Search results for: human detection and identification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13473

Search results for: human detection and identification

11973 Exploiting the Potential of Fabric Phase Sorptive Extraction for Forensic Food Safety: Analysis of Food Samples in Cases of Drug Facilitated Crimes

Authors: Bharti Jain, Rajeev Jain, Abuzar Kabir, Torki Zughaibi, Shweta Sharma

Abstract:

Drug-facilitated crimes (DFCs) entail the use of a single drug or a mixture of drugs to render a victim unable. Traditionally, biological samples have been gathered from victims and conducted analysis to establish evidence of drug administration. Nevertheless, the rapid metabolism of various drugs and delays in analysis can impede the identification of such substances. For this, the present article describes a rapid, sustainable, highly efficient and miniaturized protocol for the identification and quantification of three sedative-hypnotic drugs, namely diazepam, chlordiazepoxide and ketamine in alcoholic beverages and complex food samples (cream of biscuit, flavored milk, juice, cake, tea, sweets and chocolate). The methodology involves utilizing fabric phase sorptive extraction (FPSE) to extract diazepam (DZ), chlordiazepoxide (CDP), and ketamine (KET). Subsequently, the extracted samples are subjected to analysis using gas chromatography-mass spectrometry (GC-MS). Several parameters, including the type of membrane, pH, agitation time and speed, ionic strength, sample volume, elution volume and time, and type of elution solvent, were screened and thoroughly optimized. Sol-gel Carbowax 20M (CW-20M) has demonstrated the most effective extraction efficiency for the target analytes among all evaluated membranes. Under optimal conditions, the method displayed linearity within the range of 0.3–10 µg mL–¹ (or µg g–¹), exhibiting a coefficient of determination (R2) ranging from 0.996–0.999. The limits of detection (LODs) and limits of quantification (LOQs) for liquid samples range between 0.020-0.069 µg mL-¹ and 0.066-0.22 µg mL-¹, respectively. Correspondingly, the LODs for solid samples ranged from 0.056-0.090 µg g-¹, while the LOQs ranged from 0.18-0.29 µg g-¹. Notably, the method showcased better precision, with repeatability and reproducibility both below 5% and 10%, respectively. Furthermore, the FPSE-GC-MS method proved effective in determining diazepam (DZ) in forensic food samples connected to drug-facilitated crimes (DFCs). Additionally, the proposed method underwent evaluation for its whiteness using the RGB12 algorithm.

Keywords: drug facilitated crime, fabric phase sorptive extraction, food forensics, white analytical chemistry

Procedia PDF Downloads 70
11972 A Cross-Cultural Analysis of Ethical Standards in Social and Behavioral Research

Authors: Xiwu Feng

Abstract:

The paper is to analyze research ethics in social and behavioral sciences from a cross-cultural perspective. A multi-phase study investigated implementations of ethical standards and guidelines in higher institutions in China. Institutional policies and procedures on human subject research and perceptions of human subject protection were assessed in the Chinese research universities from different regions. The findings of the study indicate that the implementations of ethical standards and guidelines vary from institution to institution and from region to region. Education and cultural backgrounds of the participants influence their perceptions of the welfare and privacy of human subjects. The results of the study reveal great differences and complexities in ethical standards for the protection of human subjects of research in contrast to the Western world. The Chinese collectivistic values and the cooperative-harmonious democracy play a significant role in perceiving and implementing ethical guidelines. Chinese researchers find themselves a long way to go before seeing implementations of regulations and guidelines on human subject research in social and behavioral sciences.

Keywords: ethical standards, human subjects, research ethics, social and behavioral research

Procedia PDF Downloads 197
11971 Hand Motion Tracking as a Human Computer Interation for People with Cerebral Palsy

Authors: Ana Teixeira, Joao Orvalho

Abstract:

This paper describes experiments using Scratch games, to check the feasibility of employing cerebral palsy users gestures as an alternative of interaction with a computer carried out by students of Master Human Computer Interaction (HCI) of IPC Coimbra. The main focus of this work is to study the usability of a Web Camera as a motion tracking device to achieve a virtual human-computer interaction used by individuals with CP. An approach for Human-computer Interaction (HCI) is present, where individuals with cerebral palsy react and interact with a scratch game through the use of a webcam as an external interaction device. Motion tracking interaction is an emerging technology that is becoming more useful, effective and affordable. However, it raises new questions from the HCI viewpoint, for example, which environments are most suitable for interaction by users with disabilities. In our case, we put emphasis on the accessibility and usability aspects of such interaction devices to meet the special needs of people with disabilities, and specifically people with CP. Despite the fact that our work has just started, preliminary results show that, in general, computer vision interaction systems are very useful; in some cases, these systems are the only way by which some people can interact with a computer. The purpose of the experiments was to verify two hypothesis: 1) people with cerebral palsy can interact with a computer using their natural gestures, 2) scratch games can be a research tool in experiments with disabled young people. A game in Scratch with three levels is created to be played through the use of a webcam. This device permits the detection of certain key points of the user’s body, which allows to assume the head, arms and specially the hands as the most important aspects of recognition. Tests with 5 individuals of different age and gender were made throughout 3 days through periods of 30 minutes with each participant. For a more extensive and reliable statistical analysis, the number of both participants and repetitions in further investigations should be increased. However, already at this stage of research, it is possible to draw some conclusions. First, and the most important, is that simple scratch games on the computer can be a research tool that allows investigating the interaction with computer performed by young persons with CP using intentional gestures. Measurements performed with the assistance of games are attractive for young disabled users. The second important conclusion is that they are able to play scratch games using their gestures. Therefore, the proposed interaction method is promising for them as a human-computer interface. In the future, we plan to include the development of multimodal interfaces that combine various computer vision devices with other input devices improvements in the existing systems to accommodate more the special needs of individuals, in addition, to perform experiments on a larger number of participants.

Keywords: motion tracking, cerebral palsy, rehabilitation, HCI

Procedia PDF Downloads 235
11970 The Marker Active Compound Identification of Calotropis gigantea Roots Extract as an Anticancer

Authors: Roihatul Mutiah, Sukardiman, Aty Widyawaruyanti

Abstract:

Calotropis gigantiea (L.) R. Br (Apocynaceae) commonly called as “Biduri” or “giant milk weed” is a well-known weed to many cultures for treating various disorders. Several studies reported that C.gigantea roots has anticancer activity. The main aim of this research was to isolate and identify an active marker compound of C.gigantea roots for quality control purpose of its extract in the development as anticancer natural product. The isolation methods was bioactivity guided column chromatography, TLC, and HPLC. Evaluated anticancer activity of there substances using MTT assay methods. Identification structure active compound by UV, 1HNMR, 13CNMR, HMBC, HMQC spectral and other references. The result showed that the marker active compound was identical as Calotropin.

Keywords: calotropin, Calotropis gigantea, anticancer, marker active

Procedia PDF Downloads 335
11969 A Review of Security Attacks and Intrusion Detection Schemes in Wireless Sensor Networks: A Survey

Authors: Maleh Yassine, Ezzati Abdellah

Abstract:

Wireless Sensor Networks (WSNs) are currently used in different industrial and consumer applications, such as earth monitoring, health related applications, natural disaster prevention, and many other areas. Security is one of the major aspects of wireless sensor networks due to the resource limitations of sensor nodes. However, these networks are facing several threats that affect their functioning and their life. In this paper we present security attacks in wireless sensor networks, and we focus on a review and analysis of the recent Intrusion Detection schemes in WSNs.

Keywords: wireless sensor networks, security attack, denial of service, IDS, cluster-based model, signature based IDS, hybrid IDS

Procedia PDF Downloads 385
11968 Coagulase Negative Staphylococci: Phenotypic Characterization and Antimicrobial Susceptibility Pattern

Authors: Lok Bahadur Shrestha, Narayan Raj Bhattarai, Basudha Khanal

Abstract:

Introduction: Coagulase-negative staphylococci (CoNS) are the normal commensal of human skin and mucous membranes. The study was carried out to study the prevalence of CoNS among clinical isolates, to characterize them up to species level and to compare the three conventional methods for detection of biofilm formation. Objectives: to characterize the clinically significant coagulase-negative staphylococci up to species level, to compare the three phenotypic methods for the detection of biofilm formation and to study the antimicrobial susceptibility pattern of the isolates. Methods: CoNS isolates were obtained from various clinical samples during the period of 1 year. Characterization up to species level was done using biochemical test and study of biofilm formation was done by tube adherence, congo red agar, and tissue culture plate method. Results: Among 71 CoNS isolates, seven species were identified. S. epidermidis was the most common species followed by S. saprophyticus, S. haemolyticus. Antimicrobial susceptibility pattern of CoNS documented resistance of 90% to ampicillin. Resistance to cefoxitin and ceftriaxone was observed in 55% of the isolates. We detected biofilm formation in 71.8% of isolates. The sensitivity of tube adherence method was 82% while that of congo red agar method was 78%. Conclusion: Among 71 CoNS isolated, S. epidermidis was the most common isolates followed by S. saprophyticus and S. haemolyticus. Biofilm formation was detected in 71.8% of the isolates. All of the methods were effective at detecting biofilm-producing CoNS strains. Biofilm former strains are more resistant to antibiotics as compared to biofilm non-formers.

Keywords: CoNS, congo red agar, bloodstream infections, foreign body-related infections, tissue culture plate

Procedia PDF Downloads 198
11967 The Effect of Corporate Social Responsibility on Human Resource Performance in the Selected Medium-Size Manufacturing Organisation in South Africa

Authors: Itumeleng Judith Maome, Robert Walter Dumisani Zondo

Abstract:

The concept of Corporate Social Responsibility (CSR) has gained popularity as a management philosophy in companies. They integrate social and environmental concerns into their operations and interactions with stakeholders. While CSR has mostly been associated with large organisations, it contributes to societal goals by engaging in activities or supporting volunteering or ethically oriented practices. However, small and medium enterprises (SMEs) have been recognised for their contributions to the social and economic development of any country. Consequently, this study examines the effect of CSR practices on human resource performance in the selected manufacturing SME in South Africa. This study was quantitative in design and examined the production and related experiences of the manufacturing SME organisation that had adopted a CSR strategy for human resource improvement. The study was achieved by collecting pre- and post-quarterly data, overtime, for employee turnover and labour absenteeism for analysis using the regression model. The results indicate that both employee turnover and labour absenteeism have no relationship with human resource performance post-CSR implementation. However, CSR has a relationship with human resource performance. Any increase in CSR activities results in an increase in human resource performance.

Keywords: corporate social responsibility, employee turnover, human resource, labour absenteeism, manufacturing SME

Procedia PDF Downloads 76
11966 Environmental Planning for Sustainable Utilization of Lake Chamo Biodiversity Resources: Geospatially Supported Approach, Ethiopia

Authors: Alemayehu Hailemicael Mezgebe, A. J. Solomon Raju

Abstract:

Context: Lake Chamo is a significant lake in the Ethiopian Rift Valley, known for its diversity of wildlife and vegetation. However, the lake is facing various threats due to human activities and global effects. The poor management of resources could lead to food insecurity, ecological degradation, and loss of biodiversity. Research Aim: The aim of this study is to analyze the environmental implications of lake level changes using GIS and remote sensing. The research also aims to examine the floristic composition of the lakeside vegetation and propose spatially oriented environmental planning for the sustainable utilization of the biodiversity resources. Methodology: The study utilizes multi-temporal satellite images and aerial photographs to analyze the changes in the lake area over the past 45 years. Geospatial analysis techniques are employed to assess land use and land cover changes and change detection matrix. The composition and role of the lakeside vegetation in the ecological and hydrological functions are also examined. Findings: The analysis reveals that the lake has shrunk by 14.42% over the years, with significant modifications to its upstream segment. The study identifies various threats to the lake-wetland ecosystem, including changes in water chemistry, overfishing, and poor waste management. The study also highlights the impact of human activities on the lake's limnology, with an increase in conductivity, salinity, and alkalinity. Floristic composition analysis of the lake-wetland ecosystem showed definite pattern of the vegetation distribution. The vegetation composition can be generally categorized into three belts namely, the herbaceous belt, the legume belt and the bush-shrub-small trees belt. The vegetation belts collectively act as different-sized sieve screen system and calm down the pace of incoming foreign matter. This stratified vegetation provides vital information to decide the management interventions for the sustainability of lake-wetland ecosystem.Theoretical Importance: The study contributes to the understanding of the environmental changes and threats faced by Lake Chamo. It provides insights into the impact of human activities on the lake-wetland ecosystem and emphasizes the need for sustainable resource management. Data Collection and Analysis Procedures: The study utilizes aerial photographs, satellite imagery, and field observations to collect data. Geospatial analysis techniques are employed to process and analyze the data, including land use/land cover changes and change detection matrices. Floristic composition analysis is conducted to assess the vegetation patterns Question Addressed: The study addresses the question of how lake level changes and human activities impact the environmental health and biodiversity of Lake Chamo. It also explores the potential opportunities and threats related to water utilization and waste management. Conclusion: The study recommends the implementation of spatially oriented environmental planning to ensure the sustainable utilization and maintenance of Lake Chamo's biodiversity resources. It emphasizes the need for proper waste management, improved irrigation facilities, and a buffer zone with specific vegetation patterns to restore and protect the lake outskirt.

Keywords: buffer zone, geo-spatial, lake chamo, lake level changes, sustainable utilization

Procedia PDF Downloads 87
11965 Assessing the Role of Human Mobility on Malaria Transmission in South Sudan

Authors: A. Y. Mukhtar, J. B. Munyakazi, R. Ouifki

Abstract:

Over the past few decades, the unprecedented increase in mobility has raised considerable concern about the relationship between mobility and vector-borne diseases and malaria in particular. Thus, one can claim that human mobility is one of the contributing factors to the resurgence of malaria. To assess human mobility on malaria burden among hosts, we formulate a movement-based model on a network of patches. We then extend human multi-group SEIAR deterministic epidemic models into a system of stochastic differential equations (SDEs). Our quantitative stochastic model which is expressed in terms of average rates of movement between compartments is fitted to time-series data (weekly malaria data of 2011 for each patch) using the maximum likelihood approach. Using the metapopulation (multi-group) model, we compute and analyze the basic reproduction number. The result shows that human movement is sufficient to preserve malaria disease firmness in the patches with the low transmission. With these results, we concluded that the sensitivity of malaria to the human mobility is turning to be greatly important over the implications of future malaria control in South Sudan.

Keywords: basic reproduction number, malaria, maximum likelihood, movement, stochastic model

Procedia PDF Downloads 134
11964 Horse Exposition to Coxiella burnetii in France: Antibody Dynamics in Serum, Environmental Risk Assessment and Potential Links with Symptomatology

Authors: Joulié Aurélien, Isabelle Desjardins, Elsa Jourdain, Sophie Pradier, Dufour Philippe, Elodie Rousset, Agnès Leblond

Abstract:

Q fever is a worldwide zoonosis caused by the bacterium Coxiella burnetii. It may infect a broad range of host species, including horses. Although the role of horses in C. burnetii infections remains unknown, their use as sentinel species may be interesting to better assess the human risk exposure. Thus, we aimed to assess the C. burnetii horse exposition in a French endemic area by describing the antibody dynamics detected in serum; investigating the pathogen circulation in the horse environment, and exploring potential links with unexplained syndromes. Blood samples were collected in 2015 and 2016 on 338 and 294 horses, respectively and analyzed by ELISA. Ticks collected on horses were identified, and C. burnetii DNA detection was performed by qPCR targeting the IS1111 gene. Blood sample analyses revealed a significant increase of the seroprevalence in horses between both years, from 11% [7.67; 14.43] to 25% [20.06; 29.94]. On 36 seropositive horses in 2015 and 73 in 2016, 5 and four respectively showed clinical signs compatible with a C. burnetii infection (i.e., chronic fever or respiratory disorders, unfitness and unexplained weight loss). DNA was detected in almost 40% of ticks (n=59/148 in 2015 and n=103/305 in 2016) and exceptionally in dust samples (n=2/46 in 2015 and n=1/14 in 2016) every year. The C. burnetti detection in both the serum and the environment of horses confirm their exposure to the bacterium. Therefore, consideration should be given to target a relevant sentinel species to better assess the Q fever surveillance depending on the epidemiological context.

Keywords: ELISA, Q fever, qPCR, syndromic surveillance

Procedia PDF Downloads 269
11963 Fault Location Identification in High Voltage Transmission Lines

Authors: Khaled M. El Naggar

Abstract:

This paper introduces a digital method for fault section identification in transmission lines. The method uses digital set of the measured short circuit current to locate faults in electrical power systems. The digitized current is used to construct a set of overdetermined system of equations. The problem is then constructed and solved using the proposed digital optimization technique to find the fault distance. The proposed optimization methodology is an application of simulated annealing optimization technique. The method is tested using practical case study to evaluate the proposed method. The accurate results obtained show that the algorithm can be used as a powerful tool in the area of power system protection.

Keywords: optimization, estimation, faults, measurement, high voltage, simulated annealing

Procedia PDF Downloads 393
11962 Reclaiming and Reconstructing the History of the Universal Declaration of Human Rights

Authors: Hamid Vahidkia

Abstract:

The origins of the Universal Declaration of Human Rights (UDHR) are not widely understood, leading to misconceptions that need to be examined. Recent research disputes the idea that the UDHR was exclusively backed and endorsed by Western countries and even raised doubts about powerful nations backing the creation of global human rights norms. This article examines four political misconceptions regarding the Universal Declaration, with each one having some truth to it but also being misleading. The significance of small states in promoting human rights norms has been underestimated, just as the importance of large states has been exaggerated in history. The Universal Declaration was created through negotiations with the involvement of numerous states. All states have a stake in small states reclaiming their portion of history due to the legitimacy it gained from the political process that formed it.

Keywords: declaration. law, rights, humanity, UDHR

Procedia PDF Downloads 39
11961 Investigation into the Phytochemistry and Biological Activities of Medicinal Plants Used in Algerian Folk Medicine: Potential Use in Human Medicine

Authors: Djebbar Atmani, Dina Kilani, Tristan Richard

Abstract:

Medicinal plants are an important source for the discovery of potential new substances for use in medicine and food. Pistacia lentiscus, Fraxinus angustifolia and Clematis flammula, plants growing in the Mediterranean basin, are widely used in traditional medicine. Therefore, the present study was designed to investigate their antioxidant, anti-inflammatory, antidiabetic, anti-mutagenic/genotoxic and neuroprotective potential and identification of active compounds using appropriate methodology. Plant extracts and fractions exhibited high scavenging capacity against known radicals, enhanced superoxide dismutase and catalase activitiesand restored blood glucose levels, in vivo, to normal values, in agreement with the in vitro enzymatic inhibition data, through inhibition of amylase and glucosidase activities. Administration of Pistacia lentiscus extracts significantly decreased carrageenan-induced mice paw oedema and reduced effectively IL-1β levels in cell culture, whereas Fraxinus angustifolia extracts showed good healing capacity against wounds when applied topically on rabbits. Pistacia lentiscus and Fraxinus angustifolia extracts showed good neuro-protection and restored cognitive functions in mice, while Clematis flammula extracts showed potent anti-ulcerogenic activity associated to a promising anti-mutagenic/genotoxic activity. HPLC-MS and NMR analyses allowed the identification and structural elucidation of several known and new anthocyanins, flavonols and flavanols. Therefore, Pistacia lentiscus, Fraxinus angustifolia and Clematis flammulacould be used in palliative treatments against inflammatory conditions and diabetes complications, as well as against deterioration of cognitive functions.

Keywords: pistacia lentiscus, clematis flammula, fraxinus angustifolia, phenolic compounds, biological activity

Procedia PDF Downloads 73
11960 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning

Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah

Abstract:

Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.

Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning

Procedia PDF Downloads 33
11959 Integrating Knowledge Distillation of Multiple Strategies

Authors: Min Jindong, Wang Mingxia

Abstract:

With the widespread use of artificial intelligence in life, computer vision, especially deep convolutional neural network models, has developed rapidly. With the increase of the complexity of the real visual target detection task and the improvement of the recognition accuracy, the target detection network model is also very large. The huge deep neural network model is not conducive to deployment on edge devices with limited resources, and the timeliness of network model inference is poor. In this paper, knowledge distillation is used to compress the huge and complex deep neural network model, and the knowledge contained in the complex network model is comprehensively transferred to another lightweight network model. Different from traditional knowledge distillation methods, we propose a novel knowledge distillation that incorporates multi-faceted features, called M-KD. In this paper, when training and optimizing the deep neural network model for target detection, the knowledge of the soft target output of the teacher network in knowledge distillation, the relationship between the layers of the teacher network and the feature attention map of the hidden layer of the teacher network are transferred to the student network as all knowledge. in the model. At the same time, we also introduce an intermediate transition layer, that is, an intermediate guidance layer, between the teacher network and the student network to make up for the huge difference between the teacher network and the student network. Finally, this paper adds an exploration module to the traditional knowledge distillation teacher-student network model. The student network model not only inherits the knowledge of the teacher network but also explores some new knowledge and characteristics. Comprehensive experiments in this paper using different distillation parameter configurations across multiple datasets and convolutional neural network models demonstrate that our proposed new network model achieves substantial improvements in speed and accuracy performance.

Keywords: object detection, knowledge distillation, convolutional network, model compression

Procedia PDF Downloads 278
11958 Identification of Wiener Model Using Iterative Schemes

Authors: Vikram Saini, Lillie Dewan

Abstract:

This paper presents the iterative schemes based on Least square, Hierarchical Least Square and Stochastic Approximation Gradient method for the Identification of Wiener model with parametric structure. A gradient method is presented for the parameter estimation of wiener model with noise conditions based on the stochastic approximation. Simulation results are presented for the Wiener model structure with different static non-linear elements in the presence of colored noise to show the comparative analysis of the iterative methods. The stochastic gradient method shows improvement in the estimation performance and provides fast convergence of the parameters estimates.

Keywords: hard non-linearity, least square, parameter estimation, stochastic approximation gradient, Wiener model

Procedia PDF Downloads 405
11957 Evaluation of Ensemble Classifiers for Intrusion Detection

Authors: M. Govindarajan

Abstract:

One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection. 

Keywords: data mining, ensemble, radial basis function, support vector machine, accuracy

Procedia PDF Downloads 248
11956 Supervised/Unsupervised Mahalanobis Algorithm for Improving Performance for Cyberattack Detection over Communications Networks

Authors: Radhika Ranjan Roy

Abstract:

Deployment of machine learning (ML)/deep learning (DL) algorithms for cyberattack detection in operational communications networks (wireless and/or wire-line) is being delayed because of low-performance parameters (e.g., recall, precision, and f₁-score). If datasets become imbalanced, which is the usual case for communications networks, the performance tends to become worse. Complexities in handling reducing dimensions of the feature sets for increasing performance are also a huge problem. Mahalanobis algorithms have been widely applied in scientific research because Mahalanobis distance metric learning is a successful framework. In this paper, we have investigated the Mahalanobis binary classifier algorithm for increasing cyberattack detection performance over communications networks as a proof of concept. We have also found that high-dimensional information in intermediate features that are not utilized as much for classification tasks in ML/DL algorithms are the main contributor to the state-of-the-art of improved performance of the Mahalanobis method, even for imbalanced and sparse datasets. With no feature reduction, MD offers uniform results for precision, recall, and f₁-score for unbalanced and sparse NSL-KDD datasets.

Keywords: Mahalanobis distance, machine learning, deep learning, NS-KDD, local intrinsic dimensionality, chi-square, positive semi-definite, area under the curve

Procedia PDF Downloads 78
11955 Electrochemical APEX for Genotyping MYH7 Gene: A Low Cost Strategy for Minisequencing of Disease Causing Mutations

Authors: Ahmed M. Debela, Mayreli Ortiz , Ciara K. O´Sullivan

Abstract:

The completion of the human genome Project (HGP) has paved the way for mapping the diversity in the overall genome sequence which helps to understand the genetic causes of inherited diseases and susceptibility to drugs or environmental toxins. Arrayed primer extension (APEX) is a microarray based minisequencing strategy for screening disease causing mutations. It is derived from Sanger DNA sequencing and uses fluorescently dideoxynucleotides (ddNTPs) for termination of a growing DNA strand from a primer with its 3´- end designed immediately upstream of a site where single nucleotide polymorphism (SNP) occurs. The use of DNA polymerase offers a very high accuracy and specificity to APEX which in turn happens to be a method of choice for multiplex SNP detection. Coupling the high specificity of this method with the high sensitivity, low cost and compatibility for miniaturization of electrochemical techniques would offer an excellent platform for detection of mutation as well as sequencing of DNA templates. We are developing an electrochemical APEX for the analysis of SNPs found in the MYH7 gene for group of cardiomyopathy patients. ddNTPs were labeled with four different redox active compounds with four distinct potentials. Thiolated oligonucleotide probes were immobilised on gold and glassy carbon substrates which are followed by hybridisation with complementary target DNA just adjacent to the base to be extended by polymerase. Electrochemical interrogation was performed after the incorporation of the redox labelled dedioxynucleotide. The work involved the synthesis and characterisation of the redox labelled ddNTPs, optimisation and characterisation of surface functionalisation strategies and the nucleotide incorporation assays.

Keywords: array based primer extension, labelled ddNTPs, electrochemical, mutations

Procedia PDF Downloads 246
11954 Comparative Evaluation of Pharmacologically Guided Approaches (PGA) to Determine Maximum Recommended Starting Dose (MRSD) of Monoclonal Antibodies for First Clinical Trial

Authors: Ibraheem Husain, Abul Kalam Najmi, Karishma Chester

Abstract:

First-in-human (FIH) studies are a critical step in clinical development of any molecule that has shown therapeutic promise in preclinical evaluations, since preclinical research and safety studies into clinical development is a crucial step for successful development of monoclonal antibodies for guidance in pharmaceutical industry for the treatment of human diseases. Therefore, comparison between USFDA and nine pharmacologically guided approaches (PGA) (simple allometry, maximum life span potential, brain weight, rule of exponent (ROE), two species methods and one species methods) were made to determine maximum recommended starting dose (MRSD) for first in human clinical trials using four drugs namely Denosumab, Bevacizumab, Anakinra and Omalizumab. In our study, the predicted pharmacokinetic (pk) parameters and the estimated first-in-human dose of antibodies were compared with the observed human values. The study indicated that the clearance and volume of distribution of antibodies can be predicted with reasonable accuracy in human and a good estimate of first human dose can be obtained from the predicted human clearance and volume of distribution. A pictorial method evaluation chart was also developed based on fold errors for simultaneous evaluation of various methods.

Keywords: clinical pharmacology (CPH), clinical research (CRE), clinical trials (CTR), maximum recommended starting dose (MRSD), clearance and volume of distribution

Procedia PDF Downloads 374
11953 Epileptic Seizure Onset Detection via Energy and Neural Synchronization Decision Fusion

Authors: Marwa Qaraqe, Muhammad Ismail, Erchin Serpedin

Abstract:

This paper presents a novel architecture for a patient-specific epileptic seizure onset detector using scalp electroencephalography (EEG). The proposed architecture is based on the decision fusion calculated from energy and neural synchronization related features. Specifically, one level of the detector calculates the condition number (CN) of an EEG matrix to evaluate the amount of neural synchronization present within the EEG channels. On a parallel level, the detector evaluates the energy contained in four EEG frequency subbands. The information is then fed into two independent (parallel) classification units based on support vector machines to determine the onset of a seizure event. The decisions from the two classifiers are then combined together according to two fusion techniques to determine a global decision. Experimental results demonstrate that the detector based on the AND fusion technique outperforms existing detectors with a sensitivity of 100%, detection latency of 3 seconds, while it achieves a 2:76 false alarm rate per hour. The OR fusion technique achieves a sensitivity of 100%, and significantly improves delay latency (0:17 seconds), yet it achieves 12 false alarms per hour.

Keywords: epilepsy, EEG, seizure onset, electroencephalography, neuron, detection

Procedia PDF Downloads 478
11952 Investigation of Several New Ionic Liquids’ Behaviour during ²¹⁰PB/²¹⁰BI Cherenkov Counting in Waters

Authors: Nataša Todorović, Jovana Nikolov, Ivana Stojković, Milan Vraneš, Jovana Panić, Slobodan Gadžurić

Abstract:

The detection of ²¹⁰Pb levels in aquatic environments evokes interest in various scientific studies. Its precise determination is important not only for the radiological assessment of drinking waters but also ²¹⁰Pb, and ²¹⁰Po distribution in the marine environment are significant for the assessment of the removal rates of particles from the ocean and particle fluxes during transport along the coast, as well as particulate organic carbon export in the upper ocean. Measurement techniques for ²¹⁰Pb determination, gamma spectrometry, alpha spectrometry, or liquid scintillation counting (LSC) are either time-consuming or demand expensive equipment or complicated chemical pre-treatments. However, one other possibility is to measure ²¹⁰Pb on an LS counter if it is in equilibrium with its progeny ²¹⁰Bi - through the Cherenkov counting method. It is unaffected by the chemical quenching and assumes easy sample preparation but has the drawback of lower counting efficiencies than standard LSC methods, typically from 10% up to 20%. The aim of the presented research in this paper is to investigate the possible increment of detection efficiency of Cherenkov counting during ²¹⁰Pb/²¹⁰Bi detection on an LS counter Quantulus 1220. Considering naturally low levels of ²¹⁰Pb in aqueous samples, the addition of ionic liquids to the counting vials with the analysed samples has the benefit of detection limit’s decrement during ²¹⁰Pb quantification. Our results demonstrated that ionic liquid, 1-butyl-3-methylimidazolium salicylate, is more efficient in Cherenkov counting efficiency increment than the previously explored 2-hydroxypropan-1-amminium salicylate. Consequently, the impact of a few other ionic liquids that were synthesized with the same cation group (1-butyl-3-methylimidazolium benzoate, 1-butyl-3-methylimidazolium 3-hydroxybenzoate, and 1-butyl-3-methylimidazolium 4-hydroxybenzoate) was explored in order to test their potential influence on Cherenkov counting efficiency. It was confirmed that, among the explored ones, only ionic liquids in the form of salicylates exhibit a wavelength shifting effect. Namely, the addition of small amounts (around 0.8 g) of 1-butyl-3-methylimidazolium salicylate increases the detection efficiency from 16% to >70%, consequently reducing the detection threshold by more than four times. Moreover, the addition of ionic liquids could find application in the quantification of other radionuclides besides ²¹⁰Pb/²¹⁰Bi via Cherenkov counting method.

Keywords: liquid scintillation counting, ionic liquids, Cherenkov counting, ²¹⁰PB/²¹⁰BI in water

Procedia PDF Downloads 103
11951 Human Resource Management in the Innovation Activity in the Republic of Kazakhstan

Authors: A. T. Omarova, G. N. Nakipova

Abstract:

This article discusses the principles of object-oriented human capital development using the technology program. Also the article includes priorities of the strategy of industrial-innovative development of Kazakhstan in conditions of integration activity into the world community. The article shows the tasks of human resource management in the implementation of industrial and innovation development, particularities of Kazakhstan's theory of management staff, as well as due to the specificity of the Kazakhstan authorities. In the article, we have considered the factors which are affecting the people in the organization and also have considered mechanisms of HRM within organization in the conditions of innovative development in Kazakhstan.

Keywords: programming, management of human resources, innovation, investment, innovation process, HRD model, innovative development, integration, management, transformation, economic potential, competitiveness

Procedia PDF Downloads 399
11950 CSRFDtool: Automated Detection and Prevention of a Reflected Cross-Site Request Forgery

Authors: Alaa A. Almarzuki, Nora A. Farraj, Aisha M. Alshiky, Omar A. Batarfi

Abstract:

The number of internet users is dramatically increased every year. Most of these users are exposed to the dangers of attackers in one way or another. The reason for this lies in the presence of many weaknesses that are not known for native users. In addition, the lack of user awareness is considered as the main reason for falling into the attackers’ snares. Cross Site Request Forgery (CSRF) has placed in the list of the most dangerous threats to security in OWASP Top Ten for 2013. CSRF is an attack that forces the user’s browser to send or perform unwanted request or action without user awareness by exploiting a valid session between the browser and the server. When CSRF attack successes, it leads to many bad consequences. An attacker may reach private and personal information and modify it. This paper aims to detect and prevent a specific type of CSRF, called reflected CSRF. In a reflected CSRF, a malicious code could be injected by the attackers. This paper explores how CSRF Detection Extension prevents the reflected CSRF by checking browser specific information. Our evaluation shows that the proposed solution succeeds in preventing this type of attack.

Keywords: CSRF, CSRF detection extension, attackers, attacks

Procedia PDF Downloads 414
11949 Mage Fusion Based Eye Tumor Detection

Authors: Ahmed Ashit

Abstract:

Image fusion is a significant and efficient image processing method used for detecting different types of tumors. This method has been used as an effective combination technique for obtaining high quality images that combine anatomy and physiology of an organ. It is the main key in the huge biomedical machines for diagnosing cancer such as PET-CT machine. This thesis aims to develop an image analysis system for the detection of the eye tumor. Different image processing methods are used to extract the tumor and then mark it on the original image. The images are first smoothed using median filtering. The background of the image is subtracted, to be then added to the original, results in a brighter area of interest or tumor area. The images are adjusted in order to increase the intensity of their pixels which lead to clearer and brighter images. once the images are enhanced, the edges of the images are detected using canny operators results in a segmented image comprises only of the pupil and the tumor for the abnormal images, and the pupil only for the normal images that have no tumor. The images of normal and abnormal images are collected from two sources: “Miles Research” and “Eye Cancer”. The computerized experimental results show that the developed image fusion based eye tumor detection system is capable of detecting the eye tumor and segment it to be superimposed on the original image.

Keywords: image fusion, eye tumor, canny operators, superimposed

Procedia PDF Downloads 364
11948 Enhancing Human Resource Development in Entrepreneurship: A Catalyst for Economic Growth and Development in Nigeria

Authors: Eli Maikoto Agison

Abstract:

The relevance of enhancing human resource development in entrepreneurship for economic growth and development cannot be overemphasized since no country can grow and developed economically above its citizenry. Africa for example and Nigeria in particular is lagging behind in terms of economic growth and development when compared with other developed countries of the world like China, Japan, Singapore, USA etc. The reason is not farfetched from these developed countries efforts in enhancing human resource development in entrepreneurship education. For Nigeria to attain this height of development, this paper discusses the meaning of human resource development in entrepreneurship as the framework for helping employees develop their personal and organizational skills knowledge and abilities as this includes employee training, career development and performance management to enable an organization achieve a set goal. While entrepreneurship education is seen as an aspect of education that is geared towards self-reliance, some of the challenges faced in the enhancement of human resource development in Nigeria include inadequate training and re-training of instructors of entrepreneurship in higher education. Insufficient funding to higher education were discussed and recommendations to include adequate funding, training and re-training of instructors of higher education be enhanced as some of the ways forward.

Keywords: economic development, economic growth, entrepreneurship education, human resource development

Procedia PDF Downloads 292
11947 Intelligent Platform for Photovoltaic Park Operation and Maintenance

Authors: Andreas Livera, Spyros Theocharides, Michalis Florides, Charalambos Anastassiou

Abstract:

A main challenge in the quest for ensuring quality of operation, especially for photovoltaic (PV) systems, is to safeguard the reliability and optimal performance by detecting and diagnosing potential failures and performance losses at early stages or before the occurrence through real-time monitoring, supervision, fault detection, and predictive maintenance. The purpose of this work is to present the functionalities and results related to the development and validation of a software platform for PV assets diagnosis and maintenance. The platform brings together proprietary hardware sensors and software algorithms to enable the early detection and prediction of the most common and critical faults in PV systems. It was validated using field measurements from operating PV systems. The results showed the effectiveness of the platform for detecting faults and losses (e.g., inverter failures, string disconnections, and potential induced degradation) at early stages, forecasting PV power production while also providing recommendations for maintenance actions. Increased PV energy yield production and revenue can be thus achieved while also minimizing operation and maintenance (O&M) costs.

Keywords: failure detection and prediction, operation and maintenance, performance monitoring, photovoltaic, platform, recommendations, predictive maintenance

Procedia PDF Downloads 49
11946 Measuring Multi-Class Linear Classifier for Image Classification

Authors: Fatma Susilawati Mohamad, Azizah Abdul Manaf, Fadhillah Ahmad, Zarina Mohamad, Wan Suryani Wan Awang

Abstract:

A simple and robust multi-class linear classifier is proposed and implemented. For a pair of classes of the linear boundary, a collection of segments of hyper planes created as perpendicular bisectors of line segments linking centroids of the classes or part of classes. Nearest Neighbor and Linear Discriminant Analysis are compared in the experiments to see the performances of each classifier in discriminating ripeness of oil palm. This paper proposes a multi-class linear classifier using Linear Discriminant Analysis (LDA) for image identification. Result proves that LDA is well capable in separating multi-class features for ripeness identification.

Keywords: multi-class, linear classifier, nearest neighbor, linear discriminant analysis

Procedia PDF Downloads 538
11945 Outlier Detection in Stock Market Data using Tukey Method and Wavelet Transform

Authors: Sadam Alwadi

Abstract:

Outlier values become a problem that frequently occurs in the data observation or recording process. Thus, the need for data imputation has become an essential matter. In this work, it will make use of the methods described in the prior work to detect the outlier values based on a collection of stock market data. In order to implement the detection and find some solutions that maybe helpful for investors, real closed price data were obtained from the Amman Stock Exchange (ASE). Tukey and Maximum Overlapping Discrete Wavelet Transform (MODWT) methods will be used to impute the detect the outlier values.

Keywords: outlier values, imputation, stock market data, detecting, estimation

Procedia PDF Downloads 81
11944 Emergence of Fluoroquinolone Resistance in Pigs, Nigeria

Authors: Igbakura I. Luga, Alex A. Adikwu

Abstract:

A comparison of resistance to quinolones was carried out on isolates of Shiga toxin-producing Escherichia coliO157:H7 from cattle and mecA and nuc genes harbouring Staphylococcus aureus from pigs. The isolates were separately tested in the first and current decades of the 21st century. The objective was to demonstrate the dissemination of resistance to this frontline class of antibiotic by bacteria from food animals and bring to the limelight the spread of antibiotic resistance in Nigeria. A total of 10 isolates of the E. coli O157:H7 and 9 of mecA and nuc genes harbouring S. aureus were obtained following isolation, biochemical testing, and serological identification using the Remel Wellcolex E. coli O157:H7 test. Shiga toxin-production screening in the E. coli O157:H7 using the verotoxin E. coli reverse passive latex agglutination (VTEC-RPLA) test; and molecular identification of the mecA and nuc genes in S. aureus. Detection of the mecA and nuc genes were carried out using the protocol by the Danish Technical University (DTU) using the following primers mecA-1:5'-GGGATCATAGCGTCATTATTC-3', mecA-2: 5'-AACGATTGTGACACGATAGCC-3', nuc-1: 5'-TCAGCAAATGCATCACAAACAG-3', nuc-2: 5'-CGTAAATGCACTTGCTTCAGG-3' for the mecA and nuc genes, respectively. The nuc genes confirm the S. aureus isolates and the mecA genes as being methicillin-resistant and so pathogenic to man. The fluoroquinolones used in the antibiotic resistance testing were norfloxacin (10 µg) and ciprofloxacin (5 µg) in the E. coli O157:H7 isolates and ciprofloxacin (5 µg) in the S. aureus isolates. Susceptibility was tested using the disk diffusion method on Muller-Hinton agar. Fluoroquinolone resistance was not detected from isolates of E. coli O157:H7 from cattle. However, 44% (4/9) of the S. aureus were resistant to ciprofloxacin. Resistance of up to 44% in isolates of mecA and nuc genes harbouring S. aureus is a compelling evidence for the rapid spread of antibiotic resistance from bacteria in food animals from Nigeria. Ciprofloxacin is the drug of choice for the treatment of Typhoid fever, therefore widespread resistance to it in pathogenic bacteria is of great public health significance. The study concludes that antibiotic resistance in bacteria from food animals is on the increase in Nigeria. The National Food and Drug Administration and Control (NAFDAC) agency in Nigeria should implement the World Health Organization (WHO) global action plan on antimicrobial resistance. A good starting point can be coordinating the WHO, Office of International Epizootics (OIE), Food and Agricultural Organization (FAO) tripartite draft antimicrobial resistance monitoring and evaluation (M&E) framework in Nigeria.

Keywords: Fluoroquinolone, Nigeria, resistance, Staphylococcus aureus

Procedia PDF Downloads 458