Search results for: durability temperature soil mechanic
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10048

Search results for: durability temperature soil mechanic

8548 Investigation and Estimation of State of Health of Battery Pack in Battery Electric Vehicles-Online Battery Characterization

Authors: Ali Mashayekh, Mahdiye Khorasani, Thomas Weyh

Abstract:

The tendency to use the Battery-Electric vehicle (BEV) for the low and medium driving range or even high driving range has been growing more and more. As a result, higher safety, reliability, and durability of the battery pack as a component of electric vehicles, which has a great share of cost and weight of the final product, are the topics to be considered and investigated. Battery aging can be considered as the predominant factor regarding the reliability and durability of BEV. To better understand the aging process, offline battery characterization has been widely used, which is time-consuming and needs very expensive infrastructures. This paper presents the substitute method for the conventional battery characterization methods, which is based on battery Modular Multilevel Management (BM3). According to this Topology, the battery cells can be drained and charged concerning their capacity, which allows varying battery pack structures. Due to the integration of the power electronics, the output voltage of the battery pack is no longer fixed but can be dynamically adjusted in small steps. In other words, each cell can have three different states, namely series, parallel, and bypass in connection with the neighbor cells. With the help of MATLAB/Simulink and by using the BM3 modules, the battery string model is created. This model allows us to switch two cells with the different SoC as parallel, which results in the internal balancing of the cells. But if the parallel switching lasts just for a couple of ms, we can have a perturbation pulse which can stimulate the cells out of the relaxation phase. With the help of modeling the voltage response pulse of the battery, it would be possible to characterize the cell. The Online EIS method, which is discussed in this paper, can be a robust substitute for the conventional battery characterization methods.

Keywords: battery characterization, SoH estimation, RLS, BEV

Procedia PDF Downloads 142
8547 Yield Onset of Thermo-Mechanical Loading of FGM Thick Walled Cylindrical Pressure Vessels

Authors: S. Ansari Sadrabadi, G. H. Rahimi

Abstract:

In this paper, thick walled Cylindrical tanks or tubes made of functionally graded material under internal pressure and temperature gradient are studied. Material parameters have been considered as power functions. They play important role in the elastoplastic behavior of these materials. To clarify their role, different materials with different parameters have been used under temperature gradient. Finally, their effect and loading effect have been determined in first yield point. Also, the important role of temperature gradient was also shown. At the end the study has been results obtained from changes in the elastic modulus and yield stress. Also special attention is also given to the effects of this internal pressure and temperature gradient in the creation of tensile and compressive stresses.

Keywords: FGM, cylindrical pressure tubes, small deformation theory, yield onset, thermal loading

Procedia PDF Downloads 410
8546 Buckling Resistance of GFRP Sandwich Infill Panels with Different Cores under Increased Temperatures

Authors: WooYoung Jung, V. Sim

Abstract:

This paper presents numerical analysis in terms of buckling resistance strength of polymer matrix composite (PMC) infill panels system under the influence of temperature on the foam core. Failure mode under in-plane compression is investigated by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length and both the type of foam for core and the variation of its Young's Modulus under the thermal influence. Variation of temperature is considered in static cases and only applied to core. Indeed, it is shown that the effect of temperature on the panel system mechanical properties is significance. Moreover, the variations of temperature result in the decrements of the system strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on performance of infill panel. Their significance factors are based on type of polymer for core. Hence, by comparing difference type of core material, the variation can be reducing.

Keywords: buckling, contact length, foam core, temperature dependent

Procedia PDF Downloads 284
8545 Evaluation of Natural Frequency of Single and Grouped Helical Piles

Authors: Maryam Shahbazi, Amy B. Cerato

Abstract:

The importance of a systems’ natural frequency (fn) emerges when the vibration force frequency is equivalent to foundation's fn which causes response amplitude (resonance) that may cause irreversible damage to the structure. Several factors such as pile geometry (e.g., length and diameter), soil density, load magnitude, pile condition, and physical structure affect the fn of a soil-pile system; some of these parameters are evaluated in this study. Although experimental and analytical studies have assessed the fn of a soil-pile system, few have included individual and grouped helical piles. Thus, the current study aims to provide quantitative data on dynamic characteristics of helical pile-soil systems from full-scale shake table tests that will allow engineers to predict more realistic dynamic response under motions with variable frequency ranges. To evaluate the fn of single and grouped helical piles in dry dense sand, full-scale shake table tests were conducted in a laminar box (6.7 m x 3.0 m with 4.6 m high). Two different diameters (8.8 cm and 14 cm) helical piles were embedded in the soil box with corresponding lengths of 3.66m (excluding one pile with length of 3.96) and 4.27m. Different configurations were implemented to evaluate conditions such as fixed and pinned connections. In the group configuration, all four piles with similar geometry were tied together. Simulated real earthquake motions, in addition to white noise, were applied to evaluate the wide range of soil-pile system behavior. The Fast Fourier Transform (FFT) of measured time history responses using installed strain gages and accelerometers were used to evaluate fn. Both time-history records using accelerometer or strain gages were found to be acceptable for calculating fn. In this study, the existence of a pile reduced the fn of the soil slightly. Greater fn occurred on single piles with larger l/d ratios (higher slenderness ratio). Also, regardless of the connection type, the more slender pile group which is obviously surrounded by more soil, yielded higher natural frequencies under white noise, which may be due to exhibiting more passive soil resistance around it. Relatively speaking, within both pile groups, a pinned connection led to a lower fn than a fixed connection (e.g., for the same pile group the fn’s are 5.23Hz and 4.65Hz for fixed and pinned connections, respectively). Generally speaking, a stronger motion causes nonlinear behavior and degrades stiffness which reduces a pile’s fn; even more, reduction occurs in soil with a lower density. Moreover, fn of dense sand under white noise signal was obtained 5.03 which is reduced by 44% when an earthquake with the acceleration of 0.5g was applied. By knowing the factors affecting fn, the designer can effectively match the properties of the soil to a type of pile and structure to attempt to avoid resonance. The quantitative results in this study assist engineers in predicting a probable range of fn for helical pile foundations under potential future earthquake, and machine loading applied forces.

Keywords: helical pile, natural frequency, pile group, shake table, stiffness

Procedia PDF Downloads 126
8544 Grid-Connected Photovoltaic System: System Overview and Sizing Principles

Authors: Najiya Omar, Hamed Aly, Timothy Little

Abstract:

The optimal size of a photovoltaic (PV) array is considered a critical factor in designing an efficient PV system due to the dependence of the PV cell performance on temperature. A high temperature can lead to voltage losses of solar panels, whereas a low temperature can cause voltage overproduction. There are two possible scenarios of the inverter’s operation in which they are associated with the erroneous calculations of the number of PV panels: 1) If the number of the panels is scant and the temperature is high, the minimum voltage required to operate the inverter will not be reached. As a result, the inverter will shut down. 2) Comparably, if the number of panels is excessive and the temperature is low, the produced voltage will be more than the maximum limit of the inverter which can cause the inverter to get disconnected or even damaged. This article aims to assess theoretical and practical methodologies to calculate size and determine the topology of a PV array. The results are validated by applying an experimental evaluation for a 100 kW Grid-connected PV system for a location in Halifax, Nova Scotia and achieving a satisfactory system performance compared to the previous work done.

Keywords: sizing PV panels, theoretical and practical methodologies, topology of PV array, grid-connected PV

Procedia PDF Downloads 353
8543 Pool Fire Tests of Dual Purpose Casks for Spent Nuclear Fuel

Authors: K. S. Bang, S. H. Yu, J. C. Lee, K. S. Seo, S. H. Lee

Abstract:

Dual purpose casks are used for storage and transport of spent nuclear fuel assemblies. Therefore, they satisfy the requirements prescribed in the Korea NSSC Act 2013-27, the IAEA Safety Standard Series No. SSR-6, and US 10 CFR Part 71. These regulatory guidelines classify the dual purpose cask as a Type B package, and state that a Type B package must be able to withstand a temperature of 800°C for a period of 30 min. Therefore, a fire test was conducted using a one-sixth slice of a real cask to estimate the thermal integrity of the dual purpose cask at a temperature of 800°C. The neutron shield reached a maximum temperature of 183°C, which indicates that dual purpose cask was properly insulated from the heat of the flames. The temperature rise of the basket during the fire test was 29°C. Therefore, the integrity of a spent nuclear fuel is estimated to be maintained. The temperature was lower when a cooling pin was installed. The neutron shielding was therefore protected adequately by cooling pin. As a result, the thermal integrity of the dual purpose cask was maintained and the cask is judged to be sufficiently safe for temperatures under 800°C.

Keywords: dual purpose cask, spent nuclear fuel, pool fire test, integrity

Procedia PDF Downloads 459
8542 The Grain Size Distribution of Sandy Soils in Libya

Authors: Massoud Farag Abouklaish

Abstract:

The main aim of the present study is to investigate and classify the particle size distribution of sandy soils in Libya. More than fifty soil samples collected from many regions in North, West and South of Libya. Laboratory sieve analysis tests performed on disturbed soil samples to determine grain size distribution. As well as to provide an indicator of general engineering behavior and good understanding, test results are presented and analysed. In addition, conclusions, recommendations are made.

Keywords: Libya, grain size, sandy soils, sieve analysis tests

Procedia PDF Downloads 605
8541 Performance of Axially Loaded Single Pile Embedded in Cohesive Soil with Cavities

Authors: Ali A. Al-Jazaairry, Tahsin T. Sabbagh

Abstract:

The stability of a single model pile located adjacent to a continuous cavity was studied. This paper is an attempt to understand the behaviour of axially loaded single pile embedded in clayey soil with the presences of cavities. The performance of piles located in such soils was studied analytically. A verification analysis was carried out on available studies to assess the ability of analytical model to correctly interpret the system behaviour. The study was adopted by finite element program (PLAXIS). The study included many cases; in each case, there is a critical value in which the presence of cavities has shown minimum effect on the pile performance. Figures including the load carrying capacity of pile with the affecting factors are presented. These figures provide beneficial information for pile design constructed close to underground cavities. It was concluded that the load carrying capacity of the pile is reduced by the presence of the cavity within the soil mass. This reduction varies according to the size and location of cavity.

Keywords: axial load, cavity, clay, pile, ultimate capacity

Procedia PDF Downloads 264
8540 Effect of Soil Resistivity on the Development of a Cathodic Protection System Using Zinc Anode

Authors: Chinedu F. Anochie

Abstract:

The deterioration of materials as a result of their interaction with the environment has been a huge challenge to engineering. Many steps have been taking to tackle corrosion and its effects on harmful effects on engineering materials and structures. Corrosion inhibition, coating, passivation, materials selection, and cathodic protection are some of the methods utilized to curtail the rate at which materials corrode. The use of sacrificial anodes (magnesium, aluminum, or zinc) to protect the metal of interest is a widespread technique used to prevent corrosion in underground structures, ship hauls, and other structures susceptible to corrosion attack. However, certain factors, like resistivity, affect the performance of sacrificial anodes. To establish the effect of soil resistivity on the effectiveness of a cathodic protection system, a mild steel specimen was cathodically protected around Workshop 2 area, Federal University of Technology, Owerri, Nigeria. Design calculations showed that one zinc anode was sufficient to protect the pipe. The specimen (mild steel pipe) was coated with white and black polykene tapes and was subsequently buried in a high resistivity soil. The pipe-to-soil potential measurements were obtained using a digital fluke multimeter. The protection potential obtained on installation was higher than the minimum protection criteria. However, the potential results obtained over a fourteen-day intervals continually decreased to a value significantly lower than the minimum protection criteria. This showed that the sacrificial anode (zinc) was rendered ineffective by the high resistivity of the area of installation. It has been shown that the resistivity of the soil has a marked effect on the feasibility of cathodic protection systems. This work justified that zinc anode cannot be used for cathodic protection around Workshop 2 area, Federal University of Technology, Owerri, Nigeria, because of the high resistivity of the area. An experimental data which explains the effectiveness of galvanic anode cathodic protection system on corrosion control of a small steel structure, exposed to a soil of high resistivity has been established.

Keywords: cathodic protection, corrosion, pipe, sacrificial anode

Procedia PDF Downloads 174
8539 A Critical Appraisal of CO₂ Entrance Pressure with Heat

Authors: Abrar Al-Mutairi, Talal Al-Bazali

Abstract:

In this study, changes in capillary entry pressure of shale, as it interacts with CO₂, under different temperatures (25 °C to 250 °C) have been investigated. The combined impact of temperature and petrophysical properties (water content, water activity, permeability and porosity) of shale was also addressed. Results showed that the capillary entry pressure of shale when it interacted with CO₂ was highly affected by temperature. In general, increasing the temperature decreased capillary entry pressure of shale. We believe that pore dilation, where pore throat size expands due to the application of heat, may have caused this decrease in capillary entry pressure of shale. However, in some cases we found that at higher temperature some shale samples showed that the temperature activated clay swelling may have caused an apparent decrease in pore throat radii of shale which translates into higher capillary entry pressure of shale. Also, our results showed that there is no distinct relationship between shale’s water content, water activity, permeability, and porosity on the capillary entry pressure of shale samples as it interacted with CO₂ at different temperatures.

Keywords: heat, threshold pressure, CO₂ sequestration, shale

Procedia PDF Downloads 109
8538 Changes in Temperature and Precipitation Extremes in Northern Thailand

Authors: Chakrit Chotamonsak

Abstract:

This study was analyzed changes in temperature and precipitation extremes in northern Thailand for the period 1981-2011.The study includes an analysis of the average and trends of changes in temperature and precipitation using 22 climate indices, related to the intensity, frequency and duration of extreme climate events. The results showed that the averaged trend of maximum, minimum and mean temperature is likely to increase over the study area in rate of 0.5, 0.9 and 0.7 °C in last 30 years. Changes in temperature at nighttime, then rising at a rate higher daytime is resulting to decline of diurnal temperature range throughout the area. Trend of changes in average precipitation during the year 1981-2011 is expected to increase at an average rate of 21%. The intensity of extreme temperature events is increasing almost all station. In particular, the changes of the night were unusually hot has intensified throughout the region. In some provinces such as Chiang Mai and Lampang are likely be faced with the severity of hot days and hot nights in increasing rate. Frequency of extreme temperature events are likely to increase each station, especially hot days, and hot nights are increasing at a rate of 2.38 and 3.58 days per decade. Changes in the cold days and cold nights are declining at a rate of 0.82 and 3.03 days per decade. The duration of extreme temperature events is expected to increase the events hot in every station. An average of 17.8 days per decade for the number of consecutive cold winter nights likely shortens the rate of 2.90 days per decade. The analysis of the precipitation indices reveals the intensity of extreme precipitation is increasing almost across the region. The intensify expressed the heavy rain in one day (Rx1day) and very heavy rain accumulated in 5 days (RX5day) which is likely to increase, and very heavy rainfall is likely to increase in intensity. Frequency of extreme precipitation events is likely to increase over the station. The average frequency of heavy precipitation events increased xxx days per decade. The duration of extreme precipitation events, such as the consecutive dry days are likely to reduce the numbers almost all station while the consecutive wet days tends to increase and decrease at different numbers in different areas.

Keywords: climate extreme, temperature extreme, precipitation extreme, Northern Thailand

Procedia PDF Downloads 276
8537 LCA of Waste Disposal from Olive Oil Production: Anaerobic Digestion and Conventional Disposal on Soil

Authors: T. Tommasi, E. Batuecas, G. Mancini, G. Saracco, D. Fino

Abstract:

Extra virgin olive-oil (EVO) production is an important economic activity for several countries, especially in the Mediterranean area such as Spain, Italy, Greece and Tunisia. The two major by-products from olive oil production, solid-liquid Olive Pomace (OP) and the Olive Mill Waste Waters (OMWW), are still mainly disposed on soil, in spite of the existence of legislation which already limits this practice. The present study compares the environmental impacts associated with two different scenarios for the management of waste from olive oil production through a comparative Life Cycle Assessment (LCA). The two alternative scenarios are: (I) Anaerobic Digestion and (II) current Disposal on soil. The analysis was performed through SimaPro software and the assessment of the impact categories was based on International Life Cycle Data and Cumulative Energy Demand methods. Both the scenarios are mostly related to the cultivation and harvesting phase and are highly dependent on the irrigation practice and related energy demand. Results from the present study clearly show that as the waste disposal on soil causes the worst environmental performance of all the impact categories here considered. Important environmental benefits have been identified when anaerobic digestion is instead chosen as the final treatment. It was consequently demonstrated that anaerobic digestion should be considered a feasible alternative for olive mills, to produce biogas from common olive oil residues, reducing the environmental burden and adding value to the olive oil production chain.

Keywords: anaerobic digestion, waste management, agro-food waste, biogas

Procedia PDF Downloads 139
8536 Assessment of the Physical Quality of Eucalyptus Pellita Seedlings

Authors: Sharifah Insyirah, Noraliza A.

Abstract:

Eucalyptus pellita is a popular species of plantation tree in many nations and regions because of its fast growth and excellent timber qualities. Moreover, Eucalyptus leaves are known as forest harvesting waste with the potential to generate essential oils. Eucalyptus is one of the plants utilized in the pulp and paper industry. This study aims to investigate the impact of two parameters, which are types of fertilizer and polybags (black polybags and transparent polybags), on Eucalyptus growth performance in the nursery. The present investigation was carried out at Main Nursery, Forestry Research Institute Malaysia under agro-climatic and irrigation conditions of the nursery. Twenty seedlings were prepared for this study consisting of two treatments of eco-friendly soil conditioner and NPK (ratio of NPK 8:8:8). Survival and height measurements were collected accordingly. Seedlings without any treatment showed better growth than treatment with soil conditioner or NPK. Seedlings as in C1, shows consistently fastest growth compared to T1 (B) and T2 (SC), and the mortality rates were 0%, 15% and 5%, respectively. The results demonstrated that fertilizer and soil conditioner applied at a younger age of seedlings had less effect on growth performance.

Keywords: eucalyptus pellita, potting media, high quality planting materials, nursery

Procedia PDF Downloads 18
8535 Effect of Abiotic Factors on Population of Red Cotton Bug Dysdercus Koenigii F. (Heteroptera: Pyrrhocoridae) and Its Impact on Cotton Boll Disease

Authors: Haider Karar, Saghir Ahmad, Amjad Ali, Ibrar Ul Haq

Abstract:

The experiment was conducted at Cotton Research Station, Multan to study the impact of weather factors and red cotton bug (RCB) on cotton boll disease yielded yellowish lint during 2012. The population on RCB along with abiotic factors was recorded during three consecutive years i.e. 2012, 2013, and 2014. Along with population of RCB and abiotic factors, the number of unopened/opened cotton bolls (UOB), percent yellowish lint (YL) and whitish lint (WL) were also recorded. The data revealed that the population per plant of RCB remain 0.50 and 0.34 during years 2012, 2013 but increased during 2014 i.e. 3.21 per plant. The number of UOB were more i.e. 13.43% in 2012 with YL 76.30 and WL 23.70% when average maximum temperature 34.73◦C, minimum temperature 22.83◦C, RH 77.43% and 11.08 mm rainfall. Similarly in 2013 the number of UOB were less i.e. 0.34 per plant with YL 1.48 and WL 99.53 per plant when average maximum temperature 34.60◦C, minimum temperature 23.37◦C, RH 73.01% and 9.95 mm rainfall. During 2014 RCB population per plant was 3.22 with no UOB and YL was 0.00% and WL was 100% when average maximum temperature 23.70◦C, minimum temperature 23.18◦C, RH 71.67% and 4.55 mm rainfall. So it is concluded that the cotton bolls disease was more during 2012 due to more rainfall and more percent RH. The RCB may be the carrier of boll rot disease pathogen during more rainfall.

Keywords: red cotton bug, cotton, weather factors, years

Procedia PDF Downloads 340
8534 Effect of Time and Rate of Nitrogen Application on the Malting Quality of Barley Yield in Sandy Soil

Authors: A. S. Talaab, Safaa, A. Mahmoud, Hanan S. Siam

Abstract:

A field experiment was conducted during the winter season of 2013/2014 in the barley production area of Dakhala – New Valley Governorate, Egypt to assess the effect of nitrogen rate and time of N fertilizer application on barley grain yield, yield components and N use efficiency of barley and their association with grain yield. The treatments consisted of three levels of nitrogen (0, 70 and 100 kg N/acre) and five application times. The experiment was laid out as a randomized complete block design with three replication. Results revealed that barley grain yield and yield components increased significantly in response to N rate. Splitting N fertilizer amount at several times result in significant effect on grain yield, yield components, protein content and N uptake efficiency when compared with the entire N was applied at once. Application of N at rate of 100 kg N/acre resulted in accumulation of nitrate in the subsurface soil > 30cm. When N application timing considered, less NO3 was found in the soil profile with splitting N application compared with all preplans application.

Keywords: nitrogen use efficiency, splitting N fertilizer, barley, NO3

Procedia PDF Downloads 300
8533 Calibration of Resistance Factors for Reliability-Based Design of Driven Piles Considering Unsaturated Soil Effects

Authors: Mohammad Amin Tutunchian, Pedram Roshani, Reza Rezvani, Julio Ángel Infante Sedano

Abstract:

The highly recommended approach to design, known as the load and resistance factor design (LRFD) method, employs the geotechnical resistance factor (GRF) for shaping pile foundation designs. Within the standard process for designing pile foundations, geotechnical engineers commonly adopt a design strategy rooted in saturated soil mechanics (SSM), often disregarding the impact of unsaturated soil behavior. This oversight within the design procedure leads to the omission of the enhancement in shear strength exhibited by unsaturated soils, resulting in a more cautious outcome in design results. This research endeavors to present a methodology for fine-tuning the GRF used for axially loaded driven piles in Winnipeg, Canada. This is achieved through the application of a well-established probabilistic approach known as the first-order second moment (FOSM) method while also accounting for the influence of unsaturated soil behavior. The findings of this study demonstrate that incorporating the influence of unsaturated conditions yields an elevation in projected bearing capacity and recommends higher GRF values in accordance with established codes. Additionally, a novel factor referred to as phy has been introduced to encompass the impact of saturation conditions in the calculation of pile bearing capacity, as guided by prevalent static analysis techniques.

Keywords: unsaturated soils, shear strength, LRFD, FOSM, GRF

Procedia PDF Downloads 83
8532 The Damage and Durability of a Sport Synthetic Resin Floor: A Case Study

Authors: C. Paglia, C. Mosca

Abstract:

Synthetic resin floorsare often used in sport infrastructure. These organic materials are often in contact with a bituminous substrate, which in turn is placed on the ground. In this work, the damage of a basket resin field surface was characterized by means of visual inspection, optical microscopy, resin thickness measurements, adhesion strength, water vapor transmission capacity, capillary water adsorption, granulometry of the bituminous conglomerate, the surface properties, and the water ground infiltration speed. The infiltration speed indicates water pemeability. This was due to its composition: clean sand mixed with gravel. Relatively good adhesion was present between the synthetic resin and the bituminous layer. The adhesion resistance of the bituminous layer was relatively low. According to the required bitumoniousasphalt-concrete mixes AC 11 S, the placed material was more porous. Insufficient constipation was present. The spaces values were above the standard limits, while the apparent densities were lower compared to the conventional AC 11 mixtures. The microstructure outlines the high permeability and porosity of the bituminous layer. The synthetic resin wasvapourproof and did not exhibit capillary adsorption. It exhibited a lower thickness as required, and no multiple placing steps were observed. Multiple cavities were detected along with the interface between the bituminous layer and the resin coating with no intermediate layers. The layer for the pore filling in the bituminous surface was not properly applied. The swelling bubbles on the synthetic pavement were caused by the humidity in the bituminous layer. Water or humidity were present prior to the application of the resin, and the effect was worsened by the upward movement of the water from the ground.

Keywords: resin, floor, damage, durability

Procedia PDF Downloads 156
8531 Non-Autonomous Seasonal Variation Model for Vector-Borne Disease Transferral in Kampala of Uganda

Authors: Benjamin Aina Peter, Amos Wale Ogunsola

Abstract:

In this paper, a mathematical model of malaria transmission was presented with the effect of seasonal shift, due to global fluctuation in temperature, on the increase of conveyor of the infectious disease, which probably alters the region transmission potential of malaria. A deterministic compartmental model was proposed and analyzed qualitatively. Both qualitative and quantitative approaches of the model were considered. The next-generation matrix is employed to determine the basic reproduction number of the model. Equilibrium points of the model were determined and analyzed. The numerical simulation is carried out using Excel Micro Software to validate and support the qualitative results. From the analysis of the result, the optimal temperature for the transmission of malaria is between and . The result also shows that an increase in temperature due to seasonal shift gives rise to the development of parasites which consequently leads to an increase in the widespread of malaria transmission in Kampala. It is also seen from the results that an increase in temperature leads to an increase in the number of infectious human hosts and mosquitoes.

Keywords: seasonal variation, indoor residual spray, efficacy of spray, temperature-dependent model

Procedia PDF Downloads 164
8530 Impact of Fluoride Contamination on Soil and Water at North 24 Parganas, West Bengal, India

Authors: Rajkumar Ghosh

Abstract:

Fluoride contamination is a growing concern in various regions across the globe, including North 24 Parganas in West Bengal, India. The presence of excessive fluoride in the environment can have detrimental effects on crops, soil quality, and water resources. This note aims to shed light on the implications of fluoride contamination and its impact on the agricultural sector in North 24 Parganas. The agricultural lands in North 24 Parganas have been significantly affected by fluoride contamination, leading to adverse consequences for crop production. Excessive fluoride uptake by plants can hinder their growth, reduce crop yields, and impact the quality of agricultural produce. Certain crops, such as paddy, vegetables, and fruits, are more susceptible to fluoride toxicity, resulting in stunted growth, leaf discoloration, and reduced nutritional value. Fluoride-contaminated water, often used for irrigation, contributes to the accumulation of fluoride in the soil. Over time, this can lead to soil degradation and reduced fertility. High fluoride levels can alter soil pH, disrupt the availability of essential nutrients, and impair microbial activity critical for nutrient cycling. Consequently, the overall health and productivity of the soil are compromised, making it increasingly challenging for farmers to sustain agricultural practices. Fluoride contamination in North 24 Parganas extends beyond the soil and affects water resources as well. The excess fluoride seeps into groundwater, making it unsafe for consumption. Long-term consumption of fluoride-contaminated water can lead to various health issues, including dental and skeletal fluorosis. These health concerns pose significant risks to the local population, especially those reliant on contaminated water sources for their daily needs. Addressing fluoride contamination requires concerted efforts from various stakeholders, including government authorities, researchers, and farmers. Implementing appropriate water treatment technologies, such as defluoridation units, can help reduce fluoride levels in drinking water sources. Additionally, promoting alternative irrigation methods and crop diversification strategies can aid in mitigating the impact of fluoride on agricultural productivity. Furthermore, creating awareness among farmers about the adverse effects of fluoride contamination and providing access to alternative water sources are crucial steps toward safeguarding the health of the community and sustaining agricultural activities in the region. Fluoride contamination poses significant challenges to crop production, soil health, and water resources in North 24 Parganas, West Bengal. It is imperative to prioritize efforts to address this issue effectively and implement appropriate measures to mitigate fluoride contamination. By adopting sustainable practices and promoting awareness, the community can work towards restoring the agricultural productivity, soil quality and ensuring access to safe drinking water in the region.

Keywords: fluoride contamination, drinking water, toxicity, soil health

Procedia PDF Downloads 101
8529 Influence of Stacking Sequence and Temperature on Buckling Resistance of GFRP Infill Panel

Authors: Viriyavudh Sim, SeungHyun Kim, JungKyu Choi, WooYoung Jung

Abstract:

Glass Fiber Reinforced Polymer (GFRP) is a major evolution for energy dissipation when used as infill material for seismic retrofitting of steel frame, a basic PMC infill wall system consists of two GFRP laminates surrounding an infill of foam core. This paper presents numerical analysis in terms of buckling resistance of GFRP sandwich infill panels system under the influence of environment temperature and stacking sequence of laminate skin. Mode of failure under in-plane compression is studied by means of numerical analysis with ABAQUS platform. Parameters considered in this study are contact length between infill and frame, laminate stacking sequence of GFRP skin and variation of mechanical properties due to increment of temperature. The analysis is done with four cases of simple stacking sequence over a range of temperature. The result showed that both the effect of temperature and stacking sequence alter the performance of entire panel system. The rises of temperature resulted in the decrements of the panel’s strength. This is due to the polymeric nature of this material. Additionally, the contact length also displays the effect on the performance of infill panel. Furthermore, the laminate stiffness can be modified by orientation of laminate, which can increase the infill panel strength. Hence, optimal performance of the entire panel system can be obtained by comparing different cases of stacking sequence.

Keywords: buckling resistance, GFRP infill panel, stacking sequence, temperature dependent

Procedia PDF Downloads 368
8528 Robust Design of a Ball Joint Considering Uncertainties

Authors: Bong-Su Sin, Jong-Kyu Kim, Se-Il Song, Kwon-Hee Lee

Abstract:

An automobile ball joint is a pivoting element used to allow rotational motion between the parts of the steering and suspension system. And it plays a role in smooth transmission of steering movement, also reduction in impact from the road surface. A ball joint is under various repeated loadings that may cause cracks and abrasion. This damages lead to safety problems of a car, as well as reducing the comfort of the driver's ride, and raise questions about the ball joint procedure and the whole durability of the suspension system. Accordingly, it is necessary to ensure the high durability and reliability of a ball joint. The structural responses of stiffness and pull-out strength were then calculated to check if the design satisfies the related requirements. The analysis was sequentially performed, following the caulking process. In this process, the deformation and stress results obtained from the analysis were saved. Sequential analysis has a strong advantage, in that it can be analyzed by considering the deformed shape and residual stress. The pull-out strength means the required force to pull the ball stud out from the ball joint assembly. The low pull-out strength can deteriorate the structural stability and safety performances. In this study, two design variables and two noise factors were set up. Two design variables were the diameter of a stud and the angle of a socket. And two noise factors were defined as the uncertainties of Young's modulus and yield stress of a seat. The DOE comprises 81 cases using these conditions. Robust design of a ball joint was performed using the DOE. The pull-out strength was generated from the uncertainties in the design variables and the design parameters. The purpose of robust design is to find the design with target response and smallest variation.

Keywords: ball joint, pull-out strength, robust design, design of experiments

Procedia PDF Downloads 416
8527 Contributions of Microbial Activities to Tomato Growth and Yield under an Organic Production System

Authors: O. A. Babalola, A. F Adekunle, F. Oladeji, A. T. Osungbade, O. A. Akinlaja

Abstract:

Optimizing microbiological activities in an organic crop production system is crucial to the realization of optimum growth and development of the crops. Field and pot experiments were conducted to assess soil microbial activities, growth and yield of tomato varieties in response to 4 rates of composted plant and animal residues. The compost rates were 0, 5, 10 and 20 t ha-1, and improved Ibadan and Ibadan local constituted the varieties. Fungi population, microbial biomass nitrogen, cellulase and proteinase activities were significantly higher (P≤ 0.05) at the rhizosphere of the local variety than that of improved variety. This led to a significantly higher number of branches, plant height, leaf area, number of fruits and less days to maturity in the local variety. Furthermore, compost-amended soil had significantly higher microbial populations, microbial biomass N, P and C, enzyme activities, soil N, P and organic carbon than control, but amendment of 20 t ha-1 gave significantly higher values than other compost rates. Consequently, growth parameters and tissue N significantly increased in all compost treatments while dry matter yield and weight of fruits were significantly higher in soil amended with 20 t ha-1. Correlation analysis showed that microbial activities at 6 weeks after transplanting (6 WAT) were more consistently and highly correlated with growth and yield parameters. It was concluded that microbial activities could be optimized to improve the yield of the two tomato varieties in an organic production system, through the application of compost, particularly at 20 t ha-1.

Keywords: compost, microbial activities, microbial contribution, tomato growth and yield

Procedia PDF Downloads 261
8526 A Refrigerated Condition for the Storage of Glucose Test Strips at Health Promoting Hospitals: An Implication for Hospitals with Limited Air Conditioners

Authors: Wanutchaya Duanginta, Napaporn Apiratmateekul, Tippawan Sangkaew, Sunaree Wekinhirun, Kunchit Kongros, Wanvisa Treebuphachatsakul

Abstract:

Thailand has a tropical climate with an average outdoor ambient air temperature of over 30°C, which can exceed manufacturer recommendations for the storage of glucose test strips. This study monitored temperature and humidity at actual sites of five sub-district health promoting hospitals (HPH) in Phitsanulok Province for the storage of glucose test strips in refrigerated conditions. Five calibrated data loggers were placed at the actual sites for glucose test strip storage at five HPHs for 8 weeks between April and June. For the stress test, two lot numbers of glucose test strips, each with two glucose meters, were kept in a plastic box with desiccants and placed in a refrigerator with the temperature calibrated to 4°C and at room temperature (RT). Temperature and humidity in the refrigerator and at RT were measured every hour for 30 days. The mean temperature for storing test strips at the five HPHs ranged from 29°C to 33°C, and three of the five HPHs (60%) had a mean temperature above 30°C. The refrigerator temperatures were 3.8 ± 2.0°C (2.0°C to 6.5°C), and relative humidity was 51 ± 2% (42 to 54%). The maximum of blood glucose testing by glucose meters when the test strips were stored in a refrigerator were not significantly different (p > 0.05) from unstressed test strips for both glucose meters using amperometry-GDH-PQQ and amperometry-GDH-FAD principles. Opening the test strip vial daily resulted in higher variation than when refrigerated after a single-use. However, the variations were still within an acceptable range. This study concludes that glucose tested strips can be stored in plastic boxes in a refrigerator if it is well-controlled for temperature and humidity. Storage of glucose-tested strips in the refrigerator during hot and humid weather may be useful for HPHs with limited air conditioners.

Keywords: environmental stressed test, thermal stressed test, quality control, point-of-care testing

Procedia PDF Downloads 185
8525 Accumulation and Distribution of Soil Organic Carbon in Oxisols, Tshivhase Estate, Limpopo Province

Authors: M. Rose Ntsewa, P. E. Dlamini, V. E. Mbanjwa, R. Chauke

Abstract:

Land-use change from undisturbed forest to tea plantation may lead to accumulation or loss of soil organic carbon (SOC). So far, the factors controlling the vertical distribution of SOC under the long-term establishment of tea plantation remain poorly understood, especially in oxisols. In this study, we quantified the vertical distribution of SOC under tea plantation compared to adjacent undisturbed forest Oxisols sited at different topographic positions and also determined controlling edaphic factors. SOC was greater in the 30-year-old tea plantation compared to undisturbed forest oxisols and declined with depth across all topographic positions. Most of the SOC was found in the downslope position due to erosion and deposition. In the topsoil, SOC was positively correlated with heavy metals; manganese (r=0.62-0.83; P<0.05) and copper (r=0.45-0.69), effective cation exchange capacity (ECEC) (r=0.72) and mean weight diameter (MWD) (r=0.72-0.73), while in the subsoil SOC was positively correlated with copper (r=0.89-0.92) and zinc (r=0.86), ECEC (r=0.56-0.69) and MWD (r=0.48). These relationships suggest that SOC in the tea plantation, oxisols is chemically stabilized via complexation with heavy metals, and physically stabilized by soil aggregates.

Keywords: oxisols, tea plantation, topography, undisturbed forest

Procedia PDF Downloads 139
8524 Protonic Conductivity Highlighted by Impedance Measurement of Y-Doped BaZrO3 Synthesized by Supercritical Hydrothermal Process

Authors: Melanie Francois, Gilles Caboche, Frederic Demoisson, Francois Maeght, Maria Paola Carpanese, Lionel Combemale, Pascal Briois

Abstract:

Finding new clean, and efficient way for energy production is one of the actual global challenges. Advances in fuel cell technology have shown that, for few years, Protonic Ceramic Fuel Cell (PCFC) has attracted much attention in the field of new hydrogen energy thanks to their lower working temperature, possible higher efficiency, and better durability than classical SOFC. On the contrary of SOFC, where O²⁻ oxygen ion is the charge carrier, PCFC works with H⁺ proton as a charge carrier. Consequently, the lower activation energy of proton diffusion compared to the one of oxygen ion explains those benefits and allows PCFC to work in the 400-600°C temperature range. Doped-BaCeO₃ is currently the most chosen material for this application because of its high protonic conductivity; for example, BaCe₀.₉Y₀.₁O₃ δ exhibits a total conductivity of 1.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, BaCeO₃ based perovskite has low stability in H₂O and/or CO₂ containing atmosphere, which limits their practical application. On the contrary, BaZrO₃ based perovskite exhibits good chemical stability but lower total conductivity than BaCeO₃ due to its larger grain boundary resistance. By substituting zirconium with 20% of yttrium, it is possible to achieve a total conductivity of 2.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, the high refractory property of BaZr₀.₈Y₀.₂O₃-δ (noted BZY20) causes problems to obtain a dense membrane with large grains. Thereby, using a synthesis process that gives fine particles could allow better sinterability and thus decrease the number of grain boundaries leading to a higher total conductivity. In this work, BaZr₀.₈Y₀.₂O₃-δ have been synthesized by classical batch hydrothermal device and by a continuous hydrothermal device developed at ICB laboratory. The two variants of this process are able to work in supercritical conditions, leading to the formation of nanoparticles, which could be sintered at a lower temperature. The as-synthesized powder exhibits the right composition for the perovskite phase, impurities such as BaCO₃ and YO-OH were detected at very low concentration. Microstructural investigation and densification rate measurement showed that the addition of 1 wt% of ZnO as sintering aid and a sintering at 1550°C for 5 hours give high densified electrolyte material. Furthermore, it is necessary to heat the synthesized powder prior to the sintering to prevent the formation of secondary phases. It is assumed that this thermal treatment homogenizes the crystal structure of the powder and reduces the number of defects into the bulk grains. Electrochemical impedance spectroscopy investigations in various atmospheres and a large range of temperature (200-700°C) were then performed on sintered samples, and the protonic conductivity of BZY20 has been highlighted. Further experiments on half-cell, NiO-BZY20 as anode and BZY20 as electrolyte, are in progress.

Keywords: hydrothermal synthesis, impedance measurement, Y-doped BaZrO₃, proton conductor

Procedia PDF Downloads 130
8523 Temperature Distribution in Friction Stir Welding Using Finite Element Method

Authors: Armansyah, I. P. Almanar, M. Saiful Bahari Shaari, M. Shamil Jaffarullah, Nur’amirah Busu, M. Arif Fadzleen Zainal Abidin, M. Amlie A. Kasim

Abstract:

Temperature distribution in Friction Stir Welding (FSW) of 6061-T6 Aluminum Alloy is modeled using the Finite Element Method (FEM). In order to obtain temperature distribution in the welded aluminum plates during welding operation, transient thermal finite element analyses are performed. Heat input from tool shoulder and tool pin are considered in the model. A moving heat source with a heat distribution simulating the heat generated by frictions between tool shoulder and workpiece is used in the analysis. Three-dimensional model for simulated process is carried out by using Altair HyperWork, a commercially available software. Transient thermal finite element analyses are performed in order to obtain the temperature distribution in the welded Aluminum plates during welding operation. The developed model was then used to show the effect of various input parameters such as total rate of welding speed and rotational speed on temperature distribution in the workpiece.

Keywords: frictions stir welding, temperature distribution, finite element method, altair hyperwork

Procedia PDF Downloads 536
8522 Application of Genetic Programming for Evolution of Glass-Forming Ability Parameter

Authors: Manwendra Kumar Tripathi, Subhas Ganguly

Abstract:

A few glass forming ability expressions in terms of characteristic temperatures have been proposed in the literature. Attempts have been made to correlate the expression with the critical diameter of the bulk metallic glass composition. However, with the advent of new alloys, many exceptions have been noted and reported. In the present approach, a genetic programming based code which generates an expression in terms of input variables, i.e., three characteristic temperatures viz. glass transition temperature (Tg), onset crystallization temperature (Tx) and offset temperature of melting (Tl) with maximum correlation with a critical diameter (Dmax). The expression evolved shows improved correlation with the critical diameter. In addition, the expression can be explained on the basis of time-temperature transformation curve.

Keywords: glass forming ability, genetic programming, bulk metallic glass, critical diameter

Procedia PDF Downloads 330
8521 Effects of Amino Bisphosphonic Acid on the Growth and Phytoextraction Efficiency of Salix schwerinii Grown in Ni-Contaminated Soil

Authors: Muhammad Mohsin, Mir Md Abdus Salam, Pertti Pulkkinen, Ari Pappinen

Abstract:

Soil polluted with elevated level of nickel (Ni) concentration may cause severe hazards to humans and forest ecosystems, for example, by polluting underground water reserves, affecting food quality and by reducing agricultural productivity. The present study investigated the phytoextraction ability of Salix schwerinii, enhanced with an application of the N100 (11-amino-1-hydroxyundecylidene) chelate. N100 has proved to be a non-toxic, low risk of leaching, environmentally friendly and easily biodegradable chelate that has a potential for metal chelation. The Salix were grown in garden soil that was also amended with nickel (Ni; 150 mg kg⁻¹). Multiple doses of N100 were applied to the treatments as follows: Ni + N100 1.2 g and Ni+ N100 2.4 g. Furthermore, N100 doses were also repeated with the control soil. The effect of N100 on height growth, biomass, and the accumulation of Ni in Salix in polluted soils was studied. In this study, N100 application was found to be effective in enhancing height and biomass growth under polluted treatments. Total reflection X-ray fluorescence (TXRF) spectrometry was used to determine the concentration of Ni in the Salix tissues. The total Ni concentrations in the soils amended with N100 increased substantially by up to 324% as compared to the control. The Ni translocation factor (TF) and bioconcentration factor (BF) values for S. schwerinii increased with the application of N100 as varied from 0.45–1.25 and 0.80‒1.50, respectively. This study revealed that S. schwerinii is suitable for the phytoextraction of Ni-contaminated soils.

Keywords: bisphosphonic acid, nickel, phytoextraction, Salix

Procedia PDF Downloads 148
8520 Classify Land Use/Cover Change and Its Impact on Soil Erosion Using GIS from 2005 to 2015 in Nzhelele Valley Limpopo Province, South Africa

Authors: Blessing Mavhuru, Nthaduleni Nethengwe, Hector Chikoore, Onyango Beneah Daniel Odhiambo

Abstract:

The main objective of this study was to classify land use/cover and how it has changed in Nzhelele Valley Limpopo Province, South Africa. The study aimed to identify and analyse the types of land use/cover in the years 2005, 2010, and 2015 with a view to assess the impact on soil erosion over time. Using GIS, the changes within land use/cover were assessed through the classification of satellite images. The study area was classified into four major land cover/use classes, which are vegetation, gravel road, built up land and agricultural fields. Over the period 2005-2015 the resultant land use/cover demonstrated (i) a significant increase (12%) for vegetation cover, (ii) a significant decrease in agriculture (16%) land use/cover, (iii) increase in built-up land (1%), as well as (iv) an increase in gravel roads (3%). This study envisages assisting policy makers in decision making on land use management for Nzhelele Valley.

Keywords: land use, land cover, change, soil erosion

Procedia PDF Downloads 246
8519 Geostatistical Analysis of Contamination of Soils in an Urban Area in Ghana

Authors: S. K. Appiah, E. N. Aidoo, D. Asamoah Owusu, M. W. Nuonabuor

Abstract:

Urbanization remains one of the unique predominant factors which is linked to the destruction of urban environment and its associated cases of soil contamination by heavy metals through the natural and anthropogenic activities. These activities are important sources of toxic heavy metals such as arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), and lead (Pb), nickel (Ni) and zinc (Zn). Often, these heavy metals lead to increased levels in some areas due to the impact of atmospheric deposition caused by their proximity to industrial plants or the indiscriminately burning of substances. Information gathered on potentially hazardous levels of these heavy metals in soils leads to establish serious health and urban agriculture implications. However, characterization of spatial variations of soil contamination by heavy metals in Ghana is limited. Kumasi is a Metropolitan city in Ghana, West Africa and is challenged with the recent spate of deteriorating soil quality due to rapid economic development and other human activities such as “Galamsey”, illegal mining operations within the metropolis. The paper seeks to use both univariate and multivariate geostatistical techniques to assess the spatial distribution of heavy metals in soils and the potential risk associated with ingestion of sources of soil contamination in the Metropolis. Geostatistical tools have the ability to detect changes in correlation structure and how a good knowledge of the study area can help to explain the different scales of variation detected. To achieve this task, point referenced data on heavy metals measured from topsoil samples in a previous study, were collected at various locations. Linear models of regionalisation and coregionalisation were fitted to all experimental semivariograms to describe the spatial dependence between the topsoil heavy metals at different spatial scales, which led to ordinary kriging and cokriging at unsampled locations and production of risk maps of soil contamination by these heavy metals. Results obtained from both the univariate and multivariate semivariogram models showed strong spatial dependence with range of autocorrelations ranging from 100 to 300 meters. The risk maps produced show strong spatial heterogeneity for almost all the soil heavy metals with extremely risk of contamination found close to areas with commercial and industrial activities. Hence, ongoing pollution interventions should be geared towards these highly risk areas for efficient management of soil contamination to avert further pollution in the metropolis.

Keywords: coregionalization, heavy metals, multivariate geostatistical analysis, soil contamination, spatial distribution

Procedia PDF Downloads 292