Search results for: experimental investigation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11180

Search results for: experimental investigation

9680 Toxic Influence of Cypermethrin on Biochemical Changes in Fresh Water Fish, Cyprinus carpio

Authors: Gowri Balaji, Muthusamy Nachiyappan, Ramalingam Venugopal

Abstract:

Amongst the wide spectrum of pesticides, pyrethroids are preferably used rather than organochlorine, organophosphorous and carbamates pesticides due to their high effectiveness. Synthetic pyrethroids which are the chemicals used for the pest control in agriculture are now being excessively used in India. The aim of the present study was to evaluate the adverse effect of cypermethrin on the fresh water fish Cyprinus carpio, the common carp. The effect was assessed by comparing the biochemical parameters in the blood and liver tissues of control fishes with three experimental group of fishes exposed with cypermethrin for 7 days 1/15 Lc50 (E1) 1/10 Lc50 (E2) and 1/5 Lc50 values (E3). After 7 days of exposure, blood was collected and liver and gills was dissected out. The activities of acid phosphatase, alkaline phosphatase, lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase were estimated by standard spectrophotometric techniques in the blood, liver and gills tissue homogenate. Lactate dehydrogenase was significantly decreased in E2 and E3 experimental groups. The activities of acid phosphatase, alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase were significantly altered in the experimental groups. All the biochemical parameters studied were adversely affected in the liver and gills of cypermethrin exposed fish. The results obtained from the present study of cypermethrin exposed fishes indicate a marked toxic effect of cypermethrin and also its dose dependent impact on different organs of the fish.

Keywords: cypermethrin, Cyprinus carpio, ALT, AST, LDH, liver, gills

Procedia PDF Downloads 279
9679 Removal of Cr⁶⁺, Co²⁺ and Ni²⁺ Ions from Aqueous Solutions by Algerian Enteromorpha compressa (L.) Biomass

Authors: Asma Aid, Samira Amokrane, Djamel Nibou, Hadj Mekatel

Abstract:

The marine Enteromorpha Compressa (L.) (ECL) biomass was used as a low-cost biological adsorbent for the removal of Cr⁶⁺, Co²⁺ and Ni²⁺ ions from artificially contaminated aqueous solutions. The operating variables pH, the initial concentration C₀, the solid/liquid ratio R and the temperature T were studied. A full factorial experimental design technique enabled us to obtain a mathematical model describing the adsorption of Cr⁶⁺, Co²⁺ and Ni²⁺ ions and to study the main effects and interactions among operational parameters. The equilibrium isotherm has been analyzed by Langmuir, Freundlich, and Dubinin-Radushkevich models; it has been found that the adsorption process follows the Langmuir model for the used ions. Kinetic studies showed that the pseudo-second-order model correlates our experimental data. Thermodynamic parameters showed the endothermic heat of adsorption and the spontaneity of the adsorption process for Cr⁶⁺ ions and exothermic heat of adsorption for Co²⁺ and Ni²⁺ ions.

Keywords: enteromorpha Compressa, adsorption process, Cr⁶⁺, Co²⁺ and Ni²⁺, equilibrium isotherm

Procedia PDF Downloads 186
9678 Numerical Simulation of Diesel Sprays under Hot Bomb Conditions

Authors: Ishtiaq A. Chaudhry, Zia R. Tahir, F. A. Siddiqui, F. Noor, M. J. Rashid

Abstract:

It has experimentally been proved that the performance of compression ignition (CI) engine is spray characteristics related. In modern diesel engine the spray formation and the eventual combustion process are the vital processes that offer more challenges towards enhancing the engine performance. In the present work, the numerical simulation has been carried out for evaporating diesel sprays using Fluent software. For computational fluid dynamics simulation “Meshing” is done using Gambit software before transmitting it into fluent. The simulation is carried out using hot bomb conditions under varying chamber conditions such as gas pressure, nozzle diameter and fuel injection pressure. For comparison purpose, the numerical simulations the chamber conditions were kept the same as that of the experimental data. At varying chamber conditions the spray penetration rates are compared with the existing experimental results.

Keywords: evaporating diesel sprays, penetration rates, hot bomb conditions

Procedia PDF Downloads 354
9677 Plasma Chemical Gasification of Solid Fuel with Mineral Mass Processing

Authors: V. E. Messerle, O. A. Lavrichshev, A. B. Ustimenko

Abstract:

Currently and in the foreseeable future (up to 2100), the global economy is oriented to the use of organic fuel, mostly, solid fuels, the share of which constitutes 40% in the generation of electric power. Therefore, the development of technologies for their effective and environmentally friendly application represents a priority problem nowadays. This work presents the results of thermodynamic and experimental investigations of plasma technology for processing of low-grade coals. The use of this technology for producing target products (synthesis gas, hydrogen, technical carbon, and valuable components of mineral mass of coals) meets the modern environmental and economic requirements applied to basic industrial sectors. The plasma technology of coal processing for the production of synthesis gas from the coal organic mass (COM) and valuable components from coal mineral mass (CMM) is highly promising. Its essence is heating the coal dust by reducing electric arc plasma to the complete gasification temperature, when the COM converts into synthesis gas, free from particles of ash, nitrogen oxides and sulfur. At the same time, oxides of the CMM are reduced by the carbon residue, producing valuable components, such as technical silicon, ferrosilicon, aluminum and carbon silicon, as well as microelements of rare metals, such as uranium, molybdenum, vanadium, titanium. Thermodynamic analysis of the process was made using a versatile computation program TERRA. Calculations were carried out in the temperature range 300 - 4000 K and a pressure of 0.1 MPa. Bituminous coal with the ash content of 40% and the heating value 16,632 kJ/kg was taken for the investigation. The gaseous phase of coal processing products includes, basically, a synthesis gas with a concentration of up to 99 vol.% at 1500 K. CMM components completely converts from the condensed phase into the gaseous phase at a temperature above 2600 K. At temperatures above 3000 K, the gaseous phase includes, basically, Si, Al, Ca, Fe, Na, and compounds of SiO, SiH, AlH, and SiS. The latter compounds dissociate into relevant elements with increasing temperature. Complex coal conversion for the production of synthesis gas from COM and valuable components from CMM was investigated using a versatile experimental plant the main element of which was plug and flow plasma reactor. The material and thermal balances helped to find the integral indicators for the process. Plasma-steam gasification of the low-grade coal with CMM processing gave the synthesis gas yield 95.2%, the carbon gasification 92.3%, and coal desulfurization 95.2%. The reduced material of the CMM was found in the slag in the form of ferrosilicon as well as silicon and iron carbides. The maximum reduction of the CMM oxides was observed in the slag from the walls of the plasma reactor in the areas with maximum temperatures, reaching 47%. The thusly produced synthesis gas can be used for synthesis of methanol, or as a high-calorific reducing gas instead of blast-furnace coke as well as power gas for thermal power plants. Reduced material of CMM can be used in metallurgy.

Keywords: gasification, mineral mass, organic mass, plasma, processing, solid fuel, synthesis gas, valuable components

Procedia PDF Downloads 604
9676 Experimental and Theoratical Methods to Increase Core Damping for Sandwitch Cantilever Beam

Authors: Iyd Eqqab Maree, Moouyad Ibrahim Abbood

Abstract:

The purpose behind this study is to predict damping effect for steel cantilever beam by using two methods of passive viscoelastic constrained layer damping. First method is Matlab Program, this method depend on the Ross, Kerwin and Unger (RKU) model for passive viscoelastic damping. Second method is experimental lab (frequency domain method), in this method used the half-power bandwidth method and can be used to determine the system loss factors for damped steel cantilever beam. The RKU method has been applied to a cantilever beam because beam is a major part of a structure and this prediction may further leads to utilize for different kinds of structural application according to design requirements in many industries. In this method of damping a simple cantilever beam is treated by making sandwich structure to make the beam damp, and this is usually done by using viscoelastic material as a core to ensure the damping effect. The use of viscoelastic layers constrained between elastic layers is known to be effective for damping of flexural vibrations of structures over a wide range of frequencies. The energy dissipated in these arrangements is due to shear deformation in the viscoelastic layers, which occurs due to flexural vibration of the structures. The theory of dynamic stability of elastic systems deals with the study of vibrations induced by pulsating loads that are parametric with respect to certain forms of deformation. There is a very good agreement of the experimental results with the theoretical findings. The main ideas of this thesis are to find the transition region for damped steel cantilever beam (4mm and 8mm thickness) from experimental lab and theoretical prediction (Matlab R2011a). Experimentally and theoretically proved that the transition region for two specimens occurs at modal frequency between mode 1 and mode 2, which give the best damping, maximum loss factor and maximum damping ratio, thus this type of viscoelastic material core (3M468) is very appropriate to use in automotive industry and in any mechanical application has modal frequency eventuate between mode 1 and mode 2.

Keywords: 3M-468 material core, loss factor and frequency, domain method, bioinformatics, biomedicine, MATLAB

Procedia PDF Downloads 265
9675 Interaction of Low-Energy Positrons with Mg Atoms: Elastic Scattering, Bound States, and Annihilation

Authors: Mahasen M. Abdel Mageed, H. S. Zaghloul

Abstract:

Annihilations, phase shifts, scattering lengths, and elastic cross sections of low energy positrons scattering from magnesium atoms were studied using the least-squares variational method (LSVM). The possibility of positron binding to the magnesium atoms is investigated. A trial wavefunction is suggested to represent e+-Mg elastic scattering and scattering parameters were derived to estimate the binding energy and annihilation rates. The trial function is taken to depend on several adjustable parameters and is improved iteratively by increasing the number of terms. The present results have the same behavior as reported semi-empirical, theoretical, and experimental results. Especially, the estimated positive scattering length supports the possibility of positron-magnesium bound state system that was confirmed in previous experimental and theoretical work.

Keywords: bound wavefunction, positron annihilation, scattering phase shift, scattering length

Procedia PDF Downloads 542
9674 Adsorption of Xylene Cyanol FF onto Activated Carbon from Brachystegia Eurycoma Seed Hulls: Determination of the Optimal Conditions by Statistical Design of Experiments

Authors: F. G Okibe, C. E Gimba, V. O Ajibola, I. G Ndukwe, E. D. Paul

Abstract:

A full factorial experimental design technique at two levels and four factors (24) was used to optimize the adsorption at 615 nm of Xylene Cyanol ff in aqueous solutions onto activated carbon prepared from brachystegia eurycoma seed hulls by chemical carbonization method. The effect of pH (3 and 5), initial dye concentration (20 and 60 mg/l), adsorbent dosage (0.01 and 0.05 g), and contact time (30 and 60 min) on removal efficiency of the adsorbent for the dye were investigated at 298K. From the analysis of variance, response surface and cube plot, adsorbent dosage was observed to be the most significant factor affecting the adsorption process. However, from the interaction between the variables studied, the optimum removal efficiency was 96.80 % achieved with adsorbent dosage of 0.05 g, contact time 45 minutes, pH 3, and initial dye concentration 60 mg/l.

Keywords: factorial experimental design, adsorption, optimization, brachystegia eurycoma, xylene cyanol ff

Procedia PDF Downloads 393
9673 Quality of Life Assessment across the Cancer Continuum: Understanding the Role of an Exercise Rehabilitation Programme

Authors: Bernat-Carles Serdà Ferrer, Arantza Del Valle Gómez

Abstract:

The Quality of Life (QoL) paradigm is multidimensional, dynamic and modular and its definition differs across the cancer continuum. The challenge in the interpretation of QoL data in clinical research is that QoL is influenced by psychological phenomena such as adaptation to illness. This research aims to obtain a valid and sensitive assessment of QoL change over the continuum disease, and to evaluate a rehabilitation programme aimed at inverting the observed decrease in QoL when patients return to daily living activities. The sample comprised 66 men. Patients were first assessed to establish a baseline (P1-diagnosis). This was followed by a post-test (P2-discharge) and a then-test measurement (P3-retrospective evaluation) and after returning home patients were randomized in experimental and control groups. The experimental group attended a rehabilitation programme over 24 weeks (P4). Results show that from baseline to post-test, QoL decreased significantly. The recalibration then-test confirmed a low QoL in all periods evaluated. Significant differences between the experimental and control groups prove the positive effect of the Exercise Rehabilitation Programme (ERP) on QoL. Understanding the real dynamic of QoL over time would help to adapt rehabilitation programmes by improving sensitivity and efficacy and provide professionals with a more accurate perception of the impact of treatment and side effects on patients’ QoL. Our results underline the importance of changing the approach adopted by health professionals towards one of watchful waiting on patients’ QoL until their complete recovery in daily life.

Keywords: exercise, prostate cancer, quality of life, rehabilitation programme, response shift

Procedia PDF Downloads 158
9672 Experimental Study on Two-Step Pyrolysis of Automotive Shredder Residue

Authors: Letizia Marchetti, Federica Annunzi, Federico Fiorini, Cristiano Nicolella

Abstract:

Automotive shredder residue (ASR) is a mixture of waste that makes up 20-25% of end-of-life vehicles. For many years, ASR was commonly disposed of in landfills or incinerated, causing serious environmental problems. Nowadays, thermochemical treatments are a promising alternative, although the heterogeneity of ASR still poses some challenges. One of the emerging thermochemical treatments for ASR is pyrolysis, which promotes the decomposition of long polymeric chains by providing heat in the absence of an oxidizing agent. In this way, pyrolysis promotes the conversion of ASR into solid, liquid, and gaseous phases. This work aims to improve the performance of a two-step pyrolysis process. After the characterization of the analysed ASR, the focus is on determining the effects of residence time on product yields and gas composition. A batch experimental setup that reproduces the entire process was used. The setup consists of three sections: the pyrolysis section (made of two reactors), the separation section, and the analysis section. Two different residence times were investigated to find suitable conditions for the first sample of ASR. These first tests showed that the products obtained were more sensitive to residence time in the second reactor. Indeed, slightly increasing residence time in the second reactor managed to raise the yield of gas and carbon residue and decrease the yield of liquid fraction. Then, to test the versatility of the setup, the same conditions were applied to a different sample of ASR coming from a different chemical plant. The comparison between the two ASR samples shows that similar product yields and compositions are obtained using the same setup.

Keywords: automotive shredder residue, experimental tests, heterogeneity, product yields, two-step pyrolysis

Procedia PDF Downloads 110
9671 An Experimental Testbed Using Virtual Containers for Distributed Systems

Authors: Parth Patel, Ying Zhu

Abstract:

Distributed systems have become ubiquitous, and they continue their growth through a range of services. With advances in resource virtualization technology such as Virtual Machines (VM) and software containers, developers no longer require high-end servers to test and develop distributed software. Even in commercial production, virtualization has streamlined the process of rapid deployment and service management. This paper introduces a distributed systems testbed that utilizes virtualization to enable distributed systems development on commodity computers. The testbed can be used to develop new services, implement theoretical distributed systems concepts for understanding, and experiment with virtual network topologies. We show its versatility through two case studies that utilize the testbed for implementing a theoretical algorithm and developing our own methodology to find high-risk edges. The results of using the testbed for these use cases have proven the effectiveness and versatility of this testbed across a range of scenarios.

Keywords: distributed systems, experimental testbed, peer-to-peer networks, virtual container technology

Procedia PDF Downloads 139
9670 Fertigation Use in Agriculture and Biosorption of Residual Nitrogen by Soil Microorganisms

Authors: Irina Mikajlo, Jakub Elbl, Helena Dvořáčková, Antonín Kintl, Jindřich Kynický, Martin Brtnický, Jaroslav Záhora

Abstract:

Present work deals with the possible use of fertigation in agriculture and its impact on the availability of mineral nitrogen (Nmin) in topsoil and subsoil horizons. The aim of the present study is to demonstrate the effect of the organic matter presence in fertigation on microbial transformation and availability of mineral nitrogen forms. The main investigation reason is the potential use of pre-treated waste water, as a source of organic carbon (Corg) and residual nutrients (Nmin) for fertigation. Laboratory experiment has been conducted to demonstrate the effect of the arable land fertilization method on the Nmin availability in different depths of the soil with the usage of model experimental containers filled with soil from topsoil and podsoil horizons that were taken from the precise area. Tufted hairgrass (Deschampsia caespitosa) has been chosen as a model plant. The water source protection zone Brezova nad Svitavou has been a research area where significant underground reservoirs of drinking water of the highest quality are located. From the second half of the last century local sources of drinking water show nitrogenous compounds increase that get here almost only from arable lands. Therefore, an attention of the following text focuses on the fate of mineral nitrogen in the complex plant-soil. Research results show that the fertigation application with Corg in a combination with mineral fertilizer can reduce the amount of Nmin leached from topsoil horizon of agricultural soils. In addition, some plants biomass production reduce may occur.

Keywords: fertigation, fertilizers, mineral nitrogen, soil microorganisms

Procedia PDF Downloads 347
9669 Study of the Biological Activity of a Ganglioside-Containing Drug (Cronassil) in an Experimental Model of Multiple Sclerosis

Authors: Hasmik V. Zanginyan, Gayane S. Ghazaryan, Laura M. Hovsepyan

Abstract:

Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating disease of the central nervous system that is induced in laboratory animals by developing an immune response against myelin epitopes. The typical clinical course is ascending palsy, which correlates with inflammation and tissue damage in the thoracolumbar spinal cord, although the optic nerves and brain (especially the subpial white matter and brainstem) are also often affected. With multiple sclerosis, there is a violation of lipid metabolism in myelin. When membrane lipids (glycosphingolipids, phospholipids) are disturbed, metabolites not only play a structural role in membranes but are also sources of secondary mediators that transmit multiple cellular signals. The purpose of this study was to investigate the effect of ganglioside as a therapeutic agent in experimental multiple sclerosis. The biological activity of a ganglioside-containing medicinal preparation (Cronassial) was evaluated in an experimental model of multiple sclerosis in laboratory animals. An experimental model of multiple sclerosis in rats was obtained by immunization with myelin basic protein (MBP), as well as homogenization of the spinal cord or brain. EAE was induced by administering a mixture of an encephalitogenic mixture (EGM) with Complete Freund’s Adjuvant. Mitochondrial fraction was isolated in a medium containing 0,25 M saccharose and 0, 01 M tris buffer, pH - 7,4, by a method of differential centrifugation on a K-24 centrifuge. Glutathione peroxidase activity was assessed by reduction reactions of hydrogen peroxide (H₂O₂) and lipid hydroperoxides (ROOH) in the presence of GSH. LPO activity was assessed by the amount of malondialdehyde (MDA) in the total homogenate and mitochondrial fraction of the spinal cord and brain of control and experimental autoimmune encephalomyelitis rats. MDA was assessed by a reaction with Thiobarbituric acid. For statistical data analysis on PNP, SPSS (Statistical Package for Social Science) package was used. The nature of the distribution of the obtained data was determined by the Kolmogorov-Smirnov criterion. The comparative analysis was performed using a nonparametric Mann-Whitney test. The differences were statistically significant when р ≤ 0,05 or р ≤ 0,01. Correlational analysis was conducted using a nonparametric Spearman test. In the work, refrigeratory centrifuge, spectrophotometer LKB Biochrom ULTROSPECII (Sweden), pH-meter PL-600 mrc (Israel), guanosine, and ATP (Sigma). The study of the process of lipid peroxidation in the total homogenate of the brain and spinal cord in experimental animals revealed an increase in the content of malonic dialdehyde. When applied, Cronassial observed normalization of lipid peroxidation processes. Reactive oxygen species, causing lipid peroxidation processes, can be toxic both for neurons and for oligodendrocytes that form myelin, causing a violation of their lipid composition. The high content of lipids in the brain and the uniqueness of their structure determines the nature of the development of LPO processes. The lipid layer of cellular and intracellular membranes performs two main functions -barrier and matrix (structural). Damage to the barrier leads to dysregulation of intracellular processes and severe disorders of cellular functions.

Keywords: experimental autoimmune encephalomyelitis, multiple sclerosis, neuroinflammation, therapy

Procedia PDF Downloads 85
9668 Passive Attenuation with Multiple Resonator Rings for Musical Instruments Equalization

Authors: Lorenzo Bonoldi, Gianluca Memoli, Abdelhalim Azbaid El Ouahabi

Abstract:

In this paper, a series of ring-shaped attenuators utilizing Helmholtz and quarter wavelength resonators in variable, fixed, and combined configurations have been manufactured using a 3D printer. We illustrate possible uses by incorporating such devices into musical instruments (e.g. in acoustic guitar sound holes) and audio speakers with a view to controlling such devices tonal emissions without electronic equalization systems. Numerical investigations into the transmission loss values of these ring-shaped attenuators using finite element method simulations (COMSOL Multiphysics) have been presented in the frequency range of 100– 1000 Hz. We compare such results for each attenuator model with experimental measurements using different driving sources such as white noise, a maximum-length sequence (MLS), square and sine sweep pulses, and point scans in the frequency domain. Finally, we present a preliminary discussion on the comparison of numerical and experimental results.

Keywords: equaliser, metamaterials, musical, instruments

Procedia PDF Downloads 162
9667 Investigation of Physical Properties of W-Doped CeO₂ and Mo-Doped CeO₂: A Density Functional Theory Study

Authors: Aicha Bouhlala, Sabah Chettibi

Abstract:

A systematic investigation on structural, electronic, and magnetic properties of Ce₀.₇₅A₀.₂₅O₂ (A = W, Mo) is performed using first-principles calculations within the framework Full-Potential Linear Augmented Plane Wave (FP-LAPW) method based on the Density Functional Theory (DFT). The exchange-correlation potential has been treated using the generalized gradient approximation (WC-GGA) developed by Wu-Cohen. The host compound CeO2 was doped with transition metal atoms W and Mo in the doping concentration of 25% to replace the Ce atom. In structural properties, the equilibrium lattice constant is observed for the W-doped CeO₂ compound which exists within the value of 5.314 A° and the value of 5.317 A° for Mo-doped CeO2. The present results show that Ce₀.₇₅A₀.₂₅O₂ (A=W, Mo) systems exhibit semiconducting behavior in both spin channels. Although undoped CeO₂ is a non-magnetic semiconductor. The band structure of these doped compounds was plotted and they exhibit direct band gap at the Fermi level (EF) in the majority and minority spin channels. In the magnetic properties, the doped atoms W and Mo play a vital role in increasing the magnetic moments of the supercell and the values of the total magnetic moment are found to be 1.998 μB for Ce₀.₇₅W₀.₂₅O₂ and to be 2.002 μB for Ce₀.₇₅Mo₀.₂₅O₂ compounds. Calculated results indicate that the magneto-electronic properties of the Ce₁₋ₓAₓO₂(A= W, Mo) oxides supply a new way to the experimentalist for the potential applications in spintronics devices.

Keywords: FP-LAPW, DFT, CeO₂, properties

Procedia PDF Downloads 208
9666 Performance Evaluation of Solid Lubricant Characteristics at Different Sliding Conditions

Authors: Suresh Kumar Reddy Narala, Rakesh Kumar Gunda

Abstract:

In modern industry, mechanical parts are subjected to friction and wear, leading to heat generation, which affects the reliability, life and power consumption of machinery. To overcome the tribological losses due to friction and wear, a significant portion of lubricant with high viscous properties allows very smooth relative motion between two sliding surfaces. Advancement in modern tribology has facilitated the use of applying solid lubricants in various industrial applications. Solid lubricant additives with high viscous thin film formation between the sliding surfaces can adequately wet and adhere to a work surface. In the present investigation, an attempt has been made to investigate and evaluate the tribological studies of various solid lubricants like MoS¬2, graphite, and boric acid at different sliding conditions. The base oil used in this study was SAE 40 oil with a viscosity of 220 cSt at 400C. The tribological properties were measured on pin-on-disc tribometer. An experimental set-up has been developed for effective supply of solid lubricants to the pin-disc interface zone. The results obtained from the experiments show that the friction coefficient increases with increase in applied load for all the considered environments. The tribological properties with MoS2 solid lubricant exhibit larger load carrying capacity than that of graphite and boric acid. The present research work also contributes to the understanding of the behavior of film thickness distribution of solid lubricant using potential contact technique under different sliding conditions. The results presented in this research work are expected to form a scientific basis for selecting the best solid lubricant in various industrial applications for possible minimization of friction and wear.

Keywords: friction, wear, temperature, solid lubricant

Procedia PDF Downloads 344
9665 An Experimental Quantitative Case Study of Competency-Based Learning in Online Mathematics Education

Authors: Pascal Roubides

Abstract:

The presentation proposed herein describes a research case study of a hybrid application of the competency-based education model best exemplified by Western Governor’s University, within the general temporal confines of an accelerated (8-week) term of a College Algebra course at the author’s institution. A competency-based model was applied to an accelerated online College Algebra course, built as an Open Educational Resources (OER) course, seeking quantifiable evidence of any differences in the academic achievement of students enrolled in the competency-based course and the academic achievement of the current delivery of the same course. Competency-based learning has been gaining in support in recent times and the author’s institution has also been involved in its own efforts to design and develop courses based on this approach. However, it is unknown whether there had been any research conducted to quantify evidence of the effect of this approach against traditional approaches prior to the author’s case study. The research question sought to answer in this experimental quantitative study was whether the online College Algebra curriculum at the author’s institution delivered via an OER-based competency-based model can produce statistically significant improvement in retention and success rates against the current delivery of the same course. Results obtained in this study showed that there is no statistical difference in the retention rate of the two groups. However, there was a statistically significant difference found between the rates of successful completion of students in the experimental group versus those in the control group.

Keywords: competency-based learning, online mathematics, online math education, online courses

Procedia PDF Downloads 126
9664 Numerical Study of Partial Penetration of PVDs In Soft Clay Soils Treatment Along With Surcharge Preloading (Bangkok Airport Case Study)

Authors: Mohammad Mehdi Pardsouie, Mehdi Mokhberi, Seyed Mohammad Ali Zomorodian, Seyed Alireza Nasehi

Abstract:

One of the challenging parts of every project, including prefabricated vertical drains (PVDs), is the determination of the depth of installation and its configuration. In this paper, Geostudio 2018 was used for modeling and verification of the full-scale test embankments (TS1, TS2, and TS3), which were constructed to study the effectiveness of PVDs for accelerating the consolidation and dissipation of the excess pore-pressures resulting from fill placement at Bangkok airport. Different depths and scenarios were modeled and the results were compared and analyzed. Since the ultimate goal is attaining pre-determined settlement, the settlement curve under soil embankment was used for the investigation of the results. It was shown that nearly in all cases, the same results and efficiency might be obtained by partial depth installation of PVDs instead of complete full constant length installation. However, it should be mentioned that because of distinct soil characteristics of clay soils and layers properties of any project, further investigation of full-scale test embankments and modeling is needed prior to finalizing the ultimate design by competent geotechnical consultants.

Keywords: partial penetration, surcharge preloading, excess pore water pressure, Bangkok test embankments

Procedia PDF Downloads 197
9663 Experimental Investigation on Geosynthetic-Reinforced Soil Sections via California Bearing Ratio Test

Authors: S. Abdi Goudazri, R. Ziaie Moayed, A. Nazeri

Abstract:

Loose soils normally are of weak bearing capacity due to their structural nature. Being exposed to heavy traffic loads, they would fail in most cases. To tackle the aforementioned issue, geotechnical engineers have come up with different approaches; one of which is making use of geosynthetic-reinforced soil-aggregate systems. As these polymeric reinforcements have highlighted economic and environmentally-friendly features, they have become widespread in practice during the last decades. The present research investigates the efficiency of four different types of these reinforcements in increasing the bearing capacity of two-layered soil sections using a series California Bearing Ratio (CBR) test. The studied sections are comprised of a 10 cm-thick layer of no. 161 Firouzkooh sand (weak subgrade) and a 10 cm-thick layer of compacted aggregate materials (base course) classified as SP and GW according to the United Soil Classification System (USCS), respectively. The aggregate layer was compacted to the relative density (Dr) of 95% at the optimum water content (Wopt) of 6.5%. The applied reinforcements were including two kinds of geocomposites (type A and B), a geotextile, and a geogrid that were embedded at the interface of the lower and the upper layers of the soil-aggregate system. As the standard CBR mold was not appropriate in height for this study, the mold used for soaked CBR tests were utilized. To make a comparison between the results of stress-settlement behavior in the studied specimens, CBR values pertinent to the penetrations of 2.5 mm and 5 mm were considered. The obtained results demonstrated 21% and 24.5% increments in the amount of CBR value in the presence of geocomposite type A and geogrid, respectively. On the other hand, the effect of both geotextile and geocomposite type B on CBR values was generally insignificant in this research.

Keywords: geosynthetics, geogrid, geotextile, CBR test, increasing bearing capacity

Procedia PDF Downloads 106
9662 Parametric Screening and Design Refinement of Ceiling Fan Blades

Authors: Shamraiz Ahmad, Riaz Ahmad, Adnan Maqsood

Abstract:

This paper describes the application of 2k-design of experiment in order to screen the geometric parameters and experimental refinement of ceiling fan blades. The ratio of the air delivery to the power consumed is commonly known as service value (SV) in ceiling fan designer’s community. Service value was considered as the response for 56 inch ceiling fan and four geometric parameters (bend position at root, bend position at tip, bent angle at root and bent angle at tip) of blade were analyzed. With two levels, the 4-design parameters along with their eleven interactions were studied and design of experiment was employed for experimental arrangement. Blade manufacturing and testing were done in a medium scale enterprise. The objective was achieved and service value of ceiling fan was increased by 10.4 % without increasing the cost of production and manufacturing system. Experiments were designed and results were analyzed using Minitab® 16 software package.

Keywords: parametric screening, 2k-design of experiment, ceiling fan, service value, performance improvement

Procedia PDF Downloads 556
9661 Experimental Study of Infill Walls with Joint Reinforcement Subjected to In-Plane Lateral Load

Authors: J. Martin Leal-Graciano, Juan J. Pérez-Gavilán, A. Reyes-Salazar, J. H. Castorena, J. L. Rivera-Salas

Abstract:

The experimental results about the global behavior of twelve 1:2 scaled reinforced concrete frames subject to in-plane lateral load are presented. The main objective was to generate experimental evidence about the use of steel bars within mortar bed joints as shear reinforcement in infill walls. Similar to the Canadian and New Zealand standards, the Mexican code includes specifications for this type of reinforcement. However, these specifications were obtained through experimental studies of load-bearing walls, mainly confined walls. Little information is found in the existing literature about the effects of joint reinforcement on the seismic behavior of infill masonry walls. Consequently, the Mexican code establishes the same equations to estimate the contribution of joint reinforcement for both confined walls and infill walls. Confined masonry construction and a reinforced concrete frame infilled with masonry walls have similar appearances. However, substantial differences exist between these two construction systems, which are mainly related to the sequence of construction and to how these structures support vertical and lateral loads. To achieve the objective established, ten reinforced concrete frames with masonry infill walls were built and tested in pairs, having both specimens in the pair identical characteristics except that one of them included joint reinforcement. The variables between pairs were the type of units, the size of the columns of the frame, and the aspect ratio of the wall. All cases included tie columns and tie beams on the perimeter of the wall to anchor the joint reinforcement. Also, two bare frames with identical characteristics to the infilled frames were tested. The purpose was to investigate the effects of the infill wall on the behavior of the system to in-plane lateral load. In addition, the experimental results were compared with the prediction of the Mexican code. All the specimens were tested in a cantilever under reversible cyclic lateral load. To simulate gravity load, constant vertical load was applied on the top of the columns. The results indicate that the contribution of the joint reinforcement to lateral strength depends on the size of the columns of the frame. Larger size columns produce a failure mode that is predominantly a sliding mode. Sliding inhibits the production of new inclined cracks, which are necessary to activate (deform) the joint reinforcement. Regarding the effects of joint reinforcement in the performance of confined masonry walls, many facts were confirmed for infill walls. This type of reinforcement increases the lateral strength of the wall, produces a more distributed cracking, and reduces the width of the cracks. Moreover, it reduces the ductility demand of the system at maximum strength. The prediction of the lateral strength provided by the Mexican code is a property in some cases; however, the effect of the size of the columns on the contribution of joint reinforcement needs to be better understood.

Keywords: experimental study, infill wall, infilled frame, masonry wall

Procedia PDF Downloads 172
9660 Quantification of the Erosion Effect on Small Caliber Guns: Experimental and Numerical Analysis

Authors: Dhouibi Mohamed, Stirbu Bogdan, Chabotier André, Pirlot Marc

Abstract:

Effects of erosion and wear on the performance of small caliber guns have been analyzed throughout numerical and experimental studies. Mainly, qualitative observations were performed. Correlations between the volume change of the chamber and the maximum pressure are limited. This paper focuses on the development of a numerical model to predict the maximum pressure evolution when the interior shape of the chamber changes in the different weapon’s life phases. To fulfill this goal, an experimental campaign, followed by a numerical simulation study, is carried out. Two test barrels, « 5.56x45mm NATO » and « 7.62x51mm NATO,» are considered. First, a Coordinate Measuring Machine (CMM) with a contact scanning probe is used to measure the interior profile of the barrels after each 300-shots cycle until their worn out. Simultaneously, the EPVAT (Electronic Pressure Velocity and Action Time) method with a special WEIBEL radar are used to measure: (i) the chamber pressure, (ii) the action time, (iii) and the bullet velocity in each barrel. Second, a numerical simulation study is carried out. Thus, a coupled interior ballistic model is developed using the dynamic finite element program LS-DYNA. In this work, two different models are elaborated: (i) coupled Eularien Lagrangian method using fluid-structure interaction (FSI) techniques and a coupled thermo-mechanical finite element using a lumped parameter model (LPM) as a subroutine. Those numerical models are validated and checked through three experimental results, such as (i) the muzzle velocity, (ii) the chamber pressure, and (iii) the surface morphology of fired projectiles. Results show a good agreement between experiments and numerical simulations. Next, a comparison between the two models is conducted. The projectile motions, the dynamic engraving resistances and the maximum pressures are compared and analyzed. Finally, using this obtained database, a statistical correlation between the muzzle velocity, the maximum pressure and the chamber volume is established.

Keywords: engraving process, finite element analysis, gun barrel erosion, interior ballistics, statistical correlation

Procedia PDF Downloads 203
9659 Factors Influencing University Students' Online Disinhibition Behavior: The Moderating Effects of Deterrence and Social Identity

Authors: Wang, Kuei-Ing, Jou-Fan Shih

Abstract:

This study adopts deterrence theory as well as social identities as moderators, and explores their moderating affects on online toxic disinhibition. Survey and Experimental methodologies are applied to test the research model and four hypotheses are developed in this study. The controllability of identity positively influenced the behavior of toxic disinhibition both in experimental and control groups while the fluidity of the identity did not have significant influences on online disinhibition. Punishment certainty, punishment severity as well as social identity negatively moderated the relation between the controllability of the identity and the toxic disinhibition. The result of this study shows that internet users hide their real identities when they behave inappropriately on internet, but once they acknowledge that the inappropriate behavior will be found and punished severely, the inappropriate behavior then will be weakened.

Keywords: seductive properties of internet, online disinhibition, punishment certainty, punishment severity, social identity

Procedia PDF Downloads 505
9658 The Effect of Using Levels of Red Tiger Shrimp Meal in Starter Broiler Diet upon Growth Performance

Authors: Mohammed I.A. Al-Neemi, Mohammed S.B., Al-Hlawee, Ilham N. Ezaddin, Soz A. Faris, Omer E. Fakhry, Heemen S. Mageed

Abstract:

This objective of this study was to measure the effect of replacing different levels of animal protein concentrate with Red Tiger shrimp meal (RTSM: 60 % crude protein, 2400 M.E kcal/kg and the source of RTSM was imported from china) in the broiler starter diets. A total 300 broiler chicks (Ross-308) were randomly assigned in treatments dietary contained three different levels of RTSM (0.00, 4.16 and 8.32 %) in experimental diet with a completely randomized design (CRD). Each treatment included four replicates (floor pens) and 25 broilers in each replication (Pen). Therefore, floor space for each boilers was 900 cm2. Initially, the broilers where exposed to a continues lighting of 23:30 hours and dark period of 30 minutes in each 24 hours. Feed and water were supplied ad libitum to the broilers throughout the experimental period (1-21 days). The results of this study indicated that body weight (B.W.), body weight gain (B.W.G), conversion ratio of feed, protein and energy (F.CR, P.C.R and E.C.R) were significantly (p ≤ 0.05) decreased by complete substituting (RTSM) for animal protein concentration (third treatment). Mortality percentage significantly (p ≤ 0.05) increased for third dietary treatment. No significant differences were found for feed, protein and energy intake among treatments during the experimental period (three weeks). In conclusion, (RTSM) could be included to 4.16% in the broiler starter diet or substitute the protein Red Tiger shrimp as alternative of protein animal protein concentrate as much as 50%.

Keywords: red tiger shrimp, broiler, starter diet, growth performance, animal protein concentrate

Procedia PDF Downloads 560
9657 Experimental Study of Semitransparent and Opaque Photovoltaic Modules with and without Air Duct

Authors: Sanjay Agrawal, Trapti Varshney, G. N. Tiwari

Abstract:

In this paper, thermal modeling has been developed for photovoltaic PV modules, namely; Case A: semitransparent PV module without duct, Case B: semitransparent PV module with duct, Case C: opaque PV module without duct, Case D: opaque PV module with duct for Delhi, India climatic condition. MATLAB 7.0 software has been used to solve mathematical models of the proposed system. For validation of proposed system, the experimental study has also been carried out for all above four cases, and then comparative analysis of all different type of PV module has been presented. The hybrid PVT module air collectors presented in this study are self sustaining the system and can be used for the electricity generation in remote areas where access of electricity is not economical due to high transmission and distribution losses. It has been found that overall annual thermal energy and exergy gain of semitransparent PV module is higher by 11.6% and7.32% in summer condition and 16.39% and 18% in winter condition respectively as compared to opaque PV module considering same area (0.61 m2) of PV module.

Keywords: semitransparent PV module, overall exergy, overall thermal energy, opaque

Procedia PDF Downloads 433
9656 Ozone Treatment in Textile Industry

Authors: Umut Çınar

Abstract:

The fact that ozone gas has color bleaching properties has made the use of ozone gas widespread in the textile sector as well as in many other sectors. Ozone gas, which is a strong oxidative agent on the fabric, causes the paint on the fabric to wear off and lighten its color with an aged appearance. Within the scope of this thesis, parameters affecting the bleaching properties of ozone gas on reactive dyed knitted fabric, which is rare in the literature, were investigated. Ozone concentration, time, and pH values were analyzed with the Box Behnken experimental design method, and optimum conditions were determined. After the experiments, wear and opacity values were measured with the help of a spectrophotometer. With the help of the Design Expert program, the graphics related to the data were prepared and interpreted with Box Behnken and ANOVA. These experiments on reactive dyed knitted fabric were tested on these parameters, and the spectrophotometric values of the fabric and optimum parameters in abrasion and opacity were revealed.

Keywords: ozone, reactive dye, bleaching, textile, garment wash, sustainability, washing, Box–Behnken, experimental design

Procedia PDF Downloads 61
9655 Experimental Verification and Finite Element Analysis of a Sliding Door System Used in Automotive Industry

Authors: C. Guven, M. Tufekci, E. Bayik, O. Gedik, M. Tas

Abstract:

A sliding door system is used in commercial vehicles and passenger cars to allow a larger unobstructed access to the interior for loading and unloading. The movement of a sliding door on vehicle body is ensured by mechanisms and tracks having special cross-section which is manufactured by roll forming and stretch bending process. There are three tracks and three mechanisms which are called upper, central and lower on a sliding door system. There are static requirements as strength on different directions, rigidity for mechanisms, and door drop off, door sag; dynamic requirements as high energy slam opening-closing and durability requirement to validate these products. In addition, there is a kinematic requirement to find out force values from door handle during manual operating. In this study, finite element analysis and physical test results which are realized for sliding door systems will be shared comparatively.

Keywords: finite element analysis, sliding door, experimental, verification, vehicle tests

Procedia PDF Downloads 328
9654 Experimental Measurements of Evacuated Enclosure Thermal Insulation Effectiveness for Vacuum Flat Plate Solar Thermal Collectors

Authors: Paul Henshall, Philip Eames, Roger Moss, Stan Shire, Farid Arya, Trevor Hyde

Abstract:

Encapsulating the absorber of a flat plate solar thermal collector in vacuum by an enclosure that can be evacuated can result in a significant increase in collector performance and achievable operating temperatures. This is a result of the thermal insulation effectiveness of the vacuum layer surrounding the absorber, as less heat is lost during collector operation. This work describes experimental thermal insulation characterization tests of prototype vacuum flat plate solar thermal collectors that demonstrate the improvement in absorber heat loss coefficients. Furthermore, this work describes the selection and sizing of a getter, suitable for maintaining the vacuum inside the enclosure for the lifetime of the collector, which can be activated at low temperatures.

Keywords: vacuum, thermal, flat-plate solar collector, insulation

Procedia PDF Downloads 387
9653 An Experimental Investigation on the Fuel Characteristics of Nano-Aluminium Oxide and Nano-Cobalt Oxide Particles Blended in Diesel Fuel

Authors: S. Singh, P. Patel, D. Kachhadiya, Swapnil Dharaskar

Abstract:

The research objective is to integrate nanoparticles into fuels- i.e. diesel, biodiesel, biodiesel blended with diesel, plastic derived fuels, etc. to increase the fuel efficiency. The metal oxide nanoparticles will reduce the carbon monoxide emissions by donating oxygen atoms from their lattices to catalyze the combustion reactions and to aid complete combustion; due to this, there will be an increase in the calorific value of the blend (fuel + metal nanoparticles). Aluminium oxide and cobalt oxide nanoparticles have been synthesized by sol-gel method. The characterization was done by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). The size of the particles was determined by XRD to be 28.6 nm and 28.06 nm for aluminium oxide and cobalt oxide nanoparticles respectively. Different concentration blends- 50, 100, 150 ppm were prepared by adding the required weight of metal oxides in 1 liter of diesel and sonicating for 30 minutes at 500W. The blend properties- calorific value, viscosity, and flash point were determined by bomb calorimeter, Brookfield viscometer and pensky-martin apparatus. For the aluminum oxide blended diesel, there was a maximum increase of 5.544% in the calorific value, but at the same time, there was an increase in the flash point from 43°C to 58.5°C and an increase in the viscosity from 2.45 cP to 3.25 cP. On the other hand, for the cobalt oxide blended diesel there was a maximum increase of 2.012% in the calorific value while the flash point increased from 43°C to 51.5°C and the viscosity increased from 2.45 cP to 2.94 cP. There was a linear increase in the calorific value, viscosity and flash point when the concentration of the metal oxide nanoparticles in the blend was increased. For the 50 ppm Al₂O₃ and 50 ppm Co₃O₄ blend the increasing the calorific value was 1.228 %, and the viscosity changed from 2.45 cP to 2.64 cP and the flash point increased from 43°C to 50.5°C. Clearly the aluminium oxide nanoparticles increase the calorific value but at the cost of flash point and viscosity, thus it is better to use the 50 ppm aluminium oxide, and 50 ppm cobalt oxide blended diesel.

Keywords: aluminium oxide nanoparticles, cobalt oxide nanoparticles, fuel additives, fuel characteristics

Procedia PDF Downloads 313
9652 Chaos Analysis of a 3D Finance System and Generalized Synchronization for N-Dimension

Authors: Muhammad Fiaz

Abstract:

The article in hand is the study of complex features like Zero Hopf Bifurcation, Chaos and Synchronization of integer and fractional order version of a new 3D finance system. Trusted tools of averaging theory and active control method are utilized for investigation of Zero Hopf bifurcation and synchronization for both versions respectively. Inventiveness of the paper is to find the answer of a question that is it possible to find a chaotic system which can be synchronized with any other of the same dimension? Based on different examples we categorically develop a theory that if a couple of master and slave chaotic dynamical system is synchronized by selecting a suitable gain matrix with special conditions then the master system is synchronized with any chaotic dynamical system of the same dimension. With the help of this study we developed generalized theorems for synchronization of n-dimension dynamical systems for integer as well as fractional versions. it proposed that this investigation will contribute a lot to control dynamical systems and only a suitable gain matrix with special conditions is enough to synchronize the system under consideration with any other chaotic system of the same dimension. Chaotic properties of fractional version of the new finance system are also analyzed at fractional order q=0.87. Simulations results, where required, also provided for authenticity of analytical study.

Keywords: complex analysis, chaos, generalized synchronization, control dynamics, fractional order analysis

Procedia PDF Downloads 57
9651 Nimbus Radiance Gate Project: Media Architecture in Sacred Space

Authors: Jorge Duarte de Sá

Abstract:

The project presented in this investigation is part of the multidisciplinary field of Architecture and explores an experience in media architecture, integrated in Arts, Science and Technology. The objective of this work is to create a visual experience comprehending Architecture, Media and Art. It is intended to specifically explore the sacred spaces that are losing social, cultural or religious dynamics and insert new Media technologies to create a new generate momentum, testing tools, techniques and methods of implementation. Given an architectural project methodology, it seems essential that 'the location' should be the starting point for the development of this technological apparatus: the church of Santa Clara in Santarém, Portugal emerged as an experimental space for apparatus, presenting itself as both temple and museum. We also aim to address the concept of rehabilitation through media technologies, directed at interventions that may have an impact on energizing spaces. The idea is emphasized on the rehabilitation of spaces that, one way or another, may gain new dynamics after a media intervention. Thus, we intend to affect the play with a sensitive and spiritual character which endemically, sacred spaces have, by exploring a sensitive aspect of the subject and drawing up new ideas for meditation and spiritual reflection. The work is designed primarily as a visual experience that encompasses the space, the object and the subject. It is a media project supported by a dual structure with two transparent screens operating in a holographic screen which will be projecting two images that complement the translucent overlay film, thus making the merger of two projections. The digitally created content reacts to the presence of observers through infrared cameras, placed strategically. The object revives the memory of the altarpiece as an architectural surface, promoting the expansion of messages through the media technologies.

Keywords: architecture, media, sacred, technology

Procedia PDF Downloads 274