Search results for: big data interpretation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25808

Search results for: big data interpretation

24308 Information Management Approach in the Prediction of Acute Appendicitis

Authors: Ahmad Shahin, Walid Moudani, Ali Bekraki

Abstract:

This research aims at presenting a predictive data mining model to handle an accurate diagnosis of acute appendicitis with patients for the purpose of maximizing the health service quality, minimizing morbidity/mortality, and reducing cost. However, acute appendicitis is the most common disease which requires timely accurate diagnosis and needs surgical intervention. Although the treatment of acute appendicitis is simple and straightforward, its diagnosis is still difficult because no single sign, symptom, laboratory or image examination accurately confirms the diagnosis of acute appendicitis in all cases. This contributes in increasing morbidity and negative appendectomy. In this study, the authors propose to generate an accurate model in prediction of patients with acute appendicitis which is based, firstly, on the segmentation technique associated to ABC algorithm to segment the patients; secondly, on applying fuzzy logic to process the massive volume of heterogeneous and noisy data (age, sex, fever, white blood cell, neutrophilia, CRP, urine, ultrasound, CT, appendectomy, etc.) in order to express knowledge and analyze the relationships among data in a comprehensive manner; and thirdly, on applying dynamic programming technique to reduce the number of data attributes. The proposed model is evaluated based on a set of benchmark techniques and even on a set of benchmark classification problems of osteoporosis, diabetes and heart obtained from the UCI data and other data sources.

Keywords: healthcare management, acute appendicitis, data mining, classification, decision tree

Procedia PDF Downloads 351
24307 Methodology for the Multi-Objective Analysis of Data Sets in Freight Delivery

Authors: Dale Dzemydiene, Aurelija Burinskiene, Arunas Miliauskas, Kristina Ciziuniene

Abstract:

Data flow and the purpose of reporting the data are different and dependent on business needs. Different parameters are reported and transferred regularly during freight delivery. This business practices form the dataset constructed for each time point and contain all required information for freight moving decisions. As a significant amount of these data is used for various purposes, an integrating methodological approach must be developed to respond to the indicated problem. The proposed methodology contains several steps: (1) collecting context data sets and data validation; (2) multi-objective analysis for optimizing freight transfer services. For data validation, the study involves Grubbs outliers analysis, particularly for data cleaning and the identification of statistical significance of data reporting event cases. The Grubbs test is often used as it measures one external value at a time exceeding the boundaries of standard normal distribution. In the study area, the test was not widely applied by authors, except when the Grubbs test for outlier detection was used to identify outsiders in fuel consumption data. In the study, the authors applied the method with a confidence level of 99%. For the multi-objective analysis, the authors would like to select the forms of construction of the genetic algorithms, which have more possibilities to extract the best solution. For freight delivery management, the schemas of genetic algorithms' structure are used as a more effective technique. Due to that, the adaptable genetic algorithm is applied for the description of choosing process of the effective transportation corridor. In this study, the multi-objective genetic algorithm methods are used to optimize the data evaluation and select the appropriate transport corridor. The authors suggest a methodology for the multi-objective analysis, which evaluates collected context data sets and uses this evaluation to determine a delivery corridor for freight transfer service in the multi-modal transportation network. In the multi-objective analysis, authors include safety components, the number of accidents a year, and freight delivery time in the multi-modal transportation network. The proposed methodology has practical value in the management of multi-modal transportation processes.

Keywords: multi-objective, analysis, data flow, freight delivery, methodology

Procedia PDF Downloads 180
24306 Minimization of Denial of Services Attacks in Vehicular Adhoc Networking by Applying Different Constraints

Authors: Amjad Khan

Abstract:

The security of Vehicular ad hoc networking is of great importance as it involves serious life threats. Thus to provide secure communication amongst Vehicles on road, the conventional security system is not enough. It is necessary to prevent the network resources from wastage and give them protection against malicious nodes so that to ensure the data bandwidth availability to the legitimate nodes of the network. This work is related to provide a non conventional security system by introducing some constraints to minimize the DoS (Denial of services) especially data and bandwidth. The data packets received by a node in the network will pass through a number of tests and if any of the test fails, the node will drop those data packets and will not forward it anymore. Also if a node claims to be the nearest node for forwarding emergency messages then the sender can effectively identify the true or false status of the claim by using these constraints. Consequently the DoS(Denial of Services) attack is minimized by the instant availability of data without wasting the network resources.

Keywords: black hole attack, grey hole attack, intransient traffic tempering, networking

Procedia PDF Downloads 284
24305 Traffic Prediction with Raw Data Utilization and Context Building

Authors: Zhou Yang, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is essential in a multitude of ways in modern urban life. The researchers of earlier work in this domain carry out the investigation chiefly with two major focuses: (1) the accurate forecast of future values in multiple time series and (2) knowledge extraction from spatial-temporal correlations. However, two key considerations for traffic prediction are often missed: the completeness of raw data and the full context of the prediction timestamp. Concentrating on the two drawbacks of earlier work, we devise an approach that can address these issues in a two-phase framework. First, we utilize the raw trajectories to a greater extent through building a VLA table and data compression. We obtain the intra-trajectory features with graph-based encoding and the intertrajectory ones with a grid-based model and the technique of back projection that restore their surrounding high-resolution spatial-temporal environment. To the best of our knowledge, we are the first to study direct feature extraction from raw trajectories for traffic prediction and attempt the use of raw data with the least degree of reduction. In the prediction phase, we provide a broader context for the prediction timestamp by taking into account the information that are around it in the training dataset. Extensive experiments on several well-known datasets have verified the effectiveness of our solution that combines the strength of raw trajectory data and prediction context. In terms of performance, our approach surpasses several state-of-the-art methods for traffic prediction.

Keywords: traffic prediction, raw data utilization, context building, data reduction

Procedia PDF Downloads 128
24304 Cultural Influence on Social Cognition in Social and Educational Psychology

Authors: Mbah Fidelix Njong, Sabi Emile Forkwa

Abstract:

Social cognition is an aspect of social psychology that focuses on how people process, store and apply information about others and social situations. It lay emphasis on how cognitive processes play in our social interactions. In this article, we try to show how culture can influence our ways of thinking about others, how we feel and interact with the world around us. Social cognitive processes involve perceiving people and how we learn about the people around us. It concerns the mental processes of remembering, thinking and attending to other people with different cultural backgrounds and how we attend to certain information about the world. Especially in an educational setting, students’ learning processes are most often than not influenced by their cultural background. We can also talk of social schemas. That’s people’s mental representation of social patterns and norms. This involves information about the societal role and the expectations of individuals within a group. These cognitive processes can also be influence by culture. There are important cultural differences in social cognition. In any social situation, two individuals may have different interpretations. Each person brings in a unique background of experiences, knowledge, social influence, feelings and cultural variations. Cultural differences can also affect how people interpret social situations. The same social behavior in one cultural setting might have completely different meaning and interpretation if observed or applied in another culture. However, as people interpret behaviors and bring out meaning from the interpretations, they act based on their beliefs about situations they are confronted with. This helps to reinforce and reproduce the cultural norms that influence their social cognition.

Keywords: social cognition, social schema, cultural influence, psychology

Procedia PDF Downloads 92
24303 Analysis of Spatial and Temporal Data Using Remote Sensing Technology

Authors: Kapil Pandey, Vishnu Goyal

Abstract:

Spatial and temporal data analysis is very well known in the field of satellite image processing. When spatial data are correlated with time, series analysis it gives the significant results in change detection studies. In this paper the GIS and Remote sensing techniques has been used to find the change detection using time series satellite imagery of Uttarakhand state during the years of 1990-2010. Natural vegetation, urban area, forest cover etc. were chosen as main landuse classes to study. Landuse/ landcover classes within several years were prepared using satellite images. Maximum likelihood supervised classification technique was adopted in this work and finally landuse change index has been generated and graphical models were used to present the changes.

Keywords: GIS, landuse/landcover, spatial and temporal data, remote sensing

Procedia PDF Downloads 433
24302 Corporate Social Responsibility and Competitiveness: An Empirical Research Applied to Food and Beverage Industry in Croatia

Authors: Mirjana Dragas, Marli Gonan Bozac, Morena Paulisic

Abstract:

Corporate social responsibility (CSR) is a balance between strategic and financial goals of companies, as well as social needs. The integration of competitive strategy and CSR in food and beverage industry has allowed companies to find new sources of competitive advantage. The paper discusses the fact that socially responsible companies encourage co-operation with socially responsible suppliers in order to strengthen market competitiveness. In addition to the descriptive interpretation of the results obtained by a questionnaire, factor analysis was used, while principal components analysis was applied as a factor extraction method. The research results based on two multiple regression analyses show that: (1) selecting the CSR supplier explains a statistically significant part of the variance of the results on the scale of financial aspects of competitiveness (as much as 44.7% of the explained variance); and (2) selecting the CSR supplier is a significant predictor of non-financial aspects of competitiveness (explains 43.9% of the variance of the results on the scale of non-financial aspects of competitiveness). A successful competitive strategy must ultimately support the growth strategy. This implies an analytical approach to finding factors that influence competitiveness through socially sustainable solutions and satisfactory top management decisions.

Keywords: competitiveness, corporate social responsibility, food and beverage industry, supply chain decision making

Procedia PDF Downloads 360
24301 The Role of DNA Evidence in Determining Paternity in India: A Study of Cases from the Legal and Scientific Perspective

Authors: Pratyusha Das

Abstract:

A paradigm shift has been noticed in the interpretation of DNA evidence for determining paternity. Sometimes DNA evidence has been accepted while sometimes it was rejected by the Indian Courts. Courts have forwarded various justifications for acceptance and rejection of such evidence through legal and scientific means. Laws have also been changed to accommodate the necessities of society. Balances between both the legal and scientific approaches are required, to make the best possible use of DNA evidence for the well-being of the society. Specifications are to be framed as to when such evidence can be used in the future by pointing out the pros and cons. Judicial trend is to be formulated to find out the present situation. The study of cases of superior courts of India using an analytical and theoretical approach is driving the questions regarding the shared identity of the legal and scientific approaches. To assimilate the differences between the two approaches, the basic differences between them have to be formulated. Revelations are required to access the favorable decisions using the DNA evidence. Reasons are to be forwarded for the unfavorable decisions and the approach preferred in such cases. The outcome of the two methods has to be assessed in relation to the parties to the dispute, the society at large, the researcher and from the judicial point of view. The dependability of the two methods is to be studied in relation to the justice delivery system. A highlight of the chronological study of cases along with the changes in the laws with the aid of presumptions will address the questions of necessity of a method according to the facts and situations. Address is required in this respect whether the legal and scientific forces converge somewhere pushing the traditional identification of paternity towards a fundamental change.

Keywords: cases, evidence, legal, scientific

Procedia PDF Downloads 243
24300 An Empirical Investigation of the Challenges of Secure Edge Computing Adoption in Organizations

Authors: Hailye Tekleselassie

Abstract:

Edge computing is a spread computing outline that transports initiative applications closer to data sources such as IoT devices or local edge servers, and possible happenstances would skull the action of new technologies. However, this investigation was attained to investigation the consciousness of technology and communications organization workers and computer users who support the service cloud. Surveys were used to achieve these objectives. Surveys were intended to attain these aims, and it is the functional using survey. Enquiries about confidence are also a key question. Problems like data privacy, integrity, and availability are the factors affecting the company’s acceptance of the service cloud.

Keywords: IoT, data, security, edge computing

Procedia PDF Downloads 83
24299 Physician and Theologian: An Analysis of Ibn Rabban’s Approach on Sīra Nabawiyya

Authors: Ahmad Sanusi Azmi, Amiruddin Mohd Sobali, Zulhilmi Mohamed Nor, Mohd Yusuf Ismail, Amran Abdul Halim

Abstract:

The non-Muslim communities’ reactions to the denials of the prophethood of Muḥammad in the ninth century created an impact on the development of Islamic prophetology. Vigorous refutations from non-Muslim community, specifically the Jews, Christians and Brahmins urged Muslims to develop a solid mechanism in defense of the status of their beloved prophet. One of the works that has been recognized as an apparatus to defend the Prophet Muḥammad veracity is al-Dīn wa al-Dawla composed by Ibn Rabban, a physician of the Caliph’s court. This study analyses the novelty of his approaches in exploring Sīra Nabawiyya and defending the prophethood of Muḥammad. The study employed a descriptive, comparative and critical approach where it analyses and extracts the author original approach in explaining the legitimacy of Muḥammad’s prophethood and enlightening the Prophet’s biography. The study in its finding argues that most of Ibn Rabban arguments in this work are actually developed from the foundations of Biblical scripture. His style of interpreting Biblical passages indicates a possible dependence on Ibn al-Layth’s letter. However, the way in which he presents Qur’ānic references seems not to be in accordance with Ibn al-Layth’s perspective. This is where the novelty of his approach is distinguished. As a result, the study also affirms that Ibn Rabban imposes his own standards of selection and interpretation of Qur’ānic verses when he applies it as reference to the Prophet life.

Keywords: Sīra Nabawiyya, Ibn Rabban, al-Dīn wa al-Dawla, Christian, Dalāil Nubuwwa

Procedia PDF Downloads 333
24298 Multi Tier Data Collection and Estimation, Utilizing Queue Model in Wireless Sensor Networks

Authors: Amirhossein Mohajerzadeh, Abolghasem Mohajerzadeh

Abstract:

In this paper, target parameter is estimated with desirable precision in hierarchical wireless sensor networks (WSN) while the proposed algorithm also tries to prolong network lifetime as much as possible, using efficient data collecting algorithm. Target parameter distribution function is considered unknown. Sensor nodes sense the environment and send the data to the base station called fusion center (FC) using hierarchical data collecting algorithm. FC builds underlying phenomena based on collected data. Considering the aggregation level, x, the goal is providing the essential infrastructure to find the best value for aggregation level in order to prolong network lifetime as much as possible, while desirable accuracy is guaranteed (required sample size is fully depended on desirable precision). First, the sample size calculation algorithm is discussed, second, the average queue length based on M/M[x]/1/K queue model is determined and it is used for energy consumption calculation. Nodes can decrease transmission cost by aggregating incoming data. Furthermore, the performance of the new algorithm is evaluated in terms of lifetime and estimation accuracy.

Keywords: aggregation, estimation, queuing, wireless sensor network

Procedia PDF Downloads 186
24297 Research and Application of Consultative Committee for Space Data Systems Wireless Communications Standards for Spacecraft

Authors: Cuitao Zhang, Xiongwen He

Abstract:

According to the new requirements of the future spacecraft, such as networking, modularization and non-cable, this paper studies the CCSDS wireless communications standards, and focuses on the low data-rate wireless communications for spacecraft monitoring and control. The application fields and advantages of wireless communications are analyzed. Wireless communications technology has significant advantages in reducing the weight of the spacecraft, saving time in spacecraft integration, etc. Based on this technology, a scheme for spacecraft data system is put forward. The corresponding block diagram and key wireless interface design of the spacecraft data system are given. The design proposal of the wireless node and information flow of the spacecraft are also analyzed. The results show that the wireless communications scheme is reasonable and feasible. The wireless communications technology can meet the future spacecraft demands in networking, modularization and non-cable.

Keywords: Consultative Committee for Space Data Systems (CCSDS) standards, information flow, non-cable, spacecraft, wireless communications

Procedia PDF Downloads 329
24296 Machine Learning Based Approach for Measuring Promotion Effectiveness in Multiple Parallel Promotions’ Scenarios

Authors: Revoti Prasad Bora, Nikita Katyal

Abstract:

Promotion is a key element in the retail business. Thus, analysis of promotions to quantify their effectiveness in terms of Revenue and/or Margin is an essential activity in the retail industry. However, measuring the sales/revenue uplift is based on estimations, as the actual sales/revenue without the promotion is not present. Further, the presence of Halo and Cannibalization in a multiple parallel promotions’ scenario complicates the problem. Calculating Baseline by considering inter-brand/competitor items or using Halo and Cannibalization's impact on Revenue calculations by considering Baseline as an interpretation of items’ unit sales in neighboring nonpromotional weeks individually may not capture the overall Revenue uplift in the case of multiple parallel promotions. Hence, this paper proposes a Machine Learning based method for calculating the Revenue uplift by considering the Halo and Cannibalization impact on the Baseline and the Revenue. In the first section of the proposed methodology, Baseline of an item is calculated by incorporating the impact of the promotions on its related items. In the later section, the Revenue of an item is calculated by considering both Halo and Cannibalization impacts. Hence, this methodology enables correct calculation of the overall Revenue uplift due a given promotion.

Keywords: Halo, Cannibalization, promotion, Baseline, temporary price reduction, retail, elasticity, cross price elasticity, machine learning, random forest, linear regression

Procedia PDF Downloads 178
24295 Inversion of Electrical Resistivity Data: A Review

Authors: Shrey Sharma, Gunjan Kumar Verma

Abstract:

High density electrical prospecting has been widely used in groundwater investigation, civil engineering and environmental survey. For efficient inversion, the forward modeling routine, sensitivity calculation, and inversion algorithm must be efficient. This paper attempts to provide a brief summary of the past and ongoing developments of the method. It includes reviews of the procedures used for data acquisition, processing and inversion of electrical resistivity data based on compilation of academic literature. In recent times there had been a significant evolution in field survey designs and data inversion techniques for the resistivity method. In general 2-D inversion for resistivity data is carried out using the linearized least-square method with the local optimization technique .Multi-electrode and multi-channel systems have made it possible to conduct large 2-D, 3-D and even 4-D surveys efficiently to resolve complex geological structures that were not possible with traditional 1-D surveys. 3-D surveys play an increasingly important role in very complex areas where 2-D models suffer from artifacts due to off-line structures. Continued developments in computation technology, as well as fast data inversion techniques and software, have made it possible to use optimization techniques to obtain model parameters to a higher accuracy. A brief discussion on the limitations of the electrical resistivity method has also been presented.

Keywords: inversion, limitations, optimization, resistivity

Procedia PDF Downloads 365
24294 Exploring the Correlation between Population Distribution and Urban Heat Island under Urban Data: Taking Shenzhen Urban Heat Island as an Example

Authors: Wang Yang

Abstract:

Shenzhen is a modern city of China's reform and opening-up policy, the development of urban morphology has been established on the administration of the Chinese government. This city`s planning paradigm is primarily affected by the spatial structure and human behavior. The subjective urban agglomeration center is divided into several groups and centers. In comparisons of this effect, the city development law has better to be neglected. With the continuous development of the internet, extensive data technology has been introduced in China. Data mining and data analysis has become important tools in municipal research. Data mining has been utilized to improve data cleaning such as receiving business data, traffic data and population data. Prior to data mining, government data were collected by traditional means, then were analyzed using city-relationship research, delaying the timeliness of urban development, especially for the contemporary city. Data update speed is very fast and based on the Internet. The city's point of interest (POI) in the excavation serves as data source affecting the city design, while satellite remote sensing is used as a reference object, city analysis is conducted in both directions, the administrative paradigm of government is broken and urban research is restored. Therefore, the use of data mining in urban analysis is very important. The satellite remote sensing data of the Shenzhen city in July 2018 were measured by the satellite Modis sensor and can be utilized to perform land surface temperature inversion, and analyze city heat island distribution of Shenzhen. This article acquired and classified the data from Shenzhen by using Data crawler technology. Data of Shenzhen heat island and interest points were simulated and analyzed in the GIS platform to discover the main features of functional equivalent distribution influence. Shenzhen is located in the east-west area of China. The city’s main streets are also determined according to the direction of city development. Therefore, it is determined that the functional area of the city is also distributed in the east-west direction. The urban heat island can express the heat map according to the functional urban area. Regional POI has correspondence. The research result clearly explains that the distribution of the urban heat island and the distribution of urban POIs are one-to-one correspondence. Urban heat island is primarily influenced by the properties of the underlying surface, avoiding the impact of urban climate. Using urban POIs as analysis object, the distribution of municipal POIs and population aggregation are closely connected, so that the distribution of the population corresponded with the distribution of the urban heat island.

Keywords: POI, satellite remote sensing, the population distribution, urban heat island thermal map

Procedia PDF Downloads 104
24293 A Proposal of Ontology about Brazilian Government Transparency Portal

Authors: Estela Mayra de Moura Vianna, Thiago José Tavares Ávila, Bruno Morais Silva, Diego Henrique Bezerra, Paulo Henrique Gomes Silva, Alan Pedro da Silva

Abstract:

The Brazilian Federal Constitution defines the access to information as a crucial right of the citizen and the Law on Access to Public Information, which regulates this right. Accordingly, the Fiscal Responsibility Act, 2000, amended in 2009 by the “Law of Transparency”, began demanding a wider disclosure of public accounts for the society, including electronic media for public access. Thus, public entities began to create "Transparency Portals," which aim to gather a diversity of data and information. However, this information, in general, is still published in formats that do not simplify understanding of the data by citizens and that could be better especially available for audit purposes. In this context, a proposal of ontology about Brazilian Transparency Portal can play a key role in how these data will be better available. This study aims to identify and implement in ontology, the data model about Transparency Portal ecosystem, with emphasis in activities that use these data for some applications, like audits, press activities, social government control, and others.

Keywords: audit, government transparency, ontology, public sector

Procedia PDF Downloads 506
24292 Design and Development of Data Mining Application for Medical Centers in Remote Areas

Authors: Grace Omowunmi Soyebi

Abstract:

Data Mining is the extraction of information from a large database which helps in predicting a trend or behavior, thereby helping management make knowledge-driven decisions. One principal problem of most hospitals in rural areas is making use of the file management system for keeping records. A lot of time is wasted when a patient visits the hospital, probably in an emergency, and the nurse or attendant has to search through voluminous files before the patient's file can be retrieved; this may cause an unexpected to happen to the patient. This Data Mining application is to be designed using a Structured System Analysis and design method, which will help in a well-articulated analysis of the existing file management system, feasibility study, and proper documentation of the Design and Implementation of a Computerized medical record system. This Computerized system will replace the file management system and help to easily retrieve a patient's record with increased data security, access clinical records for decision-making, and reduce the time range at which a patient gets attended to.

Keywords: data mining, medical record system, systems programming, computing

Procedia PDF Downloads 209
24291 A Comprehensive Framework to Ensure Data Security in Cloud Computing: Analysis, Solutions, and Approaches

Authors: Loh Fu Quan, Fong Zi Heng, Burra Venkata Durga Kumar

Abstract:

Cloud computing has completely transformed the way many businesses operate. Traditionally, confidential data of a business is stored in computers located within the premise of the business. Therefore, a lot of business capital is put towards maintaining computing resources and hiring IT teams to manage them. The advent of cloud computing changes everything. Instead of purchasing and managing their infrastructure, many businesses have started to shift towards working with the cloud with the help of a cloud service provider (CSP), leading to cost savings. However, it also introduces security risks. This research paper focuses on the security risks that arise during data migration and user authentication in cloud computing. To overcome this problem, this paper provides a comprehensive framework that includes Transport Layer Security (TLS), user authentication, security tokens and multi-level data encryption. This framework aims to prevent authorized access to cloud resources and data leakage, ensuring the confidentiality of sensitive information. This framework can be used by cloud service providers to strengthen the security of their cloud and instil confidence in their users.

Keywords: Cloud computing, Cloud security, Cloud security issues, Cloud security framework

Procedia PDF Downloads 121
24290 An Investigation into Problems Confronting Pre-Service Teachers of French in South-West Nigeria

Authors: Modupe Beatrice Adeyinka

Abstract:

French, as a foreign language in Nigeria, is pronounced to be the second official language and a compulsory subject in the primary school level; hence, colleges of education across the nation are saddled with the responsibility of training teachers for the subject. However, it has been observed that this policy has not been fully implemented, for French teachers in training, do face many challenges, of which translation is chief. In a bid to investigate the major cause of the perceived translation problem, this study examined French translation problems of pre-service teachers in selected colleges of education in the southwest, Nigeria. This study adopted a descriptive survey research design. The simple random sampling technique was used to select four colleges of education in the southwest, where 100 French students were randomly selected by selecting 25 from each school. The pre-service teachers’ French translation problems’ questionnaire (PTFTPQ) was used as an instrument while four research questions were answered and three null hypotheses were tested. Among others, the findings revealed that students do have problems with false friends, though mainly with its interpretation when attempting French-English translation and vice versa; majority of the students make use of French dictionary as a way out and found the material very useful for their understanding of false friends. Teachers were, therefore, urged to attend in-service training where they would be exposed to new and emerging strategies, approaches and methodologies of French language teaching that will make students overcome the challenge of translation in learning French.

Keywords: false friends, French language, pre-service teachers, source language, target language, translation

Procedia PDF Downloads 161
24289 Using AI for Analysing Political Leaders

Authors: Shuai Zhao, Shalendra D. Sharma, Jin Xu

Abstract:

This research uses advanced machine learning models to learn a number of hypotheses regarding political executives. Specifically, it analyses the impact these powerful leaders have on economic growth by using leaders’ data from the Archigos database from 1835 to the end of 2015. The data is processed by the AutoGluon, which was developed by Amazon. Automated Machine Learning (AutoML) and AutoGluon can automatically extract features from the data and then use multiple classifiers to train the data. Use a linear regression model and classification model to establish the relationship between leaders and economic growth (GDP per capita growth), and to clarify the relationship between their characteristics and economic growth from a machine learning perspective. Our work may show as a model or signal for collaboration between the fields of statistics and artificial intelligence (AI) that can light up the way for political researchers and economists.

Keywords: comparative politics, political executives, leaders’ characteristics, artificial intelligence

Procedia PDF Downloads 86
24288 Data Quality on Regular Immunization Programme at Birkod District: Somali Region, Ethiopia

Authors: Eyob Seife, Tesfalem Teshome, Bereket Seyoum, Behailu Getachew, Yohans Demis

Abstract:

Developing countries continue to face preventable communicable diseases, such as vaccine-preventable diseases. The Expanded Programme on Immunization (EPI) was established by the World Health Organization in 1974 to control these diseases. Health data use is crucial in decision-making, but ensuring data quality remains challenging. The study aimed to assess the accuracy ratio, timeliness, and quality index of regular immunization programme data in the Birkod district of the Somali Region, Ethiopia. For poor data quality, technical, contextual, behavioral, and organizational factors are among contributors. The study used a quantitative cross-sectional design conducted in September 2022GC using WHO-recommended data quality self-assessment tools. The accuracy ratio and timeliness of reports on regular immunization programmes were assessed for two health centers and three health posts in the district for one fiscal year. Moreover, the quality index assessment was conducted at the district level and health facilities by trained assessors. The study found poor data quality in the accuracy ratio and timeliness of reports at all health units, which includes zeros. Overreporting was observed for most facilities, particularly at the health post level. Health centers showed a relatively better accuracy ratio than health posts. The quality index assessment revealed poor quality at all levels. The study recommends that responsible bodies at different levels improve data quality using various approaches, such as the capacitation of health professionals and strengthening the quality index components. The study highlighted the need for attention to data quality in general, specifically at the health post level, and improving the quality index at all levels, which is essential.

Keywords: Birkod District, data quality, quality index, regular immunization programme, Somali Region-Ethiopia

Procedia PDF Downloads 90
24287 Effect of Magnetic Field in Treatment of Lower Back Myofascial Pain Syndrome: A Randomized Controlled Trial

Authors: Ahmed M. F. El Shiwi

Abstract:

Background: Low back pain affects about 60% to 90% of the working-age population in modern industrial society. Myofascial pain syndrome is a condition characterized by muscles shortening with increased tone and associated with trigger points that aggravated with the activity of daily living. Purpose: To examine the effects of magnetic field therapy in patients with lower back myofascial pain syndrome. Methods: Thirty patients were assigned randomly into two groups. Subjects in the experimental group (n=15) with main age of 36.73 (2.52) received traditional physical therapy program (Infrared radiation, ultrasonic, stretching and strengthening exercises for back muscles) as well as magnetic field, and control group (n=15) with main age of 37.27 (2.52) received traditional physical therapy only. The following parameters including pain severity, functional disability and lumbar range of motion (flexion, extension, right side bending, and left side bending) were measured before and after four weeks of treatment. Results: The results showed significant improvement in all parameters in the experimental group compared with those in the control group. Interpretation/Conclusion: By the present date, it is possible to conclude that a magnetic field is effective as a method of treatment for lower back myofascial pain syndrome patients with the parameters used in the present study.

Keywords: magnetic field, lower back pain, myofascial pain syndrome, biological systems engineering

Procedia PDF Downloads 441
24286 Visual Analytics of Higher Order Information for Trajectory Datasets

Authors: Ye Wang, Ickjai Lee

Abstract:

Due to the widespread of mobile sensing, there is a strong need to handle trails of moving objects, trajectories. This paper proposes three visual analytic approaches for higher order information of trajectory data sets based on the higher order Voronoi diagram data structure. Proposed approaches reveal geometrical information, topological, and directional information. Experimental results demonstrate the applicability and usefulness of proposed three approaches.

Keywords: visual analytics, higher order information, trajectory datasets, spatio-temporal data

Procedia PDF Downloads 402
24285 Self-Supervised Pretraining on Sequences of Functional Magnetic Resonance Imaging Data for Transfer Learning to Brain Decoding Tasks

Authors: Sean Paulsen, Michael Casey

Abstract:

In this work we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.

Keywords: transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training

Procedia PDF Downloads 90
24284 Lessons Learned from Ransomware-as-a-Service (RaaS) Organized Campaigns

Authors: Vitali Kremez

Abstract:

The researcher monitored an organized ransomware campaign in order to gain significant visibility into the tactics, techniques, and procedures employed by a campaign boss operating a ransomware scheme out of Russia. As the Russian hacking community lowered the access requirements for unsophisticated Russian cybercriminals to engage in ransomware campaigns, corporations and individuals face a commensurately greater challenge of effectively protecting their data and operations from being held ransom. This report discusses two notorious ransomware campaigns. Though the loss of data can be devastating, the findings demonstrate that sending ransom payments does not always help obtain data. Key learnings: 1. From the ransomware affiliate perspective, such campaigns have significantly lowered the barriers for entry for low-tier cybercriminals. 2. Ransomware revenue amounts are not as glamorous and fruitful as they are often publicly reported. Average ransomware crime bosses make only $90K per year on average. 3. Data gathered indicates that sending ransom payments does not always help obtain data. 4. The talk provides the complete payout structure and Bitcoin laundering operation related to the ransomware-as-a-service campaign.

Keywords: bitcoin, cybercrime, ransomware, Russia

Procedia PDF Downloads 195
24283 Analysis of Cross-Sectional and Retrograde Data on the Prevalence of Marginal Gingivitis

Authors: Ilma Robo, Saimir Heta, Nedja Hysi, Vera Ostreni

Abstract:

Introduction: Marginal gingivitis is a disease with considerable frequency among patients who present routinely for periodontal control and treatment. In fact, this disease may not have alarming symptoms in patients and may go unnoticed by themselves when personal hygiene conditions are optimal. The aim of this study was to collect retrograde data on the prevalence of marginal gingiva in the respective group of patients, evaluated according to specific periodontal diagnostic tools. Materials and methods: The study was conducted in two patient groups. The first group was with 34 patients, during December 2019-January 2020, and the second group was with 64 patients during 2010-2018 (each year in the mentioned monthly period). Bacterial plaque index, hemorrhage index, amount of gingival fluid, presence of xerostomia and candidiasis were recorded in patients. Results: Analysis of the collected data showed that susceptibility to marginal gingivitis shows higher values according to retrograde data, compared to cross-sectional ones. Susceptibility to candidiasis and the occurrence of xerostomia, even in the combination of both pathologies, as risk factors for the occurrence of marginal gingivitis, show higher values ​​according to retrograde data. The female are presented with a reduced bacterial plaque index than the males, but more importantly, this index in the females is also associated with a reduced index of gingival hemorrhage, in contrast to the males. Conclusions: Cross-sectional data show that the prevalence of marginal gingivitis is more reduced, compared to retrograde data, based on the hemorrhage index and the bacterial plaque index together. Changes in production in the amount of gingival fluid show a higher prevalence of marginal gingivitis in cross-sectional data than in retrograde data; this is based on the sophistication of the way data are recorded, which evolves over time and also based on professional sensitivity to this phenomenon.

Keywords: marginal gingivitis, cross-sectional, retrograde, prevalence

Procedia PDF Downloads 161
24282 Why Do We Need Hierachical Linear Models?

Authors: Mustafa Aydın, Ali Murat Sunbul

Abstract:

Hierarchical or nested data structures usually are seen in many research areas. Especially, in the field of education, if we examine most of the studies, we can see the nested structures. Students in classes, classes in schools, schools in cities and cities in regions are similar nested structures. In a hierarchical structure, students being in the same class, sharing the same physical conditions and similar experiences and learning from the same teachers, they demonstrate similar behaviors between them rather than the students in other classes.

Keywords: hierarchical linear modeling, nested data, hierarchical structure, data structure

Procedia PDF Downloads 652
24281 Assessment of DNA Degradation Using Comet Assay: A Versatile Technique for Forensic Application

Authors: Ritesh K. Shukla

Abstract:

Degradation of biological samples in terms of macromolecules (DNA, RNA, and protein) are the major challenges in the forensic investigation which misleads the result interpretation. Currently, there are no precise methods available to circumvent this problem. Therefore, at the preliminary level, some methods are urgently needed to solve this issue. In this order, Comet assay is one of the most versatile, rapid and sensitive molecular biology technique to assess the DNA degradation. This technique helps to assess DNA degradation even at very low amount of sample. Moreover, the expedient part of this method does not require any additional process of DNA extraction and isolation during DNA degradation assessment. Samples directly embedded on agarose pre-coated microscopic slide and electrophoresis perform on the same slide after lysis step. After electrophoresis microscopic slide stained by DNA binding dye and observed under fluorescent microscope equipped with Komet software. With the help of this technique extent of DNA degradation can be assessed which can help to screen the sample before DNA fingerprinting, whether it is appropriate for DNA analysis or not. This technique not only helps to assess degradation of DNA but many other challenges in forensic investigation such as time since deposition estimation of biological fluids, repair of genetic material from degraded biological sample and early time since death estimation could also be resolved. With the help of this study, an attempt was made to explore the application of well-known molecular biology technique that is Comet assay in the field of forensic science. This assay will open avenue in the field of forensic research and development.

Keywords: comet assay, DNA degradation, forensic, molecular biology

Procedia PDF Downloads 155
24280 The Disposable Identities; Enabling Trust-by-Design to Build Sustainable Data-Driven Value

Authors: Lorna Goulden, Kai M. Hermsen, Jari Isohanni, Mirko Ross, Jef Vanbockryck

Abstract:

This article introduces disposable identities, with reference use cases and explores possible technical approaches. The proposed approach, when fully developed as an open-source toolkit, enables developers of mobile or web apps to employ a self-sovereign identity and data privacy framework, in order to rebuild trust in digital services by providing greater transparency, decentralized control, and GDPR compliance. With a user interface for the management of self-sovereign identity, digital authorizations, and associated data-driven transactions, the advantage of Disposable Identities is that they may also contain verifiable data such as the owner’s photograph, official or even biometric identifiers for more proactive prevention of identity abuse. These Disposable Identities designed for decentralized privacy management can also be time, purpose and context-bound through a secure digital contract; with verification functionalities based on tamper-proof technology.

Keywords: dentity, trust, self-sovereign, disposable identity, privacy toolkit, decentralised identity, verifiable credential, cybersecurity, data driven business, PETs, GDPRdentity, trust, self-sovereign, disposable identity, privacy toolkit, decentralised identity, verifiable credential, cybersecurity, data driven business, PETs, GDPRI

Procedia PDF Downloads 218
24279 Best Practices to Enhance Patient Security and Confidentiality When Using E-Health in South Africa

Authors: Lethola Tshikose, Munyaradzi Katurura

Abstract:

Information and Communication Technology (ICT) plays a critical role in improving daily healthcare processes. The South African healthcare organizations have adopted Information Systems to integrate their patient records. This has made it much easier for healthcare organizations because patient information can now be accessible at any time. The primary purpose of this research study was to investigate the best practices that can be applied to enhance patient security and confidentiality when using e-health systems in South Africa. Security and confidentiality are critical in healthcare organizations as they ensure safety in EHRs. The research study used an inductive research approach that included a thorough literature review; therefore, no data was collected. The research paper’s scope included patient data and possible security threats associated with healthcare systems. According to the study, South African healthcare organizations discovered various patient data security and confidentiality issues. The study also revealed that when it comes to handling patient data, health professionals sometimes make mistakes. Some may not be computer literate, which posed issues and caused data to be tempered with. The research paper recommends that healthcare organizations ensure that security measures are adequately supported and promoted by their IT department. This will ensure that adequate resources are distributed to keep patient data secure and confidential. Healthcare organizations must correctly use standards set up by IT specialists to solve patient data security and confidentiality issues. Healthcare organizations must make sure that their organizational structures are adaptable to improve security and confidentiality.

Keywords: E-health, EHR, security, confidentiality, healthcare

Procedia PDF Downloads 58