was discussed and topics for future research were proposed.

Keywords: organizational commitment, Job satisfaction, organizational citizenship behavior, job involvement, emotional intelligence , work performance

Procedia PDF Downloads 200
27864 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology

Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik

Abstract:

Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.

Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms

Procedia PDF Downloads 85
27863 National Directorate of Employment Training and Agricultural-Small and Medium Enterprises Performance in Nigeria

Authors: Festus M. Epetimehin

Abstract:

This study was conducted to identify the effect of National Directorate of Employment (NDE) training on the profit of Agricultural-Small and Medium Enterprises (SMEs) and to evaluate the factors that influenced farmers' participation in NDE training, as well as the type and frequency of training farmers and other agro-allied entrepreneurs in Nigeria. Using a multi-stage sampling procedure, a total of 384 respondents were sampled, including 192 beneficiaries and 192 non-beneficiaries in Oyo and Lagos States, respectively. Data were analysed using Binary Logit regression and Propensity Score Matching techniques. According to the binary logit analysis, respondents’ gender, availability to extension services, and the location of respondent’s operation were determinant factors influencing NDE training enrolment. All identified factors are related to the probability of respondents’ involvement in a positive way. Propensity score matching revealed that Agricultural-SMEs who participated in the NDE program boosted their profit by N341,072.18. The positive outcome of the effect implies that NDE training enhances Agri-SME performance in Nigeria. The study concluded that greater funding should be provided for the NDE for performance-enhancing training of the Agri-SMEs.

Keywords: PSM, binary logit model, Agri-SME

Procedia PDF Downloads 102
27862 Antenatal Factors Associated with Early Onset Neonatal Sepsis among Neonates 0-7 Days at Fort Portal Regional Referral Hospital

Authors: Moses Balina, Archbald Bahizi

Abstract:

Introduction: Early onset neonatal sepsis is a systemic infection in a newborn baby during the first week after birth and contributes to 50% of neonatal deaths each year. Risk factors for early onset neonatal sepsis, which can be maternal, health care provider, or health care facility associated, can be prevented with access to quality antenatal care. Objective: The objective of the study was to assess early onset neonatal sepsis and antenatal factors associated with Fort Portal Regional Referral Hospital. Methodology: A cross sectional study design was used. The study involved 60 respondents who were mothers of breastfeeding neonates being treated for early onset neonatal sepsis at Fort Portal Regional Referral Hospital neonatal intensive care unit. Simple random sampling was used to select study participants. Data were collected using questionnaires, entered in Stata 16, and analysed using logistic regression. Results: The prevalence of early onset neonatal sepsis at Fort Portal Regional Referral Hospital was 25%. Multivariate analysis revealed that institutional factors were the only antenatal factors found to be significantly associated with early onset neonatal sepsis at Fort Portal Regional Referral Hospital (p < 0.01). Bivariate analysis revealed that attending antenatal care at a health centre III or IV instead of a hospital (p = 0.011) and attending antenatal care in health care facilities with no laboratory investigations (p = 0.048) were risk factors for early onset neonatal sepsis in the newborn at Fort Portal Regional Referral Hospital. Conclusion: Antenatal factors were associated with early onset neonatal sepsis, and health care facility factors like lower level health centre and unavailability of quality laboratory investigations to pregnant women contributed to early onset neonatal sepsis in the newborn. Mentorships, equipping/stocking laboratories, and improving staffing levels were necessary to reduce early onset neonatal sepsis.

Keywords: antenatal factors, early onset neonatal sepsis, neonates 0-7 days, fort portal regional referral hospital

Procedia PDF Downloads 107
27861 Corporate Governance and Performance of Islamic Banks in GCC Countries

Authors: Samir Srairi

Abstract:

This paper investigates the impact of the internal corporate governance on bank performance by constructing a corporate governance index (CGI) for 27 Islamic banks operating in five Arab Gulf countries. Using content analysis on the banks’ annual reports for 3 years (2011-2013), the index construction uses information on six important corporate governance mechanisms, namely board structure, risk management, transparency and disclosure, audit committee, Sharia supervisory board and investment account holders. The results demonstrate that Islamic banks adhere to 54% of the attributes addressed in the CGI. The most frequently reported and disclosed elements are Sharia supervisory board followed by board structure and risk management. The findings related to countries revealed that only two countries, the United Arab Emirates and Bahrain, possess a higher level of CGI. Our regression results provide evidence that Islamic banks with higher levels of corporate governance report high operating performance measured by return on assets and net interest margin. Finally, as of the effect of internal and external factors, we identified four variables that were associated with bank performance, namely size, equity, risk and concentration.

Keywords: governance mechanisms, corporate governance index, bank performance, Islamic banks, GCC countries

Procedia PDF Downloads 329
27860 Return to Work Rates of Participants in Medical Rehabilitation: The Role of Fitness and Health

Authors: Julius Steinkopf, Eric Rost, Aike Hessel, Sonia Lippke

Abstract:

Objective: This study examined possible determinants of return to work (RTW) in individuals who participated in a medical rehabilitation program longitudinally over a time period of six months. Design/methodology/approach: N=1,044 rehabilitants were included in the baseline measurement in terms of completing a questionnaire during their medical rehabilitation. About 30% (n=350) have remained in the study in terms of participating in computer-assisted telephone interviewing (CATI) six months later. Frequency analyses and Regression analyses were run. Findings: About 70% of the rehabilitants returned to work six months after rehabilitation. Regression analyses revealed that the RTW rates were significantly predicted by gender (OR=0.12, men were more likely to return), perceived social support (OR=3.01) and current physical functioning (OR=1.25). Furthermore RTW motives, like expected monetary rewards (OR=25.2) and feelings of being needed (OR=0.18) same as motives for not returning to work (nRTW), like the wish to stop working in order to spend time with the spouse (OR=0.13) or a lack of enjoyment of work (OR=3.81), significantly predicted return to work rates. Life satisfaction, self-efficacy beliefs, mental health, current income, educational background or age did not significantly increase explained variance (all ps > .05). Practical implications: Taking theses predictors into account provides options to increase the effectiveness of interventions aiming at increasing RTW: Medical rehabilitations should not only aim at improving the physical functioning but also to enhance beneficial motives and social support as well as support women specifically in order to improve the effectiveness of medical rehabilitation and public health interventions. Originality/value: Illness-caused work absences are related to high financial costs and individual burden. Despite of the public health and societal implications, this is one of the very few studies investigating systematically fitness and health for the return to work.

Keywords: gender, fitness, health, physical functioning

Procedia PDF Downloads 241
27859 Evaluating Gene-Gene Interaction among Nicotine Dependence Genes on the Risk of Oral Clefts

Authors: Mengying Wang, Dongjing Liu, Holger Schwender, Ping Wang, Hongping Zhu, Tao Wu, Terri H Beaty

Abstract:

Background: Maternal smoking is a recognized risk factor for nonsyndromic cleft lip with or without cleft palate (NSCL/P). It has been reported that the effect of maternal smoking on oral clefts is mediated through genes that influence nicotine dependence. The polymorphisms of cholinergic receptor nicotinic alpha (CHRNA) and beta (CHRNB) subunits genes have previously shown strong associations with nicotine dependence. Here, we attempted to investigate whether the above genes are associated with clefting risk through testing for potential gene-gene (G×G) and gene-environment (G×E) interaction. Methods: We selected 120 markers in 14 genes associated with nicotine dependence to conduct transmission disequilibrium tests among 806 Chinese NSCL/P case-parent trios ascertained in an international consortium which conducted a genome-wide association study (GWAS) of oral clefts. We applied Cordell’s method using “TRIO” package in R to explore G×G as well as G×E interaction involving environmental tobacco smoke (ETS) based on conditional logistic regression model. Results: while no SNP showed significant association with NSCL/P after Bonferroni correction, we found signals for G×G interaction between 10 pairs of SNPs in CHRNA3, CHRNA5, and CHRNB4 (p<10-8), among which the most significant interaction was found between RS3743077 (CHRNA3) and RS11636753 (CHRNB4, p<8.2×10-12). Linkage disequilibrium (LD) analysis revealed only low level of LD between these markers. However, there were no significant results for G×ETS interaction. Conclusion: This study fails to detect association between nicotine dependence genes and NSCL/P, but illustrates the importance of taking into account potential G×G interaction for genetic association analysis in NSCL/P. This study also suggests nicotine dependence genes should be considered as important candidate genes for NSCL/P in future studies.

Keywords: Gene-Gene Interaction, Maternal Smoking, Nicotine Dependence, Non-Syndromic Cleft Lip with or without Cleft Palate

Procedia PDF Downloads 340
27858 Using Machine Learning to Classify Different Body Parts and Determine Healthiness

Authors: Zachary Pan

Abstract:

Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.

Keywords: body part, healthcare, machine learning, neural networks

Procedia PDF Downloads 113
27857 Major Dietary Patterns in Relationship with Anthropometric Indices in North West of Iran

Authors: Arezou Rezazadeh, Nasrin Omidvar, Hassan Eini-Zinab, Mahmoud Ghazi-Tabatabaie, Reza Majdzadeh, Saeid Ghavamzadeh, Sakineh Nouri-Saeidlou

Abstract:

Dietary pattern analysis method can reflect more information about the nutritional etiology of chronic diseases such as obesity. The aim of this study was to determine the relationship between major dietary patterns and anthropometric measures in men and women living in the city of Urmia. In this cross-sectional study, 723 participants (427 women and 296 men), aged 20–64 in Urmia city were selected from all four zones of Urmia city, in the north-west of Iran. Anthropometrics (weight, height, waist and hip circumference) were measured with standard methods. Body Mass Index (BMI) was calculated by dividing weight (in kilograms) by the square of height (in meter). Dietary intake information was collected by a semi-quantitative food frequency questionnaire in the last year. Dietary patterns were determined using principal component analysis. The relationship between dietary patterns and obesity was analyzed by logistic regression. Three major dietary patterns (DPs) were identified that were named ‘Traditional Higher SES (THS)’, ‘Traditional Low SES (TLS)’ and ‘Transitional’. THS DP was positively and Transitional DP was negatively associated with BMI and waist circumference (W.C), however, after adjusting for confounding variables (age, gender, ethnicity, energy intake, physical activity and SES), the associations were not significant. The TLS was not significantly associated with BMI, but after adjusting for confounders, a significant positive association was detected with W.C and Waist to hip ratio (WHR). Findings showed that both traditional patterns were positively and the western type transitional pattern was reversely associated with anthropometric indices. But this relationship was highly affected by demographic, socioeconomic and energy input and output determinants. The results indicate the inevitable effect of environmental factors on the relationship between dietary patterns and anthropometric indices.

Keywords: anthropometric indices, dietary pattern, Iran, North-west

Procedia PDF Downloads 170
27856 Occupational Health and Well-Being of Healthcare Workers at Tertiary Care Hospitals in Lahore, Pakistan: A Comparison of Public and Private Sector

Authors: Mehwish Sarfaraz Ahmad

Abstract:

Background: There is a prevailing perception in Pakistan that private hospitals offer better services than government hospitals. Unfortunately, Pakistan faces challenges in providing efficient healthcare due to limited resources and management capabilities, resulting in demotivation among healthcare workers. Aim: The purpose of this study was to conduct a comprehensive assessment of the occupational health and well-being of healthcare workers in both public and private sector tertiary care hospitals in Lahore, Pakistan, to compare the well-being of healthcare professionals in these two sectors and investigate the influence of workplace culture and experiences on their overall health. Methods: A cross-sectional study was conducted using a validated International Questionnaire, and data from 440 participants was collected using a stratified random sampling technique from a diverse group of healthcare professionals from the public and private tertiary care hospitals in Lahore, Pakistan. The researcher conducted a comparative analysis using appropriate statistical tests, such as Anova, t-tests, chi-square tests, and regression analysis, to explore potential relationships between various factors. Results: The majority of respondents (70.2%) reported their health as "Good" or "Very good, a small percentage (8.2%) rated their health as "Poor," while 24.1% considered their health as "Fair". 39.6% reported being satisfied with their workplace culture, while a majority of 60.4% indicated being unsatisfied with their workplace culture. Results showed that workplace culture has a positive correlation with the overall health and well-being of healthcare professionals. The study found significant differences in health ratings, prevalence of chronic health conditions, workplace culture, and safety perceptions between healthcare professionals in public and private sector tertiary care hospitals. Conclusion: The study's findings emphasize the significance of promoting a positive workplace culture, ensuring workplace safety, and addressing chronic health conditions among healthcare workers.

Keywords: occupational health and well-being, workplace culture, frequency of fatigue, availabity of benefits

Procedia PDF Downloads 70
27855 One-Class Support Vector Machine for Sentiment Analysis of Movie Review Documents

Authors: Chothmal, Basant Agarwal

Abstract:

Sentiment analysis means to classify a given review document into positive or negative polar document. Sentiment analysis research has been increased tremendously in recent times due to its large number of applications in the industry and academia. Sentiment analysis models can be used to determine the opinion of the user towards any entity or product. E-commerce companies can use sentiment analysis model to improve their products on the basis of users’ opinion. In this paper, we propose a new One-class Support Vector Machine (One-class SVM) based sentiment analysis model for movie review documents. In the proposed approach, we initially extract features from one class of documents, and further test the given documents with the one-class SVM model if a given new test document lies in the model or it is an outlier. Experimental results show the effectiveness of the proposed sentiment analysis model.

Keywords: feature selection methods, machine learning, NB, one-class SVM, sentiment analysis, support vector machine

Procedia PDF Downloads 523
27854 In-Flight Radiometric Performances Analysis of an Airborne Optical Payload

Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yaokai Liu, Xinhong Wang, Yongsheng Zhou

Abstract:

Performances analysis of remote sensing sensor is required to pursue a range of scientific research and application objectives. Laboratory analysis of any remote sensing instrument is essential, but not sufficient to establish a valid inflight one. In this study, with the aid of the in situ measurements and corresponding image of three-gray scale permanent artificial target, the in-flight radiometric performances analyses (in-flight radiometric calibration, dynamic range and response linearity, signal-noise-ratio (SNR), radiometric resolution) of self-developed short-wave infrared (SWIR) camera are performed. To acquire the inflight calibration coefficients of the SWIR camera, the at-sensor radiances (Li) for the artificial targets are firstly simulated with in situ measurements (atmosphere parameter and spectral reflectance of the target) and viewing geometries using MODTRAN model. With these radiances and the corresponding digital numbers (DN) in the image, a straight line with a formulation of L = G × DN + B is fitted by a minimization regression method, and the fitted coefficients, G and B, are inflight calibration coefficients. And then the high point (LH) and the low point (LL) of dynamic range can be described as LH= (G × DNH + B) and LL= B, respectively, where DNH is equal to 2n − 1 (n is the quantization number of the payload). Meanwhile, the sensor’s response linearity (δ) is described as the correlation coefficient of the regressed line. The results show that the calibration coefficients (G and B) are 0.0083 W·sr−1m−2µm−1 and −3.5 W·sr−1m−2µm−1; the low point of dynamic range is −3.5 W·sr−1m−2µm−1 and the high point is 30.5 W·sr−1m−2µm−1; the response linearity is approximately 99%. Furthermore, a SNR normalization method is used to assess the sensor’s SNR, and the normalized SNR is about 59.6 when the mean value of radiance is equal to 11.0 W·sr−1m−2µm−1; subsequently, the radiometric resolution is calculated about 0.1845 W•sr-1m-2μm-1. Moreover, in order to validate the result, a comparison of the measured radiance with a radiative-transfer-code-predicted over four portable artificial targets with reflectance of 20%, 30%, 40%, 50% respectively, is performed. It is noted that relative error for the calibration is within 6.6%.

Keywords: calibration and validation site, SWIR camera, in-flight radiometric calibration, dynamic range, response linearity

Procedia PDF Downloads 274
27853 Parental Awareness and Willingness to Vaccinate Adolescent Daughters against Human Papilloma Virus for Cervical Cancer Prevention in Eastern Region of Kenya: Towards Affirmative Action

Authors: Jacinta Musyoka, Wesley Too

Abstract:

Cervical cancer is the second leading cause of cancer-related deaths in Kenya and the second most common cancer among women, yet preventable following prevention strategies put in place, which includes vaccination with Human Papilloma Virus Vaccine (HPPV) among the young adolescent girls. Kenya has the highest burden of cervical cancer and the leading cause of death among women of reproductive age and is a known frequent type of cancer amongst women. This is expected to double by 2025 if the necessary steps are not taken, which include vaccinating girls between the ages of 9 and 14 and screening women. Parental decision is critical in ensuring that their daughters receive this vaccine. Hence this study sought to establish parental willingness and factors associate with the acceptability to vaccine adolescent daughters against the human papilloma virus for cervical cancer prevention in Machakos County, Eastern Region of Kenya. Method: Cross-sectional study design utilizing a mixed methods approach was used to collect data from Nguluni Health Centre in Machakos County; Matungulu sub-county, Kenya. This study targeted all parents of adolescent girls seeking health care services in the Matungulu sub-county area who were aged 18 years and above. A total of 220 parents with adolescent girls aged 10-14 years were enrolled into the study after informed consent were sought. All ethical considerations were observed. Quantitative data were analyzed using Multivariate regression analysis, and thematic analysis was used for qualitative data related to perceptions of parents on HPVV. Results, conclusions, and recommendations- ongoing. We expect to report findings and articulate contributions based on the study findings in due course before October 2022

Keywords: adolescents, human papilloma virus, kenya, parents

Procedia PDF Downloads 114
27852 Influence of Causal beliefs on self-management in Korean patients with hypertension

Authors: Hyun-E Yeom

Abstract:

Patients’ views about the cause of hypertension may influence their present and proactive behaviors to regulate high blood pressure. This study aimed to examine the internal structure underlying the causal beliefs about hypertension and the influence of causal beliefs on self-care intention and medical compliance in Korean patients with hypertension. The causal beliefs of 145 patients (M age = 57.7) were assessed using the Illness Perception Questionnaire-Revised. An exploratory factor analysis was used to identify the factor structure of the causal beliefs, and the factors’ influence on self-care intention and medication compliance was analyzed using multiple and logistic regression analyses. The four-factor structure including psychological, fate-related, risk and habitual factors was identified and the psychological factor was the most representative component of causal beliefs. The risk and fate-related factors were significant factors affecting lower intention to engage in self-care and poor compliance with medication regimens, respectively. The findings support the critical role of causal beliefs about hypertension in driving patients’ current and future self-care behaviors. This study highlights the importance of educational interventions corresponding to patients’ awareness of hypertension for improving their adherence to a healthy lifestyle and medication regimens.

Keywords: hypertension, self-care, beliefs, medication compliance

Procedia PDF Downloads 352
27851 The Alarming Caesarean-Section Delivery Rate in Addis Ababa, Ethiopia

Authors: Yibeltal T. Bayou, Yohana S. Mashalla, Gloria Thupayagale-Tshweneagae

Abstract:

Background: According to the World Health Organization, caesarean section delivery rates of more than 10-15% caesarean section deliveries in any specific geographic region in the world are not justifiable. The aim of the study was to describe the level and analyse determinants of caesarean section delivery in Addis Ababa. Methods: Data was collected in Addis Ababa using a structured questionnaire administered to 901 women aged 15-49 years through a stratified two-stage cluster sampling technique. Binary logistic regression model was employed to identify predictors of caesarean section delivery. Results: Among the 835 women who delivered their last birth at healthcare facilities, 19.2% of them gave birth by caesarean section. About 9.0% of the caesarean section births were due to mother’s request or service provider’s influence without any medical indication. The caesarean section delivery rate was much higher than the recommended rate particularly among the non-slum residents (27.2%); clients of private healthcare facilities (41.1%); currently married women (20.6%); women with secondary (22.2%) and tertiary (33.6%) level of education; and women belonging to the highest wealth quintile household (28.2%). The majority (65.8%) of the caesarean section clients were not informed about the consequences of caesarean section delivery by service providers. The logistic regression model shows that older age (30-49), secondary and above education, non-slum residence, high-risk pregnancy and receiving adequate antenatal care were significantly positively associated with caesarean section delivery. Conclusion: Despite the unreserved effort towards achieving MDG 5 through safe skilled delivery assistance among others, the high caesarean section rate beyond the recommend limit, and the finding that caesarean sections done without medical indications were also alarming. The government and city administration should take appropriate measures before the problems become setbacks in healthcare provision. Further investigations should focus on the effect of caesarean section delivery on maternal and child health outcomes in the study area.

Keywords: Addis Ababa, caesarean section, mode of delivery, slum residence

Procedia PDF Downloads 406
27850 Emotional Intelligence and General Self-Efficacy as Predictors of Career Commitment of Secondary School Teachers in Nigeria

Authors: Moyosola Jude Akomolafe

Abstract:

Career commitment among employees is crucial to the success of any organization. However, career commitment has been reported to be very low among teachers in the public secondary schools in Nigeria. This study, therefore, examined the contributions of emotional intelligence and general self-efficacy to career commitment of among secondary school teachers in Nigeria. Descriptive research design of correlational type was adopted for the study. It made use of stratified random sampling technique was used in selecting two hundred and fifty (250) secondary schools teachers for the study. Three standardized instruments namely: The Big Five Inventory (BFI), Emotional Intelligence Scale (EIS), General Self-Efficacy Scale (GSES) and Career Commitment Scale (CCS) were adopted for the study. Three hypotheses were tested at 0.05 level of significance. Data collected were analyzed through Multiple Regression Analysis to investigate the predicting capacity of emotional intelligence and general self-efficacy on career commitment of secondary school teachers. The results showed that the variables when taken as a whole significantly predicted career commitment among secondary school teachers. The relative contribution of each variable revealed that emotional intelligence and general self-efficacy significantly predicted career commitment among secondary school teachers in Nigeria. The researcher recommended that secondary school teachers should be exposed to emotional intelligence and self-efficacy training to enhance their career commitment.

Keywords: career commitment, emotional intelligence, general self-efficacy, secondary school teachers

Procedia PDF Downloads 393