Search results for: Images in Performances
1913 An Approach to Maximize the Influence Spread in the Social Networks
Authors: Gaye Ibrahima, Mendy Gervais, Seck Diaraf, Ouya Samuel
Abstract:
In this paper, we consider the influence maximization in social networks. Here we give importance to initial diffuser called the seeds. The goal is to find efficiently a subset of k elements in the social network that will begin and maximize the information diffusion process. A new approach which treats the social network before to determine the seeds, is proposed. This treatment eliminates the information feedback toward a considered element as seed by extracting an acyclic spanning social network. At first, we propose two algorithm versions called SCG − algoritm (v1 and v2) (Spanning Connected Graphalgorithm). This algorithm takes as input data a connected social network directed or no. And finally, a generalization of the SCG − algoritm is proposed. It is called SG − algoritm (Spanning Graph-algorithm) and takes as input data any graph. These two algorithms are effective and have each one a polynomial complexity. To show the pertinence of our approach, two seeds set are determined and those given by our approach give a better results. The performances of this approach are very perceptible through the simulation carried out by the R software and the igraph package.Keywords: acyclic spanning graph, centrality measures, information feedback, influence maximization, social network
Procedia PDF Downloads 2481912 Covid-19 Lockdown Experience of Elderly Female as Reflected in Their Artwork
Authors: Liat Shamri-Zeevi, Neta Ram-Vlasov
Abstract:
Today the world as a whole is attempting to cope with the COVID-19, which has affected all facets of personal and social life from country-wide confinement to maintaining social distance and taking protective measures to maintain hygiene. One of the populations faced with the most severe restrictions is seniors. Various studies have shown that creativity plays a crucial role in dealing with crisis events. Painting - regardless of media - allows for emotional and cognitive processing of these situations, and enables the expression of experiences in a tangible creative way that conveys and endows meaning to the artwork. The current study was conducted in Israel immediately after a 6-week lockdown. It was designed to specifically examine the impact of the COVID-19 pandemic on the quality of life of elderly women as reflected in their artworks. The sample was composed of 21 Israeli women aged 60-90, in good mental health (without diagnosed dementia or Alzheimer's), all of whom were Hebrew-speaking, and retired with an extended family, who indicated that they painted and had engaged in artwork on an ongoing basis throughout the lockdown (from March 12 to May 30, 2020). The participants' artworks were collected, and a semi-structured in-depth interview was conducted that lasted one to two hours. The participants were asked about their feelings during the pandemic and the artworks they produced during this time, and completed a questionnaire on well-being and mental health. The initial analysis of the interviews and artworks revealed themes related to the specific role of each piece of artwork. The first theme included notions that the artwork was an activity and a framework for doing, which supported positive emotions, and provided a sense of vitality during the closure. Most of the participants painted images of nature and growth which were ascribed concrete and symbolic meaning. The second theme was that the artwork enabled the processing of difficult and /or conflicting emotions related to the situation, including anxiety about death and loneliness that were symbolically expressed in the artworks, such as images of the Corona virus and the respiratory machines. The third theme suggested that the time and space prompted by the lockdown gave the participants time for a gathering together of the self, and freed up time for creative activities. Many participants stated that they painted more and more frequently during the Corona lockdown. At the conference, additional themes and findings will be presented.Keywords: Corona virus, artwork, quality of life of elderly
Procedia PDF Downloads 1431911 Anisotropic Approach for Discontinuity Preserving in Optical Flow Estimation
Authors: Pushpendra Kumar, Sanjeev Kumar, R. Balasubramanian
Abstract:
Estimation of optical flow from a sequence of images using variational methods is one of the most successful approach. Discontinuity between different motions is one of the challenging problem in flow estimation. In this paper, we design a new anisotropic diffusion operator, which is able to provide smooth flow over a region and efficiently preserve discontinuity in optical flow. This operator is designed on the basis of intensity differences of the pixels and isotropic operator using exponential function. The combination of these are used to control the propagation of flow. Experimental results on the different datasets verify the robustness and accuracy of the algorithm and also validate the effect of anisotropic operator in the discontinuity preserving.Keywords: optical flow, variational methods, computer vision, anisotropic operator
Procedia PDF Downloads 8731910 Two-Stage Estimation of Tropical Cyclone Intensity Based on Fusion of Coarse and Fine-Grained Features from Satellite Microwave Data
Authors: Huinan Zhang, Wenjie Jiang
Abstract:
Accurate estimation of tropical cyclone intensity is of great importance for disaster prevention and mitigation. Existing techniques are largely based on satellite imagery data, and research and utilization of the inner thermal core structure characteristics of tropical cyclones still pose challenges. This paper presents a two-stage tropical cyclone intensity estimation network based on the fusion of coarse and fine-grained features from microwave brightness temperature data. The data used in this network are obtained from the thermal core structure of tropical cyclones through the Advanced Technology Microwave Sounder (ATMS) inversion. Firstly, the thermal core information in the pressure direction is comprehensively expressed through the maximal intensity projection (MIP) method, constructing coarse-grained thermal core images that represent the tropical cyclone. These images provide a coarse-grained feature range wind speed estimation result in the first stage. Then, based on this result, fine-grained features are extracted by combining thermal core information from multiple view profiles with a distributed network and fused with coarse-grained features from the first stage to obtain the final two-stage network wind speed estimation. Furthermore, to better capture the long-tail distribution characteristics of tropical cyclones, focal loss is used in the coarse-grained loss function of the first stage, and ordinal regression loss is adopted in the second stage to replace traditional single-value regression. The selection of tropical cyclones spans from 2012 to 2021, distributed in the North Atlantic (NA) regions. The training set includes 2012 to 2017, the validation set includes 2018 to 2019, and the test set includes 2020 to 2021. Based on the Saffir-Simpson Hurricane Wind Scale (SSHS), this paper categorizes tropical cyclone levels into three major categories: pre-hurricane, minor hurricane, and major hurricane, with a classification accuracy rate of 86.18% and an intensity estimation error of 4.01m/s for NA based on this accuracy. The results indicate that thermal core data can effectively represent the level and intensity of tropical cyclones, warranting further exploration of tropical cyclone attributes under this data.Keywords: Artificial intelligence, deep learning, data mining, remote sensing
Procedia PDF Downloads 631909 A Steady State Characteristics of Four-Lobe Journal Bearing Lubricated with a Couple Stress Fluids in Turbulent Flow Regime
Authors: Boualem Chetti, Samir Zahaf
Abstract:
This paper presents the steady-state performance analysis of a four-lobe journal bearing lubricated with a couple stress fluids operating in the turbulent regime, following Constantinescu’s turbulent lubrication theory. The modified Reynolds equation is solved numerically using the finite difference method taking into consideration the effects of the turbulence and the couple stress. In this analysis, the steady-state parameters in terms of the attitude angle, load carrying capacity, side leakage and friction coefficient are determined at various values of eccentricities ratio. The computed results show that the turbulence increases the load carrying capacity, the attitude angle and the friction coefficient for a journal bearing lubricated with a Newtonian or a couple stress fluids. It is found that the turbulence has strongly influence on the steady-state performances of the four-lobe journal bearing lubricated with Newtonian fluids or a couple stress fluids.Keywords: Four-lobe journal bearings, static characteristics, couple-stress fluids, turbulent flow
Procedia PDF Downloads 1931908 Investigation of Stress and Its Effects on Health Workers in Federal Medical Centres in Nigeria
Authors: Chisom N. Nwaigwe, Blessing N. Egbulefu, Angela Uwakwem
Abstract:
A study on Stress and its’ effect on the health of workers in Federal Medical Centres in Nigeria is presented. The aim is to evaluate how much stress related hazards health workers in our tertiary health institutions are exposed to and to create awareness and reduce the rate at which stress affect the health of the working population in Nigeria, using workers in Federal Medical Centre, Umuahia as a case study. The descriptive survey design was adopted with the aid of 100 questionnaires delivered to the respondents in order to obtain first-hand information. From the findings, the major causes of stress were identified as inadequate staffing, unresolved family problems and psychological/cultural factors like the return of a lactating mother to work after three months post-delivery. The effects of stress on the workers were identified as hypertension, poor job performances, depression, asthma, and peptic ulcers. The study recommended instituting counseling units for stress management, holding seminars on stress management and increasing the salary scale (remuneration) and proper roster planning as solutions to stress reduction in our hospitals. This study is important to management in planning staffing, roaster, and a rehabilitation programme for her staff.Keywords: stress, causes, effects, workers
Procedia PDF Downloads 4751907 Virtual Player for Learning by Observation to Assist Karate Training
Authors: Kazumoto Tanaka
Abstract:
It is well known that sport skill learning is facilitated by video observation of players’ actions in sports. The optimal viewpoint for the observation of actions depends on sport scenes. On the other hand, it is impossible to change viewpoint for the observation in general, because most videos are filmed from fixed points. The study has tackled the problem and focused on karate match as a first step. The study developed a method for observing karate player’s actions from any point of view by using 3D-CG model (i.e. virtual player) obtained from video images, and verified the effectiveness of the method on karate match.Keywords: computer graphics, karate training, learning by observation, motion capture, virtual player
Procedia PDF Downloads 2751906 Semigroups of Linear Transformations with Fixed Subspaces: Green’s Relations and Ideals
Authors: Yanisa Chaiya, Jintana Sanwong
Abstract:
Let V be a vector space over a field and W a subspace of V. Let Fix(V,W) denote the set of all linear transformations on V with fix all elements in W. In this paper, we show that Fix(V,W) is a semigroup under the composition of maps and describe Green’s relations on this semigroup in terms of images, kernels and the dimensions of subspaces of the quotient space V/W where V/W = {v+W : v is an element in V} with v+W = {v+w : w is an element in W}. Let dim(U) denote the dimension of a vector space U and Vα = {vα : v is an element in V} where vα is an image of v under a linear transformation α. For any cardinal number a let a'= min{b : b > a}. We also show that the ideals of Fix(V,W) are precisely the sets. Fix(r) ={α ∊ Fix(V,W) : dim(Vα/W) < r} where 1 ≤ r ≤ a' and a = dim(V/W). Moreover, we prove that if V is a finite-dimensional vector space, then every ideal of Fix(V,W) is principle.Keywords: Green’s relations, ideals, linear transformation semi-groups, principle ideals
Procedia PDF Downloads 2921905 Learning with Music: The Effects of Musical Tension on Long-Term Declarative Memory Formation
Authors: Nawras Kurzom, Avi Mendelsohn
Abstract:
The effects of background music on learning and memory are inconsistent, partly due to the intrinsic complexity and variety of music and partly to individual differences in music perception and preference. A prominent musical feature that is known to elicit strong emotional responses is musical tension. Musical tension can be brought about by building anticipation of rhythm, harmony, melody, and dynamics. Delaying the resolution of dominant-to-tonic chord progressions, as well as using dissonant harmonics, can elicit feelings of tension, which can, in turn, affect memory formation of concomitant information. The aim of the presented studies was to explore how forming declarative memory is influenced by musical tension, brought about within continuous music as well as in the form of isolated chords with varying degrees of dissonance/consonance. The effects of musical tension on long-term memory of declarative information were studied in two ways: 1) by evoking tension within continuous music pieces by delaying the release of harmonic progressions from dominant to tonic chords, and 2) by using isolated single complex chords with various degrees of dissonance/roughness. Musical tension was validated through subjective reports of tension, as well as physiological measurements of skin conductance response (SCR) and pupil dilation responses to the chords. In addition, music information retrieval (MIR) was used to quantify musical properties associated with tension and its release. Each experiment included an encoding phase, wherein individuals studied stimuli (words or images) with different musical conditions. Memory for the studied stimuli was tested 24 hours later via recognition tasks. In three separate experiments, we found positive relationships between tension perception and physiological measurements of SCR and pupil dilation. As for memory performance, we found that background music, in general, led to superior memory performance as compared to silence. We detected a trade-off effect between tension perception and memory, such that individuals who perceived musical tension as such displayed reduced memory performance for images encoded during musical tension, whereas tense music benefited memory for those who were less sensitive to the perception of musical tension. Musical tension exerts complex interactions with perception, emotional responses, and cognitive performance on individuals with and without musical training. Delineating the conditions and mechanisms that underlie the interactions between musical tension and memory can benefit our understanding of musical perception at large and the diverse effects that music has on ongoing processing of declarative information.Keywords: musical tension, declarative memory, learning and memory, musical perception
Procedia PDF Downloads 981904 Numerical Calculation of Heat Transfer in Water Heater
Authors: Michal Spilacek, Martin Lisy, Marek Balas, Zdenek Skala
Abstract:
This article is trying to determine the status of flue gas that is entering the KWH heat exchanger from combustion chamber in order to calculate the heat transfer ratio of the heat exchanger. Combination of measurement, calculation, and computer simulation was used to create a useful way to approximate the heat transfer rate. The measurements were taken by a number of sensors that are mounted on the experimental device and by a thermal imaging camera. The results of the numerical calculation are in a good correspondence with the real power output of the experimental device. Results show that the research has a good direction and can be used to propose changes in the construction of the heat exchanger, but still needs enhancements.Keywords: heat exchanger, heat transfer rate, numerical calculation, thermal images
Procedia PDF Downloads 6161903 Effectiveness of Computer-Based Cognitive Training in Improving Attention-Deficit/Hyperactivity Disorder Rehabilitation
Authors: Marjan Ghazisaeedi, Azadeh Bashiri
Abstract:
Background: Attention-Deficit/Hyperactivity Disorder(ADHD), is one of the most common psychiatric disorders in early childhood that in addition to its main symptoms provide significant deficits in the areas of educational, social and individual relationship. Considering the importance of rehabilitation in ADHD patients to control these problems, this study investigated the advantages of computer-based cognitive training in these patients. Methods: This review article has been conducted by searching articles since 2005 in scientific databases and e-Journals and by using keywords including computerized cognitive rehabilitation, computer-based training and ADHD. Results: Since drugs have short term effects and also they have many side effects in the rehabilitation of ADHD patients, using supplementary methods such as computer-based cognitive training is one of the best solutions. This approach has quick feedback and also has no side effects. So, it provides promising results in cognitive rehabilitation of ADHD especially on the working memory and attention. Conclusion: Considering different cognitive dysfunctions in ADHD patients, application of the computerized cognitive training has the potential to improve cognitive functions and consequently social, academic and behavioral performances in patients with this disorder.Keywords: ADHD, computer-based cognitive training, cognitive functions, rehabilitation
Procedia PDF Downloads 2781902 Improved Hydrogen Sorption Kinetics of Compacted LiNH₂-LiH Based Small Hydrogen Storage Tank by Doping with TiF₄ and MWCNTs
Authors: Chongsutthamani Sitthiwet, Praphatsorn Plerdsranoy, Palmarin Dansirima, Priew Eiamlamai, Oliver Utke, Rapee Utke
Abstract:
Hydrogen storage tank containing compacted LiNH2-LiH is developed by doping with TiF₄ and multi-walled nanotubes (MWCNTs) to study kinetic properties. Transition metal-based catalyst (TiF₄) provides the catalytic effect on hydrogen dissociation/recombination, while MWCNTs benefit thermal conductivity and hydrogen permeability during de/rehydrogenation process. The Enhancement of dehydrogenation kinetics is observed from the single-step reaction at a narrower and lower temperature range of 150-350 ºC (100 ºC lower than the compacted LiNH₂-LiH without additives) as well as long plateau temperature and constant hydrogen flow rate (50 SCCM) up to 30 min during desorption. Besides, Hydrogen contents de/absorbed during 5-6 cycles increase from 1.90-2.40 to 3.10-4.70 wt. % H₂ (from 29 to up to 80 % of theoretical capacity). In the process, Li₅TiN₃ is detected upon cycling probably absorbs NH₃ to form Li₅TiN₃(NH₃)x, which is favoring hydrogen sorption properties of the LiNH₂-LiH system. Importantly, the homogeneous reaction mechanisms and performances are found at all positions inside the tank of compacted LiNH₂-LiH doped with TiF₄ and MWCNTs.Keywords: carbon, hydride, kinetics, dehydrogenation
Procedia PDF Downloads 1451901 Automatic Segmentation of 3D Tomographic Images Contours at Radiotherapy Planning in Low Cost Solution
Authors: D. F. Carvalho, A. O. Uscamayta, J. C. Guerrero, H. F. Oliveira, P. M. Azevedo-Marques
Abstract:
The creation of vector contours slices (ROIs) on body silhouettes in oncologic patients is an important step during the radiotherapy planning in clinic and hospitals to ensure the accuracy of oncologic treatment. The radiotherapy planning of patients is performed by complex softwares focused on analysis of tumor regions, protection of organs at risk (OARs) and calculation of radiation doses for anomalies (tumors). These softwares are supplied for a few manufacturers and run over sophisticated workstations with vector processing presenting a cost of approximately twenty thousand dollars. The Brazilian project SIPRAD (Radiotherapy Planning System) presents a proposal adapted to the emerging countries reality that generally does not have the monetary conditions to acquire some radiotherapy planning workstations, resulting in waiting queues for new patients treatment. The SIPRAD project is composed by a set of integrated and interoperabilities softwares that are able to execute all stages of radiotherapy planning on simple personal computers (PCs) in replace to the workstations. The goal of this work is to present an image processing technique, computationally feasible, that is able to perform an automatic contour delineation in patient body silhouettes (SIPRAD-Body). The SIPRAD-Body technique is performed in tomography slices under grayscale images, extending their use with a greedy algorithm in three dimensions. SIPRAD-Body creates an irregular polyhedron with the Canny Edge adapted algorithm without the use of preprocessing filters, as contrast and brightness. In addition, comparing the technique SIPRAD-Body with existing current solutions is reached a contours similarity at least 78%. For this comparison is used four criteria: contour area, contour length, difference between the mass centers and Jaccard index technique. SIPRAD-Body was tested in a set of oncologic exams provided by the Clinical Hospital of the University of Sao Paulo (HCRP-USP). The exams were applied in patients with different conditions of ethnology, ages, tumor severities and body regions. Even in case of services that have already workstations, it is possible to have SIPRAD working together PCs because of the interoperability of communication between both systems through the DICOM protocol that provides an increase of workflow. Therefore, the conclusion is that SIPRAD-Body technique is feasible because of its degree of similarity in both new radiotherapy planning services and existing services.Keywords: radiotherapy, image processing, DICOM RT, Treatment Planning System (TPS)
Procedia PDF Downloads 2961900 Treatment Performance of Waste Stabilization Ponds: A Look at Physic-Chemical Parameters in Ghana
Authors: Emmanuel Adu-Ofori, Richard Amfo-Otu, Isaac O. A. Hodgson
Abstract:
The study was conducted to determine the treatment performance of waste stabilization ponds in Akosombo. A total of 15 samples were taken for four consecutive months from the inlet, facultative pond and outlet of maturation pond. The samples were preserved and transported to Water Research Institute for laboratory analysis. The wastewater quality parameters analysed to assess the treatment performance were total suspended solids (TSS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonia and phosphate. The results of the laboratory analysis showed that the ponds achieved TSS, BOD and COD removals of about 30, 82 and 75 per cent respectively. Statistically, the BOD (t = 10.27, p = 6.68 x 10-6) and COD (t = 4.23, p = 0.0029) of the raw sewage were significantly different from the total effluent at 95% confidence interval. The ammonia and phosphate removal was as high as 92% and 84% respectively. The quality parameters analysed for the final effluent from the Waste Stabilisation Pond was within the EPA guideline values. The general treatment performances were very good with respect to the parameters studied and does not pose threat to the receiving water body. A further study to examine the bacteriological treatment performance was recommended.Keywords: waste stabilization pond, wast water, treatment performance, nutrient, Ghana
Procedia PDF Downloads 3191899 The Artificial Intelligence Technologies Used in PhotoMath Application
Authors: Tala Toonsi, Marah Alagha, Lina Alnowaiser, Hala Rajab
Abstract:
This report is about the Photomath app, which is an AI application that uses image recognition technology, specifically optical character recognition (OCR) algorithms. The (OCR) algorithm translates the images into a mathematical equation, and the app automatically provides a step-by-step solution. The application supports decimals, basic arithmetic, fractions, linear equations, and multiple functions such as logarithms. Testing was conducted to examine the usage of this app, and results were collected by surveying ten participants. Later, the results were analyzed. This paper seeks to answer the question: To what level the artificial intelligence features are accurate and the speed of process in this app. It is hoped this study will inform about the efficiency of AI in Photomath to the users.Keywords: photomath, image recognition, app, OCR, artificial intelligence, mathematical equations.
Procedia PDF Downloads 1711898 Imaging of Underground Targets with an Improved Back-Projection Algorithm
Authors: Alireza Akbari, Gelareh Babaee Khou
Abstract:
Ground Penetrating Radar (GPR) is an important nondestructive remote sensing tool that has been used in both military and civilian fields. Recently, GPR imaging has attracted lots of attention in detection of subsurface shallow small targets such as landmines and unexploded ordnance and also imaging behind the wall for security applications. For the monostatic arrangement in the space-time GPR image, a single point target appears as a hyperbolic curve because of the different trip times of the EM wave when the radar moves along a synthetic aperture and collects reflectivity of the subsurface targets. With this hyperbolic curve, the resolution along the synthetic aperture direction shows undesired low resolution features owing to the tails of hyperbola. However, highly accurate information about the size, electromagnetic (EM) reflectivity, and depth of the buried objects is essential in most GPR applications. Therefore hyperbolic curve behavior in the space-time GPR image is often willing to be transformed to a focused pattern showing the object's true location and size together with its EM scattering. The common goal in a typical GPR image is to display the information of the spatial location and the reflectivity of an underground object. Therefore, the main challenge of GPR imaging technique is to devise an image reconstruction algorithm that provides high resolution and good suppression of strong artifacts and noise. In this paper, at first, the standard back-projection (BP) algorithm that was adapted to GPR imaging applications used for the image reconstruction. The standard BP algorithm was limited with against strong noise and a lot of artifacts, which have adverse effects on the following work like detection targets. Thus, an improved BP is based on cross-correlation between the receiving signals proposed for decreasing noises and suppression artifacts. To improve the quality of the results of proposed BP imaging algorithm, a weight factor was designed for each point in region imaging. Compared to a standard BP algorithm scheme, the improved algorithm produces images of higher quality and resolution. This proposed improved BP algorithm was applied on the simulation and the real GPR data and the results showed that the proposed improved BP imaging algorithm has a superior suppression artifacts and produces images with high quality and resolution. In order to quantitatively describe the imaging results on the effect of artifact suppression, focusing parameter was evaluated.Keywords: algorithm, back-projection, GPR, remote sensing
Procedia PDF Downloads 4521897 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network
Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.Keywords: big data, k-NN, machine learning, traffic speed prediction
Procedia PDF Downloads 3631896 Revised Tower Earthing Design in High-Voltage Transmission Network for High-Frequency Lightning Condition
Authors: Azwadi Mohamad, Pauzi Yahaya, Nadiah Hudi
Abstract:
Earthing system for high-voltage transmission tower is designed to protect the working personnel and equipments, and to maintain the quality of supply during fault. The existing earthing system for transmission towers in TNB’s system is purposely designed for normal power frequency (low-frequency) fault conditions that take into account the step and touch voltages. This earthing design is found to be inapt for lightning (transient) condition to a certain extent, which involves a high-frequency domain. The current earthing practice of laying the electrodes radially in straight 60 m horizontal lines under the ground, in order to achieve the specified impedance value of less than 10 Ω, was deemed ineffective in reducing the high-frequency impedance. This paper introduces a new earthing design that produces low impedance value at the high-frequency domain, without compromising the performance of low-frequency impedance. The performances of this new earthing design, as well as the existing design, are simulated for various soil resistivity values at varying frequency. The proposed concentrated earthing design is found to possess low TFR value at both low and high-frequency. A good earthing design should have a fine balance between compact and radial electrodes under the ground.Keywords: earthing design, high-frequency, lightning, tower footing impedance
Procedia PDF Downloads 1611895 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography
Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai
Abstract:
Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics
Procedia PDF Downloads 961894 The Impact of Coronal STIR Imaging in Routine Lumbar MRI: Uncovering Hidden Causes to Enhanced Diagnostic Yield of Back Pain and Sciatica
Authors: Maysoon Nasser Samhan, Somaya Alkiswani, Abdullah Alzibdeh
Abstract:
Background: Routine lumbar MRIs for back pain may yield normal results despite persistent symptoms, which means the possibility of other causes for this pain, which was not shown on the routine images. Research suggests including coronal STIR imaging to detect additional pathologies like sacroiliitis. Objectives: This study aims to enhance diagnostic accuracy and aid in determining treatment processes for patients with persistent back pain who have normal routine lumbar MRI (T1 and T2 images) by incorporating coronal STIR into the examination. Methods: A prospectively conducted study involving 274 patients, 115 males and 159 females, with an age range of 6–92 years, reviewed their medical records and imaging data following a lumbar spine MRI. This study included patients with back pain and sciatica as their primary complaints, all of whom underwent lumbar spine MRIs at our hospital to identify potential pathologies. Using a GE Signa HD 1.5T MRI System, each patient received a standard MRI protocol that included T1 and T2 sagittal and axial sequences, as well as a coronal STIR sequence. We collected relevant MRI findings, including abnormalities and structural variations, from radiology reports. We classified these findings into tables and documented them as counts and percentages, using Fisher’s exact test to assess differences between categorical variables. We conducted a statistical analysis using Prism GraphPad software version 10.1.2. The study adhered to ethical guidelines, institutional review board approvals, and patient confidentiality regulations. Results: Exclusion of the coronal STIR sequence led to 83 subjects (30.29%) being classified as within normal limits on MRI examination. 36 patients without abnormalities on T1 and T2 sequences showed abnormalities on the coronal STIR sequence, with 26 cases attributed to spinal pathologies and 10 to non-spinal pathologies. In addition to that, Fisher's exact test demonstrated a significant association between sacroiliitis diagnosis and abnormalities identified solely through the coronal STIR sequence (P < 0.0001). Conclusion: Implementing coronal STIR imaging as part of routine lumbar MRI protocols has the potential to improve patient care by facilitating a more comprehensive evaluation and management of persistent back pain.Keywords: magnetic resonance imaging, lumber MRI, radiology, neurology
Procedia PDF Downloads 101893 Pose Normalization Network for Object Classification
Authors: Bingquan Shen
Abstract:
Convolutional Neural Networks (CNN) have demonstrated their effectiveness in synthesizing 3D views of object instances at various viewpoints. Given the problem where one have limited viewpoints of a particular object for classification, we present a pose normalization architecture to transform the object to existing viewpoints in the training dataset before classification to yield better classification performance. We have demonstrated that this Pose Normalization Network (PNN) can capture the style of the target object and is able to re-render it to a desired viewpoint. Moreover, we have shown that the PNN improves the classification result for the 3D chairs dataset and ShapeNet airplanes dataset when given only images at limited viewpoint, as compared to a CNN baseline.Keywords: convolutional neural networks, object classification, pose normalization, viewpoint invariant
Procedia PDF Downloads 3521892 The Question of Choice in an Achievement Test: A Study on the Sudanese Case
Authors: Mahmoud Abdelrazig Mahmoud Barakat
Abstract:
Achievement tests administered at national level play a significant role in the lives of test-takers as well as the whole society. This paper aims to investigate the effect of giving students a choice between two optional questions on their overall performance in a high stake achievement test for university admission. It is hypothesized that questions targeting writing-based productive skills and language system necessitate display of abilities which are different from fact-based questions designed around story content. The two items are assumed to reflect different constructs that require different criteria of assessment. Consequently, the student’s overall score is affected by the item they choose to answer, which might not be reflective of their real language abilities. An open-ended interview was carried out with ten teachers working with grade 3 students in model secondary schools to investigate the nature of the two test items and their impact on the student’s performance. The data has proved that giving choice in an achievement test generates different performances that are assessed differently. It is recommended that in order to address the question of fairness, it is important to clearly define and balance the construct of the items that affect the student’s choice and performance.Keywords: achievement test, assessment, choice, fairness performance
Procedia PDF Downloads 2221891 Corporate Governance and Firm Performance: An Empirical Study from Pakistan
Authors: Mohammed Nishat, Ahmad Ghazali
Abstract:
This study empirically inspects the corporate governance and firm performance, and attempts to analyze the corporate governance and control related variables which are hypothesized to have effect on firm’s performance. Current study attempts to assess the mechanism and efficiency of corporate governance to achieve high level performance for the listed firms on the Karachi Stock Exchange (KSE) for the period 2005 to 2008. To evaluate the firm performance level this study investigate the firm performance using three measures; Return on assets (ROA), Return on Equity (ROE) and Tobin’s Q. To check the link between firm performances with the corporate governance three categories of corporate governance variables are tested which includes governance, ownership and control related variables. Fixed effect regression model is used to examine the relation among governance and corporate performance for 267 KSE listed Pakistani firms. The result shows that governance related variables like block shareholding by individuals have positive impact on firm performance. When chief executive officer is also the board chairperson then it is observed that performance of firm is adversely affected. Also negative relationship is found between share held by insiders and performance of firm. Leverage has negative influence on the firm performance and size of firm is positively related with performance of the firm.Keywords: corporate governance, agency cost, KSE, ROA, Tobin’s Q
Procedia PDF Downloads 4091890 The Significance of Picture Mining in the Fashion and Design as a New Research Method
Authors: Katsue Edo, Yu Hiroi
Abstract:
T Increasing attention has been paid to using pictures and photographs in research since the beginning of the 21th century in social sciences. Meanwhile we have been studying the usefulness of Picture mining, which is one of the new ways for a these picture using researches. Picture Mining is an explorative research analysis method that takes useful information from pictures, photographs and static or moving images. It is often compared with the methods of text mining. The Picture Mining concept includes observational research in the broad sense, because it also aims to analyze moving images (Ochihara and Edo 2013). In the recent literature, studies and reports using pictures are increasing due to the environmental changes. These are identified as technological and social changes (Edo et.al. 2013). Low price digital cameras and i-phones, high information transmission speed, low costs for information transferring and high performance and resolution of the cameras of mobile phones have changed the photographing behavior of people. Consequently, there is less resistance in taking and processing photographs for most of the people in the developing countries. In these studies, this method of collecting data from respondents is often called as ‘participant-generated photography’ or ‘respondent-generated visual imagery’, which focuses on the collection of data and its analysis (Pauwels 2011, Snyder 2012). But there are few systematical and conceptual studies that supports it significance of these methods. We have discussed in the recent years to conceptualize these picture using research methods and formalize theoretical findings (Edo et. al. 2014). We have identified the most efficient fields of Picture mining in the following areas inductively and in case studies; 1) Research in Consumer and Customer Lifestyles. 2) New Product Development. 3) Research in Fashion and Design. Though we have found that it will be useful in these fields and areas, we must verify these assumptions. In this study we will focus on the field of fashion and design, to determine whether picture mining methods are really reliable in this area. In order to do so we have conducted an empirical research of the respondents’ attitudes and behavior concerning pictures and photographs. We compared the attitudes and behavior of pictures toward fashion to meals, and found out that taking pictures of fashion is not as easy as taking meals and food. Respondents do not often take pictures of fashion and upload their pictures online, such as Facebook and Instagram, compared to meals and food because of the difficulty of taking them. We concluded that we should be more careful in analyzing pictures in the fashion area for there still might be some kind of bias existing even if the environment of pictures have drastically changed in these years.Keywords: empirical research, fashion and design, Picture Mining, qualitative research
Procedia PDF Downloads 3631889 System Identification and Quantitative Feedback Theory Design of a Lathe Spindle
Authors: M. Khairudin
Abstract:
This paper investigates the system identification and design quantitative feedback theory (QFT) for the robust control of a lathe spindle. The dynamic of the lathe spindle is uncertain and time variation due to the deepness variation on cutting process. System identification was used to obtain the dynamics model of the lathe spindle. In this work, real time system identification is used to construct a linear model of the system from the nonlinear system. These linear models and its uncertainty bound can then be used for controller synthesis. The real time nonlinear system identification process to obtain a set of linear models of the lathe spindle that represents the operating ranges of the dynamic system. With a selected input signal, the data of output and response is acquired and nonlinear system identification is performed using Matlab to obtain a linear model of the system. Practical design steps are presented in which the QFT-based conditions are formulated to obtain a compensator and pre-filter to control the lathe spindle. The performances of the proposed controller are evaluated in terms of velocity responses of the the lathe machine spindle in corporating deepness on cutting process.Keywords: lathe spindle, QFT, robust control, system identification
Procedia PDF Downloads 5431888 Multimetallic and Multiferocenyl Assemblies of Ferocenyl-Based Dithiophospohonate and Their Electrochemical Properties
Authors: J. Tomilla Ajayi, Werner E. Van Zyl
Abstract:
This work presents an overview of the reaction of 2, 4-diferrocenyl-1, 3-dithiadiphosphetane-2, 4-disulfide (Ferrocenyl Lawesson’s reagent) with water to produce the non-symmetric, ferocenyl dithiophosphonic acid respectively in high yields. These acids were readily deprotonated by anhydrous Ammonia to yield the corresponding ammonium salt NH4S2PFcOH. These were complex to Ni (II) in molar ratio 1:1 and 1:2. The resulting complex from the reaction formed same compound with different isomers (Cis and Trans) and also compound with multimetallic coordination. Quality X-ray crystals were formed from THF/Ether. The compounds were characterized by 1H, 31P NMR, and FTIR. Bulk purity were confirmed by either ESI-MS or elemental analysis and The XRD images were obtained using single crystal X-ray crystallographic studies. The electrochemical investigation of the Compounds were carried out using cyclic voltammetry.Keywords: ferrocenyl, dithiophosphonate, isomer, coordination
Procedia PDF Downloads 2481887 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging
Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen
Abstract:
Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques
Procedia PDF Downloads 991886 Smart Side View Mirror Camera for Real Time System
Authors: Nunziata Ivana Guarneri, Arcangelo Bruna, Giuseppe Spampinato, Antonio Buemi
Abstract:
In the last decade, automotive companies have invested a lot in terms of innovation about many aspects regarding the automatic driver assistance systems. One innovation regards the usage of a smart camera placed on the car’s side mirror for monitoring the back and lateral road situation. A common road scenario is the overtaking of the preceding car and, in this case, a brief distraction or a loss of concentration can lead the driver to undertake this action, even if there is an already overtaking vehicle, leading to serious accidents. A valid support for a secure drive can be a smart camera system, which is able to automatically analyze the road scenario and consequentially to warn the driver when another vehicle is overtaking. This paper describes a method for monitoring the side view of a vehicle by using camera optical flow motion vectors. The proposed solution detects the presence of incoming vehicles, assesses their distance from the host car, and warns the driver through different levels of alert according to the estimated distance. Due to the low complexity and computational cost, the proposed system ensures real time performances.Keywords: camera calibration, ego-motion, Kalman filters, object tracking, real time systems
Procedia PDF Downloads 2281885 Introduction of Robust Multivariate Process Capability Indices
Authors: Behrooz Khalilloo, Hamid Shahriari, Emad Roghanian
Abstract:
Process capability indices (PCIs) are important concepts of statistical quality control and measure the capability of processes and how much processes are meeting certain specifications. An important issue in statistical quality control is parameter estimation. Under the assumption of multivariate normality, the distribution parameters, mean vector and variance-covariance matrix must be estimated, when they are unknown. Classic estimation methods like method of moment estimation (MME) or maximum likelihood estimation (MLE) makes good estimation of the population parameters when data are not contaminated. But when outliers exist in the data, MME and MLE make weak estimators of the population parameters. So we need some estimators which have good estimation in the presence of outliers. In this work robust M-estimators for estimating these parameters are used and based on robust parameter estimators, robust process capability indices are introduced. The performances of these robust estimators in the presence of outliers and their effects on process capability indices are evaluated by real and simulated multivariate data. The results indicate that the proposed robust capability indices perform much better than the existing process capability indices.Keywords: multivariate process capability indices, robust M-estimator, outlier, multivariate quality control, statistical quality control
Procedia PDF Downloads 2831884 3 Dimensional (3D) Assesment of Hippocampus in Alzheimer’s Disease
Authors: Mehmet Bulent Ozdemir, Sultan Çagirici, Sahika Pinar Akyer, Fikri Turk
Abstract:
Neuroanatomical appearance can be correlated with clinical or other characteristics of illness. With the introduction of diagnostic imaging machines, producing 3D images of anatomic structures, calculating the correlation between subjects and pattern of the structures have become possible. The aim of this study is to examine the 3D structure of hippocampus in cases with Alzheimer disease in different dementia severity. For this purpose, 62 female and 38 male- 68 patients’s (age range between 52 and 88) MR scanning were imported to the computer. 3D model of each right and left hippocampus were developed by a computer aided propramme-Surf Driver 3.5. Every reconstruction was taken by the same investigator. There were different apperance of hippocampus from normal to abnormal. In conclusion, These results might improve the understanding of the correlation between the morphological changes in hippocampus and clinical staging in Alzheimer disease.Keywords: Alzheimer disease, hippocampus, computer-assisted anatomy, 3D
Procedia PDF Downloads 481