Search results for: economic conditions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16119

Search results for: economic conditions

1119 Data Refinement Enhances The Accuracy of Short-Term Traffic Latency Prediction

Authors: Man Fung Ho, Lap So, Jiaqi Zhang, Yuheng Zhao, Huiyang Lu, Tat Shing Choi, K. Y. Michael Wong

Abstract:

Nowadays, a tremendous amount of data is available in the transportation system, enabling the development of various machine learning approaches to make short-term latency predictions. A natural question is then the choice of relevant information to enable accurate predictions. Using traffic data collected from the Taiwan Freeway System, we consider the prediction of short-term latency of a freeway segment with a length of 17 km covering 5 measurement points, each collecting vehicle-by-vehicle data through the electronic toll collection system. The processed data include the past latencies of the freeway segment with different time lags, the traffic conditions of the individual segments (the accumulations, the traffic fluxes, the entrance and exit rates), the total accumulations, and the weekday latency profiles obtained by Gaussian process regression of past data. We arrive at several important conclusions about how data should be refined to obtain accurate predictions, which have implications for future system-wide latency predictions. (1) We find that the prediction of median latency is much more accurate and meaningful than the prediction of average latency, as the latter is plagued by outliers. This is verified by machine-learning prediction using XGBoost that yields a 35% improvement in the mean square error of the 5-minute averaged latencies. (2) We find that the median latency of the segment 15 minutes ago is a very good baseline for performance comparison, and we have evidence that further improvement is achieved by machine learning approaches such as XGBoost and Long Short-Term Memory (LSTM). (3) By analyzing the feature importance score in XGBoost and calculating the mutual information between the inputs and the latencies to be predicted, we identify a sequence of inputs ranked in importance. It confirms that the past latencies are most informative of the predicted latencies, followed by the total accumulation, whereas inputs such as the entrance and exit rates are uninformative. It also confirms that the inputs are much less informative of the average latencies than the median latencies. (4) For predicting the latencies of segments composed of two or three sub-segments, summing up the predicted latencies of each sub-segment is more accurate than the one-step prediction of the whole segment, especially with the latency prediction of the downstream sub-segments trained to anticipate latencies several minutes ahead. The duration of the anticipation time is an increasing function of the traveling time of the upstream segment. The above findings have important implications to predicting the full set of latencies among the various locations in the freeway system.

Keywords: data refinement, machine learning, mutual information, short-term latency prediction

Procedia PDF Downloads 169
1118 Stability and Rheology of Sodium Diclofenac-Loaded and Unloaded Palm Kernel Oil Esters Nanoemulsion Systems

Authors: Malahat Rezaee, Mahiran Basri, Raja Noor Zaliha Raja Abdul Rahman, Abu Bakar Salleh

Abstract:

Sodium diclofenac is one of the most commonly used drugs of nonsteroidal anti-inflammatory drugs (NSAIDs). It is especially effective in the controlling the severe conditions of inflammation and pain, musculoskeletal disorders, arthritis, and dysmenorrhea. Formulation as nanoemulsions is one of the nanoscience approaches that have been progressively considered in pharmaceutical science for transdermal delivery of drug. Nanoemulsions are a type of emulsion with particle sizes ranging from 20 nm to 200 nm. An emulsion is formed by the dispersion of one liquid, usually the oil phase in another immiscible liquid, water phase that is stabilized using surfactant. Palm kernel oil esters (PKOEs), in comparison to other oils; contain higher amounts of shorter chain esters, which suitable to be applied in micro and nanoemulsion systems as a carrier for actives, with excellent wetting behavior without the oily feeling. This research was aimed to study the effect of O/S ratio on stability and rheological behavior of sodium diclofenac loaded and unloaded palm kernel oil esters nanoemulsion systems. The effect of different O/S ratio of 0.25, 0.50, 0.75, 1.00 and 1.25 on stability of the drug-loaded and unloaded nanoemulsion formulations was evaluated by centrifugation, freeze-thaw cycle and storage stability tests. Lecithin and cremophor EL were used as surfactant. The stability of the prepared nanoemulsion formulations was assessed based on the change in zeta potential and droplet size as a function of time. Instability mechanisms including coalescence and Ostwald ripening for the nanoemulsion system were discussed. In comparison between drug-loaded and unloaded nanoemulsion formulations, drug-loaded formulations represented smaller particle size and higher stability. In addition, the O/S ratio of 0.5 was found to be the best ratio of oil and surfactant for production of a nanoemulsion with the highest stability. The effect of O/S ratio on rheological properties of drug-loaded and unloaded nanoemulsion systems was studied by plotting the flow curves of shear stress (τ) and viscosity (η) as a function of shear rate (γ). The data were fitted to the Power Law model. The results showed that all nanoemulsion formulations exhibited non-Newtonian flow behaviour by displaying shear thinning behaviour. Viscosity and yield stress were also evaluated. The nanoemulsion formulation with the O/S ratio of 0.5 represented higher viscosity and K values. In addition, the sodium diclofenac loaded formulations had more viscosity and higher yield stress than drug-unloaded formulations.

Keywords: nanoemulsions, palm kernel oil esters, sodium diclofenac, rheoligy, stability

Procedia PDF Downloads 423
1117 Randomized Controlled Trial for the Management of Pain and Anxiety Using Virtual Reality During the Care of Older Hospitalized Patients

Authors: Corbel Camille, Le Cerf Flora, Capriz Françoise, Vaillant-Ciszewicz Anne-Julie, Breaud Jean, Guerin Olivier, Corveleyn Xavier

Abstract:

Background: The medical environment can generate stressful and anxiety-provoking situations for patients, particularly during painful care procedures for the older population. These stressful environments have deleterious effects on the quality of care and can even put the patient at risk and set the care team up for failure. The search for a solution is, therefore, imperative. The development of new technologies, such as virtual reality (VR), seems to be an answer to this problem. Objectives: The objective of this study is to compare the effects of virtual reality on pain and anxiety when caring for older hospitalized people with the effects of usual care. More precisely, different individual factors (age, cognitive level, individual preferences, etc.) and different virtual reality universes (personalized or non-personalized) are studied to understand the role of these factors in reducing pain and anxiety during care procedures. The aim of this study is to improve the quality of life of patients and caregivers in their work environment. Method: This mono-centered, randomized, controlled study was conducted from September 2023 to September 2024 on 120 participants recruited from the geriatric departments of the Cimiez Hospital, Nice, France. Participants are randomized into three groups: a control group, a personalized VR group and a non-personalized VR group. Each participant is followed during a painful care session. Data are collected before, during and after the care, using measures of pain (Algoplus and numerical scale) and anxiety (Hospital anxiety scale and numerical scale). Physiological assessments with an oximeter are also performed to collect both heart and respiratory rate measurements. The implementation of the care will be assessed among healthcare providers to evaluate its effects on the difficulty and fatigue associated with the care. Additionally, a questionnaire (System Usability Scale) will be administered at the conclusion of the study to determine the willingness of healthcare providers to integrate VR into their daily care practices. Result: The preliminary results indicate significant effects on anxiety (p=.001) and pain (p=<.001) following the VR intervention during care, as compared to the control group. Conclusion: The preliminary results suggest that VRI appears to be a suitable and effective method for reducing anxiety and pain among older hospitalized individuals compared with standard care. Finally, the experiences of healthcare professionals involved will also be considered to assess the impact of these interventions on working conditions and patient support.

Keywords: anxiety, care, pain, older adults, virtual reality

Procedia PDF Downloads 73
1116 Investigation of the IL23R Psoriasis/PsA Susceptibility Locus

Authors: Shraddha Rane, Richard Warren, Stephen Eyre

Abstract:

L-23 is a pro-inflammatory molecule that signals T cells to release cytokines such as IL-17A and IL-22. Psoriasis is driven by a dysregulated immune response, within which IL-23 is now thought to play a key role. Genome-wide association studies (GWAS) have identified a number of genetic risk loci that support the involvement of IL-23 signalling in psoriasis; in particular a robust susceptibility locus at a gene encoding a subunit of the IL-23 receptor (IL23R) (Stuart et al., 2015; Tsoi et al., 2012). The lead psoriasis-associated SNP rs9988642 is located approximately 500 bp downstream of IL23R but is in tight linkage disequilibrium (LD) with a missense SNP rs11209026 (R381Q) within IL23R (r2 = 0.85). The minor (G) allele of rs11209026 is present in approximately 7% of the population and is protective for psoriasis and several other autoimmune diseases including IBD, ankylosing spondylitis, RA and asthma. The psoriasis-associated missense SNP R381Q causes an arginine to glutamine substitution in a region of the IL23R protein between the transmembrane domain and the putative JAK2 binding site in the cytoplasmic portion. This substitution is expected to affect the receptor’s surface localisation or signalling ability, rather than IL23R expression. Recent studies have also identified a psoriatic arthritis (PsA)-specific signal at IL23R; thought to be independent from the psoriasis association (Bowes et al., 2015; Budu-Aggrey et al., 2016). The lead PsA-associated SNP rs12044149 is intronic to IL23R and is in LD with likely causal SNPs intersecting promoter and enhancer marks in memory CD8+ T cells (Budu-Aggrey et al., 2016). It is therefore likely that the PsA-specific SNPs affect IL23R function via a different mechanism compared with the psoriasis-specific SNPs. It could be hypothesised that the risk allele for PsA located within the IL23R promoter causes an increase IL23R expression, relative to the protective allele. An increased expression of IL23R might then lead to an exaggerated immune response. The independent genetic signals identified for psoriasis and PsA in this locus indicate that different mechanisms underlie these two conditions; although likely both affecting the function of IL23R. It is very important to further characterise these mechanisms in order to better understand how the IL-23 receptor and its downstream signalling is affected in both diseases. This will help to determine how psoriasis and PsA patients might differentially respond to therapies, particularly IL-23 biologics. To investigate this further we have developed an in vitro model using CD4 T cells which express either wild type IL23R and IL12Rβ1 or mutant IL23R (R381Q) and IL12Rβ1. Model expressing different isotypes of IL23R is also underway to investigate the effects on IL23R expression. We propose to further investigate the variants for Ps and PsA and characterise key intracellular processes related to the variants.

Keywords: IL23R, psoriasis, psoriatic arthritis, SNP

Procedia PDF Downloads 168
1115 Synthesized Doped TiO2 Photocatalysts for Mineralization of Quinalphos from Aqueous Streams

Authors: Nidhi Sharotri, Dhiraj Sud

Abstract:

Water pollution by pesticides constitutes a serious ecological problem due to their potential toxicity and bioaccumulation. The widespread use of pesticides in industry and agriculture along with their resistance to natural decomposition, biodegradation, chemical and photochemical degradation under typical environmental conditions has resulted in the emergence of these chemicals and their transformed products in natural water. Among AOP’s, heterogeneous photocatalysis using TiO2 as photocatalyst appears as the most emerging destructive technology for mineralization of the pollutant in aquatic streams. Among the various semiconductors (TiO2, ZnO, CdS, FeTiO3, MnTiO3, SrTiO2 and SnO2), TiO2 has proven to be the most efficient photocatalyst for environmental applications due to its biological and chemical inertness, high photo reactivity, non-toxicity, and photo stability. Semiconductor photocatalysts are characterized by an electronic band structure in which valence band and conduction band are separated by a band gap, i.e. a region of forbidden energy. Semiconductor based photocatalysts produces e-/h+ pairs which have been employed for degradation of organic pollutants. The present paper focuses on modification of TiO2 photocatalyst in order to shift its absorption edge towards longer wavelength to make it active under natural light. Semiconductor TiO2 photocatalysts was prepared by doping with anion (N), cation (Mn) and double doped (Mn, N) using greener approach. Titanium isopropoxide is used as titania precursor and ethanedithiol, hydroxyl amine hydrochloride, manganous chloride as sulphur, nitrogen and manganese precursors respectively. Synthesized doped TiO2 nanomaterials are characterized for surface morphology (SEM, TEM), crystallinity (XRD) and optical properties (absorption spectra and band gap). EPR data confirms the substitutional incorporation of Mn2+ in TiO2 lattice. The doping influences the phase transformation of rutile and anatase phase crystal and thereby the absorption spectrum changes were observed. The effect of variation of reaction parameters such as solvent, reaction time and calcination temperature on the yield, surface morphology and optical properties was also investigated. The TEM studies show the particle size of nanomaterials varies from 10-50 nm. The calculated band gap of nanomaterials varies from 2.30-2.60 eV. The photocatalytic degradation of organic pollutant organophosphate pesticide (Quinalphos) has been investigated by studying the changes in UV absorption spectrum and the promising results were obtained under visible light. The complete mineralization of quinalphos has occurred as no intermediates were recorded after 8 hrs of degradation confirmed from the HPLC studies.

Keywords: quinalphos, doped-TiO2, mineralization, EPR

Procedia PDF Downloads 328
1114 Airon Project: IoT-Based Agriculture System for the Optimization of Irrigation Water Consumption

Authors: África Vicario, Fernando J. Álvarez, Felipe Parralejo, Fernando Aranda

Abstract:

The irrigation systems of traditional agriculture, such as gravity-fed irrigation, produce a great waste of water because, generally, there is no control over the amount of water supplied in relation to the water needed. The AIRON Project tries to solve this problem by implementing an IoT-based system to sensor the irrigation plots so that the state of the crops and the amount of water used for irrigation can be known remotely. The IoT system consists of a sensor network that measures the humidity of the soil, the weather conditions (temperature, relative humidity, wind and solar radiation) and the irrigation water flow. The communication between this network and a central gateway is conducted by means of long-range wireless communication that depends on the characteristics of the irrigation plot. The main objective of the AIRON project is to deploy an IoT sensor network in two different plots of the irrigation community of Aranjuez in the Spanish region of Madrid. The first plot is 2 km away from the central gateway, so LoRa has been used as the base communication technology. The problem with this plot is the absence of mains electric power, so devices with energy-saving modes have had to be used to maximize the external batteries' use time. An ESP32 SOC board with a LoRa module is employed in this case to gather data from the sensor network and send them to a gateway consisting of a Raspberry Pi with a LoRa hat. The second plot is located 18 km away from the gateway, a range that hampers the use of LoRa technology. In order to establish reliable communication in this case, the long-term evolution (LTE) standard is used, which makes it possible to reach much greater distances by using the cellular network. As mains electric power is available in this plot, a Raspberry Pi has been used instead of the ESP32 board to collect sensor data. All data received from the two plots are stored on a proprietary server located at the irrigation management company's headquarters. The analysis of these data by means of machine learning algorithms that are currently under development should allow a short-term prediction of the irrigation water demand that would significantly reduce the waste of this increasingly valuable natural resource. The major finding of this work is the real possibility of deploying a remote sensing system for irrigated plots by using Commercial-Off-The-Shelf (COTS) devices, easily scalable and adaptable to design requirements such as the distance to the control center or the availability of mains electrical power at the site.

Keywords: internet of things, irrigation water control, LoRa, LTE, smart farming

Procedia PDF Downloads 85
1113 Assessment of Physical Activity Patterns in Patients with Cardiopulmonary Diseases

Authors: Ledi Neçaj

Abstract:

Objectives: The target of this paper is (1) to explain objectively physical activity model throughout three chronic cardiopulmonary conditions, and (2) to study the connection among physical activity dimensions with disease severity, self-reported physical and emotional functioning, and exercise performance. Material and Methods: This is a cross-sectional study of patients in their domestic environment. Patients with cardiopulmonary diseases were: chronic obstructive pulmonary disease (COPD), (n-63), coronary heart failure (n=60), and patients with implantable cardioverter defibrillator (n=60). Main results measures: Seven ambulatory physical activity dimensions (total steps, percentage time active, percentage time ambulating at low, medium, and hard intensity, maximum cadence for 30 non-stop minutes, and peak performance) have been measured with an accelerometer. Results: Subjects with COPD had the lowest amount of ambulatory physical activity compared with topics with coronary heart failure and cardiac dysrhythmias (all 7 interest dimensions, P<.05); total step counts have been: 5319 as opposed to 7464 as opposed to 9570, respectively. Six-minute walk distance becomes correlated (r=.44-.65, P<.01) with all physical activity dimensions inside the COPD pattern, the most powerful correlations being with total steps and peak performance. In topics with cardiac impairment, maximal oxygen intake had the most effective small to slight correlations with five of the physical activity dimensions (r=.22-.40, P<.05). In contrast, correlations among 6-minute walk test distance and physical activity have been higher (r=.48-.61, P<.01) albeit in a smaller pattern of most effective patients with coronary heart failure. For all three samples, self-reported physical and mental health functioning, age, frame mass index, airflow obstruction, and ejection fraction had both exceptionally small and no significant correlations with physical activity. Conclusions: Findings from this study present a profitable benchmark of physical activity patterns in individuals with cardiopulmonary diseases for comparison with future studies. All seven dimensions of ambulatory physical activity have disfavor between subjects with COPD, heart failure, and cardiac dysrhythmias. Depending on the research or clinical goal, the use of one dimension, such as total steps, may be sufficient. Although physical activity had high correlations with performance on a six-minute walk test relative to other variables, accelerometers-based physical activity monitoring provides unique, important information about real-world behavior in patients with cardiopulmonary not already captured with existing measures.

Keywords: ambulatory physical activity, walking, monitoring, COPD, heart failure, implantable defibrillator, exercise performance

Procedia PDF Downloads 87
1112 Using the Micro Computed Tomography to Study the Corrosion Behavior of Magnesium Alloy at Different pH Values

Authors: Chia-Jung Chang, Sheng-Che Chen, Ming-Long Yeh, Chih-Wei Wang, Chih-Han Chang

Abstract:

Introduction and Motivation: In recent years, magnesium alloy is used to be a kind of medical biodegradable materials. Magnesium is an essential element in the body and is efficiently excreted by the kidneys. Furthermore, the mechanical properties of magnesium alloy is closest to human bone. However, in some cases magnesium alloy corrodes so quickly that it would release hydrogen on surface of implant. The other product is hydroxide ion, it can significantly increase the local pH value. The above situations may have adverse effects on local cell functions. On the other hand, nowadays magnesium alloy corrode too fast to maintain the function of implant until the healing of tissue. Therefore, much recent research about magnesium alloy has focused on controlling the corrosion rate. The in vitro corrosion behavior of magnesium alloys is affected by many factors, and pH value is one of factors. In this study, we will study on the influence of pH value on the corrosion behavior of magnesium alloy by the Micro-CT (micro computed tomography) and other instruments.Material and methods: In the first step, we make some guiding plates for specimens of magnesium alloy AZ91 by Rapid Prototyping. The guiding plates are able to be a standard for the degradation of specimen, so that we can use it to make sure the position of specimens in the CT image. We can also simplify the conditions of degradation by the guiding plates.In the next step, we prepare the solution with different pH value. And then we put the specimens into the solution to start the corrosion test. The CT image, surface photographs and weigh are measured on every twelve hours. Results: In the primary results of the test, we make sure that CT image can be a way to quantify the corrosion behavior of magnesium alloy. Moreover we can observe the phenomenon that corrosion always start from some erosion point. It’s possibly based on some defect like dislocations and the voids with high strain energy in the materials. We will deal with the raw data into Mass Loss (ML) and corrosion rate by CT image, surface photographs and weigh in the near future. Having a simple prediction, the pH value and degradation rate will be negatively correlated. And we want to find out the equation of the pH value and corrosion rate. We also have a simple test to simulate the change of the pH value in the local region. In this test the pH value will rise to 10 in a short time. Conclusion: As a biodegradable implant for the area with stagnating body fluid flow in the human body, magnesium alloy can cause the increase of local pH values and release the hydrogen. Those may damage the human cell. The purpose of this study is finding out the equation of the pH value and corrosion rate. After that we will try to find the ways to overcome the limitations of medical magnesium alloy.

Keywords: magnesium alloy, biodegradable materials, corrosion, micro-CT

Procedia PDF Downloads 457
1111 Effect of Accelerated Aging on Antibacterial and Mechanical Properties of SEBS Compounds

Authors: Douglas N. Simoes, Michele Pittol, Vanda F. Ribeiro, Daiane Tomacheski, Ruth M. C. Santana

Abstract:

Thermoplastic elastomers (TPE) compounds are used in a wide range of applications, like home appliances, automotive components, medical devices, footwear, and others. These materials are susceptible to microbial attack, causing a crack in polymer chains compounds based on SEBS copolymers, poly (styrene-b-(ethylene-co-butylene)-b-styrene, are a class of TPE, largely used in domestic appliances like refrigerator seals (gaskets), bath mats and sink squeegee. Moisture present in some areas (such as shower area and sink) in addition to organic matter provides favorable conditions for microbial survival and proliferation, contributing to the spread of diseases besides the reduction of product life cycle due the biodegradation process. Zinc oxide (ZnO) has been studied as an alternative antibacterial additive due its biocidal effect. It is important to know the influence of these additives in the properties of the compounds, both at the beginning and during the life cycle. In that sense, the aim of this study was to evaluate the effect of accelerated aging in oven on antibacterial and mechanical properties of ZnO loaded SEBS based TPE compounds. Two different comercial zinc oxide, named as WR and Pe were used in proportion of 1%. A compound with no antimicrobial additive (standard) was also tested. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The extrusion parameters were kept constant for all materials, screw rotation rate was set at 226 rpm, with a temperature profile from 150 to 190 ºC. Test specimens were prepared using the injection molding machine at 190 ºC. The Standard Test Method for Rubber Property—Effect of Liquids was applied in order to simulate the exposition of TPE samples to detergent ingredients during service. For this purpose, ZnO loaded TPE samples were immersed in a 3.0% w/v detergent (neutral) and accelerated aging in oven at 70°C for 7 days. Compounds were characterized by changes in mechanical (hardness and tension properties) and mass. The Japan Industrial Standard (JIS) Z 2801:2010 was applied to evaluate antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The microbiological tests showed a reduction up to 42% in E. coli and up to 49% in S. aureus population in non-aged samples. There were observed variations in elongation and hardness values with the addition of zinc The changes in tensile at rupture and mass were not significant between non-aged and aged samples.

Keywords: antimicrobial, domestic appliance, sebs, zinc oxide

Procedia PDF Downloads 247
1110 Building a Framework for Digital Emergency Response System for Aged, Long Term Care and Chronic Disease Patients in Asia Pacific Region

Authors: Nadeem Yousuf Khan

Abstract:

This paper proposes the formation of a digital emergency response system (dERS) in the aged, long-term care, and chronic disease setups in the post-COVID healthcare ecosystem, focusing on the Asia Pacific market where the aging population is increasing significantly. It focuses on the use of digital technologies such as wearables, a global positioning system (GPS), and mobile applications to build an integrated care system for old folks with co-morbidities and other chronic diseases. The paper presents a conceptual framework of a connected digital health ecosystem that not only provides proactive care to registered patients but also prevents the damages due to sudden conditions such as strokes by alerting and treating the patients in a digitally connected and coordinated manner. A detailed review of existing digital health technologies such as wearables, GPS, and mobile apps was conducted in context with the new post-COVID healthcare paradigm, along with a detailed literature review on the digital health policies and usability. A good amount of research papers is available in the application of digital health, but very few of them discuss the formation of a new framework for a connected digital ecosystem for the aged care population, which is increasing around the globe. A connected digital emergency response system has been proposed by the author whereby all registered patients (chronic disease and aged/long term care) will be connected to the proposed digital emergency response system (dERS). In the proposed ecosystem, patients will be provided with a tracking wrist band and a mobile app through which the control room will be monitoring the mobility and vitals such as atrial fibrillation (AF), blood sugar, blood pressure, and other vital signs. In addition to that, an alert in case if the patient falls down will add value to this system. In case of any variation in the vitals, an alert is sent to the dERS 24/7, and dERS clinical staff immediately trigger that alert which goes to the connected hospital and the adulatory service providers, and the patient is escorted to the nearest connected tertiary care hospital. By the time, the patient reaches the hospital, dERS team is ready to take appropriate clinical action to save the life of the patient. Strokes or myocardial infarction patients can be prevented from disaster if they are accessible to engagement healthcare. This dERS will play an effective role in saving the lives of aged patients or patients with chronic co-morbidities.

Keywords: aged care, atrial fibrillation, digital health, digital emergency response system, digital technology

Procedia PDF Downloads 122
1109 A Comparative Study on the Influencing Factors of Urban Residential Land Prices Among Regions

Authors: Guo Bingkun

Abstract:

With the rapid development of China's social economy and the continuous improvement of urbanization level, people's living standards have undergone tremendous changes, and more and more people are gathering in cities. The demand for urban residents' housing has been greatly released in the past decade. The demand for housing and related construction land required for urban development has brought huge pressure to urban operations, and land prices have also risen rapidly in the short term. On the other hand, from the comparison of the eastern and western regions of China, there are also great differences in urban socioeconomics and land prices in the eastern, central and western regions. Although judging from the current overall market development, after more than ten years of housing market reform and development, the quality of housing and land use efficiency in Chinese cities have been greatly improved. However, the current contradiction between land demand for urban socio-economic development and land supply, especially the contradiction between land supply and demand for urban residential land, has not been effectively alleviated. Since land is closely linked to all aspects of society, changes in land prices will be affected by many complex factors. Therefore, this paper studies the factors that may affect urban residential land prices and compares them among eastern, central and western cities, and finds the main factors that determine the level of urban residential land prices. This paper provides guidance for urban managers in formulating land policies and alleviating land supply and demand. It provides distinct ideas for improving urban planning and improving urban planning and promotes the improvement of urban management level. The research in this paper focuses on residential land prices. Generally, the indicators for measuring land prices mainly include benchmark land prices, land price level values, parcel land prices, etc. However, considering the requirements of research data continuity and representativeness, this paper chooses to use residential land price level values. Reflects the status of urban residential land prices. First of all, based on the existing research at home and abroad, the paper considers the two aspects of land supply and demand and, based on basic theoretical analysis, determines some factors that may affect urban housing, such as urban expansion, taxation, land reserves, population, and land benefits. Factors of land price and correspondingly selected certain representative indicators. Secondly, using conventional econometric analysis methods, we established a model of factors affecting urban residential land prices, quantitatively analyzed the relationship and intensity of influencing factors and residential land prices, and compared the differences in the impact of urban residential land prices between the eastern, central and western regions. Compare similarities. Research results show that the main factors affecting China's urban residential land prices are urban expansion, land use efficiency, taxation, population size, and residents' consumption. Then, the main reason for the difference in residential land prices between the eastern, central and western regions is the differences in urban expansion patterns, industrial structures, urban carrying capacity and real estate development investment.

Keywords: urban housing, urban planning, housing prices, comparative study

Procedia PDF Downloads 50
1108 Combined Effect of Vesicular System and Iontophoresis on Skin Permeation Enhancement of an Analgesic Drug

Authors: Jigar N. Shah, Hiral J. Shah, Praful D. Bharadia

Abstract:

The major challenge faced by formulation scientists in transdermal drug delivery system is to overcome the inherent barriers related to skin permeation. The stratum corneum layer of the skin is working as the rate limiting step in transdermal transport and reduce drug permeation through skin. Many approaches have been used to enhance the penetration of drugs through this layer of the skin. The purpose of this study is to investigate the development and evaluation of a combined approach of drug carriers and iontophoresis as a vehicle to improve skin permeation of an analgesic drug. Iontophoresis is a non-invasive technique for transporting charged molecules into and through tissues by a mild electric field. It has been shown to effectively deliver a variety of drugs across the skin to the underlying tissue. In addition to the enhanced continuous transport, iontophoresis allows dose titration by adjusting the electric field, which makes personalized dosing feasible. Drug carrier could modify the physicochemical properties of the encapsulated molecule and offer a means to facilitate the percutaneous delivery of difficult-to-uptake substances. Recently, there are some reports about using liposomes, microemulsions and polymeric nanoparticles as vehicles for iontophoretic drug delivery. Niosomes, the nonionic surfactant-based vesicles that are essentially similar in properties to liposomes have been proposed as an alternative to liposomes. Niosomes are more stable and free from other shortcoming of liposomes. Recently, the transdermal delivery of certain drugs using niosomes has been envisaged and niosomes have proved to be superior transdermal nanocarriers. Proniosomes overcome some of the physical stability related problems of niosomes. The proniosomal structure was liquid crystalline-compact niosomes hybrid which could be converted into niosomes upon hydration. The combined use of drug carriers and iontophoresis could offer many additional benefits. The system was evaluated for Encapsulation Efficiency, vesicle size, zeta potential, Transmission Electron Microscopy (TEM), DSC, in-vitro release, ex-vivo permeation across skin and rate of hydration. The use of proniosomal gel as a vehicle for the transdermal iontophoretic delivery was evaluated in-vitro. The characteristics of the applied electric current, such as density, type, frequency, and on/off interval ratio were observed. The study confirms the synergistic effect of proniosomes and iontophoresis in improving the transdermal permeation profile of selected analgesic drug. It is concluded that proniosomal gel can be used as a vehicle for transdermal iontophoretic drug delivery under suitable electric conditions.

Keywords: iontophoresis, niosomes, permeation enhancement, transdermal delivery

Procedia PDF Downloads 379
1107 Biostimulant Activity of Chitooligomers: Effect of Different Degrees of Acetylation and Polymerization on Wheat Seedlings under Salt Stress

Authors: Xiaoqian Zhang, Ping Zou, Pengcheng Li

Abstract:

Salt stress is one of the most serious abiotic stresses, and it can lead to the reduction of agricultural productivity. High salt concentration makes it more difficult for roots to absorb water and disturbs the homeostasis of cellular ions resulting in osmotic stress, ion toxicity and generation of reactive oxygen species (ROS). Compared with the normal physiological conditions, salt stress could inhibit the photosynthesis, break metabolic balance and damage cellular structures, and ultimately results in the reduction of crop yield. Therefore it is vital to develop practical methods for improving the salt tolerance of plants. Chitooligomers (COS) is partially depolymerized products of chitosan, which is consisted of D-glucosamine and N-acetyl-D-glucosamine. In agriculture, COS has the ability to promote plant growth and induce plant innate immunity. The bioactivity of COS closely related to its degree of polymerization (DP) and acetylation (DA). However, most of the previous reports fail to mention the function of COS with different DP and DAs in improving the capacity of plants against salt stress. Accordingly, in this study, chitooligomers (COS) with different degrees of DAs were used to test wheat seedlings response to salt stress. In addition, the determined degrees of polymerization (DPs) COS(DP 4-12) and a heterogeneous COS mixture were applied to explore the relationship between the DP of COSs and its effect on the growth of wheat seedlings in response to salt stress. It showed that COSs, the exogenous elicitor, could promote the growth of wheat seedling, reduce the malondialdehyde (MDA) concentration, and increase the activities of antioxidant enzymes. The results of mRNA expression level test for salt stress-responsive genes indicated that COS keep plants away from being hurt by the salt stress via the regulation of the concentration and the increased antioxidant enzymes activities. Moreover, it was found that the activities of COS was closely related to its Das and COS (DA: 50%) displayed the best salt resistance activity to wheat seedlings. The results also showed that COS with different DP could promote the growth of wheat seedlings under salt stress. COS with a DP (6-8) showed better activities than the other tested samples, implied its activity had a close relationship with its DP. After treatment with chitohexaose, chitoheptaose, and chitooctaose, the photosynthetic parameters were improved obviously. The soluble sugar and proline contents were improved by 26.7%-53.3% and 43.6.0%-70.2%, respectively, while the concentration of malondialdehyde (MDA) was reduced by 36.8% - 49.6%. In addition, the antioxidant enzymes activities were clearly activated. At the molecular level, the results revealed that they could obviously induce the expression of Na+/H+ antiporter genes. In general, these results were fundamental to the study of action mechanism of COS on promoting plant growth under salt stress and the preparation of plant growth regulator.

Keywords: chitooligomers (COS), degree of polymerization (DP), degree of acetylation (DA), salt stress

Procedia PDF Downloads 175
1106 Renewable Natural Gas Production from Biomass and Applications in Industry

Authors: Sarah Alamolhoda, Kevin J. Smith, Xiaotao Bi, Naoko Ellis

Abstract:

For millennials, biomass has been the most important source of fuel used to produce energy. Energy derived from biomass is renewable by re-growth of biomass. Various technologies are used to convert biomass to potential renewable products including combustion, gasification, pyrolysis and fermentation. Gasification is the incomplete combustion of biomass in a controlled environment that results in valuable products such as syngas, biooil and biochar. Syngas is a combustible gas consisting of hydrogen (H₂), carbon monoxide (CO), carbon dioxide (CO₂), and traces of methane (CH₄) and nitrogen (N₂). Cleaned syngas can be used as a turbine fuel to generate electricity, raw material for hydrogen and synthetic natural gas production, or as the anode gas of solid oxide fuel cells. In this work, syngas as a product of woody biomass gasification in British Columbia, Canada, was introduced to two consecutive fixed bed reactors to perform a catalytic water gas shift reaction followed by a catalytic methanation reaction. The water gas shift reaction is a well-established industrial process and used to increase the hydrogen content of the syngas before the methanation process. Catalysts were used in the process since both reactions are reversible exothermic, and thermodynamically preferred at lower temperatures while kinetically favored at elevated temperatures. The water gas shift reactor and the methanation reactor were packed with Cu-based catalyst and Ni-based catalyst, respectively. Simulated syngas with different percentages of CO, H₂, CH₄, and CO₂ were fed to the reactors to investigate the effect of operating conditions in the unit. The water gas shift reaction experiments were done in the temperature of 150 ˚C to 200 ˚C, and the pressure of 550 kPa to 830 kPa. Similarly, methanation experiments were run in the temperature of 300 ˚C to 400 ˚C, and the pressure of 2340 kPa to 3450 kPa. The Methanation reaction reached 98% of CO conversion at 340 ˚C and 3450 kPa, in which more than half of CO was converted to CH₄. Increasing the reaction temperature caused reduction in the CO conversion and increase in the CH₄ selectivity. The process was designed to be renewable and release low greenhouse gas emissions. Syngas is a clean burning fuel, however by going through water gas shift reaction, toxic CO was removed, and hydrogen as a green fuel was produced. Moreover, in the methanation process, the syngas energy was transformed to a fuel with higher energy density (per volume) leading to reduction in the amount of required fuel that flows through the equipment and improvement in the process efficiency. Natural gas is about 3.5 times more efficient (energy/ volume) than hydrogen and easier to store and transport. When modification of existing infrastructure is not practical, the partial conversion of renewable hydrogen to natural gas (with up to 15% hydrogen content), the efficiency would be preserved while greenhouse gas emission footprint is eliminated.

Keywords: renewable natural gas, methane, hydrogen, gasification, syngas, catalysis, fuel

Procedia PDF Downloads 118
1105 Experimental Uniaxial Tensile Characterization of One-Dimensional Nickel Nanowires

Authors: Ram Mohan, Mahendran Samykano, Shyam Aravamudhan

Abstract:

Metallic nanowires with sub-micron and hundreds of nanometer diameter have a diversity of applications in nano/micro-electromechanical systems (NEMS/MEMS). Characterizing the mechanical properties of such sub-micron and nano-scale metallic nanowires are tedious; require sophisticated and careful experimentation to be performed within high-powered microscopy systems (scanning electron microscope (SEM), atomic force microscope (AFM)). Also, needed are nanoscale devices for placing the nanowires; loading them with the intended conditions; obtaining the data for load–deflection during the deformation within the high-powered microscopy environment poses significant challenges. Even picking the grown nanowires and placing them correctly within a nanoscale loading device is not an easy task. Mechanical characterizations through experimental methods for such nanowires are still very limited. Various techniques at different levels of fidelity, resolution, and induced errors have been attempted by material science and nanomaterial researchers. The methods for determining the load, deflection within the nanoscale devices also pose a significant problem. The state of the art is thus still at its infancy. All these factors result and is seen in the wide differences in the characterization curves and the reported properties in the current literature. In this paper, we discuss and present our experimental method, results, and discussions of uniaxial tensile loading and the development of subsequent stress–strain characteristics curves for Nickel nanowires. Nickel nanowires in the diameter range of 220–270 nm were obtained in our laboratory via an electrodeposition method, which is a solution based, template method followed in our present work for growing 1-D Nickel nanowires. Process variables such as the presence of magnetic field, its intensity; and varying electrical current density during the electrodeposition process were found to influence the morphological and physical characteristics including crystal orientation, size of the grown nanowires1. To further understand the correlation and influence of electrodeposition process variables, associated formed structural features of our grown Nickel nanowires to their mechanical properties, careful experiments within scanning electron microscope (SEM) were conducted. Details of the uniaxial tensile characterization, testing methodology, nanoscale testing device, load–deflection characteristics, microscopy images of failure progression, and the subsequent stress–strain curves are discussed and presented.

Keywords: uniaxial tensile characterization, nanowires, electrodeposition, stress-strain, nickel

Procedia PDF Downloads 406
1104 Electromagnetic-Mechanical Stimulation on PC12 for Enhancement of Nerve Axonal Extension

Authors: E. Nakamachi, K. Matsumoto, K. Yamamoto, Y. Morita, H. Sakamoto

Abstract:

In recently, electromagnetic and mechanical stimulations have been recognized as the effective extracellular environment stimulation technique to enhance the defected peripheral nerve tissue regeneration. In this study, we developed a new hybrid bioreactor by adopting 50 Hz uniform alternative current (AC) magnetic stimulation and 4% strain mechanical stimulation. The guide tube for nerve regeneration is mesh structured tube made of biodegradable polymer, such as polylatic acid (PLA). However, when neural damage is large, there is a possibility that peripheral nerve undergoes necrosis. So it is quite important to accelerate the nerve tissue regeneration by achieving enhancement of nerve axonal extension rate. Therefore, we try to design and fabricate the system that can simultaneously load the uniform AC magnetic field stimulation and the stretch stimulation to cells for enhancement of nerve axonal extension. Next, we evaluated systems performance and the effectiveness of each stimulation for rat adrenal pheochromocytoma cells (PC12). First, we designed and fabricated the uniform AC magnetic field system and the stretch stimulation system. For the AC magnetic stimulation system, we focused on the use of pole piece structure to carry out in-situ microscopic observation. We designed an optimum pole piece structure using the magnetic field finite element analyses and the response surface methodology. We fabricated the uniform AC magnetic field stimulation system as a bio-reactor by adopting analytically determined design specifications. We measured magnetic flux density that is generated by the uniform AC magnetic field stimulation system. We confirmed that measurement values show good agreement with analytical results, where the uniform magnetic field was observed. Second, we fabricated the cyclic stretch stimulation device under the conditions of particular strains, where the chamber was made of polyoxymethylene (POM). We measured strains in the PC12 cell culture region to confirm the uniform strain. We found slightly different values from the target strain. Finally, we concluded that these differences were allowable in this mechanical stimulation system. We evaluated the effectiveness of each stimulation to enhance the nerve axonal extension using PC12. We confirmed that the average axonal extension length of PC12 under the uniform AC magnetic stimulation was increased by 16 % at 96 h in our bio-reactor. We could not confirm that the axonal extension enhancement under the stretch stimulation condition, where we found the exfoliating of cells. Further, the hybrid stimulation enhanced the axonal extension. Because the magnetic stimulation inhibits the exfoliating of cells. Finally, we concluded that the enhancement of PC12 axonal extension is due to the magnetic stimulation rather than the mechanical stimulation. Finally, we confirmed that the effectiveness of the uniform AC magnetic field stimulation for the nerve axonal extension using PC12 cells.

Keywords: nerve cell PC12, axonal extension, nerve regeneration, electromagnetic-mechanical stimulation, bioreactor

Procedia PDF Downloads 265
1103 Biomass Waste-To-Energy Technical Feasibility Analysis: A Case Study for Processing of Wood Waste in Malta

Authors: G. A. Asciak, C. Camilleri, A. Rizzo

Abstract:

The waste management in Malta is a national challenge. Coupled with Malta’s recent economic boom, which has seen massive growth in several sectors, especially the construction industry, drastic actions need to be taken. Wood waste, currently being dumped in landfills, is one type of waste which has increased astronomically. This research study aims to carry out a thorough examination on the possibility of using this waste as a biomass resource and adopting a waste-to-energy technology in order to generate electrical energy. This study is composed of three distinct yet interdependent phases, namely, data collection from the local SMEs, thermal analysis using the bomb calorimeter, and generation of energy from wood waste using a micro biomass plant. Data collection from SMEs specializing in wood works was carried out to obtain information regarding the available types of wood waste, the annual weight of imported wood, and to analyse the manner in which wood shavings are used after wood is manufactured. From this analysis, it resulted that five most common types of wood available in Malta which would suitable for generating energy are Oak (hardwood), Beech (hardwood), Red Beech (softwood), African Walnut (softwood) and Iroko (hardwood). Subsequently, based on the information collected, a thermal analysis using a 6200 Isoperibol calorimeter on the five most common types of wood was performed. This analysis was done so as to give a clear indication with regards to the burning potential, which will be valuable when testing the wood in the biomass plant. The experiments carried out in this phase provided a clear indication that the African Walnut generated the highest gross calorific value. This means that this type of wood released the highest amount of heat during the combustion in the calorimeter. This is due to the high presence of extractives and lignin, which accounts for a slightly higher gross calorific value. This is followed by Red Beech and Oak. Moreover, based on the findings of the first phase, both the African Walnut and Red Beech are highly imported in the Maltese Islands for use in various purposes. Oak, which has the third highest gross calorific value is the most imported and common wood used. From the five types of wood, three were chosen for use in the power plant on the basis of their popularity and their heating values. The PP20 biomass plant was used to burn the three types of shavings in order to compare results related to the estimated feedstock consumed by the plant, the high temperatures generated, the time taken by the plant to produce gasification temperatures, and the projected electrical power attributed to each wood type. From the experiments, it emerged that whilst all three types reached the required gasification temperature and thus, are feasible for electrical energy generation. African Walnut was deemed to be the most suitable fast-burning fuel. This is followed by Red-beech and Oak, which required a longer period of time to reach the required gasification temperatures. The results obtained provide a clear indication that wood waste can not only be treated instead of being dumped in dumped in landfill but coupled.

Keywords: biomass, isoperibol calorimeter, waste-to-energy technology, wood

Procedia PDF Downloads 243
1102 Moving Target Defense against Various Attack Models in Time Sensitive Networks

Authors: Johannes Günther

Abstract:

Time Sensitive Networking (TSN), standardized in the IEEE 802.1 standard, has been lent increasing attention in the context of mission critical systems. Such mission critical systems, e.g., in the automotive domain, aviation, industrial, and smart factory domain, are responsible for coordinating complex functionalities in real time. In many of these contexts, a reliable data exchange fulfilling hard time constraints and quality of service (QoS) conditions is of critical importance. TSN standards are able to provide guarantees for deterministic communication behaviour, which is in contrast to common best-effort approaches. Therefore, the superior QoS guarantees of TSN may aid in the development of new technologies, which rely on low latencies and specific bandwidth demands being fulfilled. TSN extends existing Ethernet protocols with numerous standards, providing means for synchronization, management, and overall real-time focussed capabilities. These additional QoS guarantees, as well as management mechanisms, lead to an increased attack surface for potential malicious attackers. As TSN guarantees certain deadlines for priority traffic, an attacker may degrade the QoS by delaying a packet beyond its deadline or even execute a denial of service (DoS) attack if the delays lead to packets being dropped. However, thus far, security concerns have not played a major role in the design of such standards. Thus, while TSN does provide valuable additional characteristics to existing common Ethernet protocols, it leads to new attack vectors on networks and allows for a range of potential attacks. One answer to these security risks is to deploy defense mechanisms according to a moving target defense (MTD) strategy. The core idea relies on the reduction of the attackers' knowledge about the network. Typically, mission-critical systems suffer from an asymmetric disadvantage. DoS or QoS-degradation attacks may be preceded by long periods of reconnaissance, during which the attacker may learn about the network topology, its characteristics, traffic patterns, priorities, bandwidth demands, periodic characteristics on links and switches, and so on. Here, we implemented and tested several MTD-like defense strategies against different attacker models of varying capabilities and budgets, as well as collaborative attacks of multiple attackers within a network, all within the context of TSN networks. We modelled the networks and tested our defense strategies on an OMNET++ testbench, with networks of different sizes and topologies, ranging from a couple dozen hosts and switches to significantly larger set-ups.

Keywords: network security, time sensitive networking, moving target defense, cyber security

Procedia PDF Downloads 73
1101 The Challenge of Assessing Social AI Threats

Authors: Kitty Kioskli, Theofanis Fotis, Nineta Polemi

Abstract:

The European Union (EU) directive Artificial Intelligence (AI) Act in Article 9 requires that risk management of AI systems includes both technical and human oversight, while according to NIST_AI_RFM (Appendix C) and ENISA AI Framework recommendations, claim that further research is needed to understand the current limitations of social threats and human-AI interaction. AI threats within social contexts significantly affect the security and trustworthiness of the AI systems; they are interrelated and trigger technical threats as well. For example, lack of explainability (e.g. the complexity of models can be challenging for stakeholders to grasp) leads to misunderstandings, biases, and erroneous decisions. Which in turn impact the privacy, security, accountability of the AI systems. Based on the NIST four fundamental criteria for explainability it can also classify the explainability threats into four (4) sub-categories: a) Lack of supporting evidence: AI systems must provide supporting evidence or reasons for all their outputs. b) Lack of Understandability: Explanations offered by systems should be comprehensible to individual users. c) Lack of Accuracy: The provided explanation should accurately represent the system's process of generating outputs. d) Out of scope: The system should only function within its designated conditions or when it possesses sufficient confidence in its outputs. Biases may also stem from historical data reflecting undesired behaviors. When present in the data, biases can permeate the models trained on them, thereby influencing the security and trustworthiness of the of AI systems. Social related AI threats are recognized by various initiatives (e.g., EU Ethics Guidelines for Trustworthy AI), standards (e.g. ISO/IEC TR 24368:2022 on AI ethical concerns, ISO/IEC AWI 42105 on guidance for human oversight of AI systems) and EU legislation (e.g. the General Data Protection Regulation 2016/679, the NIS 2 Directive 2022/2555, the Directive on the Resilience of Critical Entities 2022/2557, the EU AI Act, the Cyber Resilience Act). Measuring social threats, estimating the risks to AI systems associated to these threats and mitigating them is a research challenge. In this paper it will present the efforts of two European Commission Projects (FAITH and THEMIS) from the HorizonEurope programme that analyse the social threats by building cyber-social exercises in order to study human behaviour, traits, cognitive ability, personality, attitudes, interests, and other socio-technical profile characteristics. The research in these projects also include the development of measurements and scales (psychometrics) for human-related vulnerabilities that can be used in estimating more realistically the vulnerability severity, enhancing the CVSS4.0 measurement.

Keywords: social threats, artificial Intelligence, mitigation, social experiment

Procedia PDF Downloads 65
1100 Life Cycle Assessment-Based Environmental Assessment of the Production and Maintenance of Wooden Windows

Authors: Pamela Del Rosario, Elisabetta Palumbo, Marzia Traverso

Abstract:

The building sector plays an important role in addressing pressing environmental issues such as climate change and resource scarcity. The energy performance of buildings is considerably affected by the external envelope. In fact, a considerable proportion of the building energy demand is due to energy losses through the windows. Nevertheless, according to literature, to pay attention only to the contribution of windows to the building energy performance, i.e., their influence on energy use during building operation, could result in a partial evaluation. Hence, it is important to consider not only the building energy performance but also the environmental performance of windows, and this not only during the operational stage but along its complete life cycle. Life Cycle Assessment (LCA) according to ISO 14040:2006 and ISO 14044:2006+A1:2018 is one of the most adopted and robust methods to evaluate the environmental performance of products throughout their complete life cycle. This life-cycle based approach avoids the shift of environmental impacts of a life cycle stage to another, allowing to allocate them to the stage in which they originated and to adopt measures that optimize the environmental performance of the product. Moreover, the LCA method is widely implemented in the construction sector to assess whole buildings as well as construction products and materials. LCA is regulated by the European Standards EN 15978:2011, at the building level, and EN 15804:2012+A2:2019, at the level of construction products and materials. In this work, the environmental performance of wooden windows was assessed by implementing the LCA method and adopting primary data. More specifically, the emphasis is given to embedded and operational impacts. Furthermore, correlations are made between these environmental impacts and aspects such as type of wood and window transmittance. In the particular case of the operational impacts, special attention is set on the definition of suitable maintenance scenarios that consider the potential climate influence on the environmental impacts. For this purpose, a literature review was conducted, and expert consultation was carried out. The study underlined the variability of the embedded environmental impacts of wooden windows by considering different wood types and transmittance values. The results also highlighted the need to define appropriate maintenance scenarios for precise assessment results. It was found that both the service life and the window maintenance requirements in terms of treatment and its frequency are highly dependent not only on the wood type and its treatment during the manufacturing process but also on the weather conditions of the place where the window is installed. In particular, it became evident that maintenance-related environmental impacts were the highest for climate regions with the lowest temperatures and the greatest amount of precipitation.

Keywords: embedded impacts, environmental performance, life cycle assessment, LCA, maintenance stage, operational impacts, wooden windows

Procedia PDF Downloads 232
1099 Five Years Analysis and Mitigation Plans on Adjustment Orders Impacts on Projects in Kuwait's Oil and Gas Sector

Authors: Rawan K. Al-Duaij, Salem A. Al-Salem

Abstract:

Projects, the unique and temporary process of achieving a set of requirements have always been challenging; Planning the schedule and budget, managing the resources and risks are mostly driven by a similar past experience or the technical consultations of experts in the matter. With that complexity of Projects in Scope, Time, and execution environment, Adjustment Orders are tools to reflect changes to the original project parameters after Contract signature. Adjustment Orders are the official/legal amendments to the terms and conditions of a live Contract. Reasons for issuing Adjustment Orders arise from changes in Contract scope, technical requirement and specification resulting in scope addition, deletion, or alteration. It can be as well a combination of most of these parameters resulting in an increase or decrease in time and/or cost. Most business leaders (handling projects in the interest of the owner) refrain from using Adjustment Orders considering their main objectives of staying within budget and on schedule. Success in managing the changes results in uninterrupted execution and agreed project costs as well as schedule. Nevertheless, this is not always practically achievable. In this paper, a detailed study through utilizing Industrial Engineering & Systems Management tools such as Six Sigma, Data Analysis, and Quality Control were implemented on the organization’s five years records of the issued Adjustment Orders in order to investigate their prevalence, and time and cost impact. The analysis outcome revealed and helped to identify and categorize the predominant causations with the highest impacts, which were considered most in recommending the corrective measures to reach the objective of minimizing the Adjustment Orders impacts. Data analysis demonstrated no specific trend in the AO frequency in past five years; however, time impact is more than the cost impact. Although Adjustment Orders might never be avoidable; this analysis offers’ some insight to the procedural gaps, and where it is highly impacting the organization. Possible solutions are concluded such as improving project handling team’s coordination and communication, utilizing a blanket service contract, and modifying the projects gate system procedures to minimize the possibility of having similar struggles in future. Projects in the Oil and Gas sector are always evolving and demand a certain amount of flexibility to sustain the goals of the field. As it will be demonstrated, the uncertainty of project parameters, in adequate project definition, operational constraints and stringent procedures are main factors resulting in the need for Adjustment Orders and accordingly the recommendation will be to address that challenge.

Keywords: adjustment orders, data analysis, oil and gas sector, systems management

Procedia PDF Downloads 164
1098 A User-Side Analysis of the Public-Private Partnership: The Case of the New Bundang Subway Line in South Korea

Authors: Saiful Islam, Deuk Jong Bae

Abstract:

The purpose of this study is to examine citizen satisfaction and competitiveness of a Public Private Partnership project. The study focuses on PPP in the transport sector and investigates the New Bundang Subway Line (NBL) in South Korea as the object of a case study. Most PPP studies are dominated by the study of public and private sector interests, which are classified in to three major areas comprising of policy, finance, and management. This study will explore the user perspective by assessing customer satisfaction upon NBL cost and service quality, also the competitiveness of NBL compared to other alternative transport modes which serve the Jeongja – Gangnam trip or vice versa. The regular Bundang Subway Line, New Bundang Subway Line, bus and private vehicle are selected as the alternative transport modes. The study analysed customer satisfaction of NBL and citizen’s preference of alternative transport modes based on a survey in Bundang district, South Korea. Respondents were residents and employees who live or work in Bundang city, and were divided into the following areas Pangyo, Jeongjae – Sunae, Migeun – Ori – Jukjeon, and Imae – Yatap – Songnam. The survey was conducted in January 2015 for two weeks, and 753 responses were gathered. By applying the Hedonic Utility approach, the factors which affect the frequency of using NBL were found to be overall customer satisfaction, convenience of access, and the socio economic demographic of the individual. In addition, by applying the Analytic Hierarchy Process (AHP) method, criteria factors influencing the decision to select alternative transport modes were identified. Those factors, along with the author judgement of alternative transport modes, and their associated criteria and sub-criteria produced a priority list of user preferences regarding their alternative transport mode options. The study found that overall the regular Bundang Subway Line (BL), which was built and operated under a conventional procurement method was selected as the most preferable transport mode due to its cost competitiveness. However, on the sub-criteria level analysis, the NBL has competitiveness on service quality, particularly on journey time. By conducting a sensitivity analysis, the NBL can become the first choice of transport by increasing the NBL’s degree of weight associated with cost by 0,05. This means the NBL would need to reduce either it’s fare cost or transfer fee, or combine those two cost components to reduce the total of the current cost by 25%. In addition, the competitiveness of NBL also could be obtained by increasing NBL convenience through escalating access convenience such as constructing an additional station or providing more access modes. Although these convenience improvements would require a few extra minutes of journey time, the user found this to be acceptable. The findings and policy suggestions can contribute to the next phase of NBL development, showing that consideration should be given to the citizen’s voice. The case study results also contribute to the literature of PPP projects specifically from a user side perspective.

Keywords: public private partnership, customer satisfaction, public transport, new Bundang subway line

Procedia PDF Downloads 351
1097 Effect of Pulsed Electrical Field on the Mechanical Properties of Raw, Blanched and Fried Potato Strips

Authors: Maria Botero-Uribe, Melissa Fitzgerald, Robert Gilbert, Kim Bryceson, Jocelyn Midgley

Abstract:

French fry manufacturing involves a series of processes in which structural properties of potatoes are modified to produce crispy french fries which consumers enjoy. In addition to the traditional french fry manufacturing process, the industry is applying a relatively new process called pulsed electrical field (PEF) to the whole potatoes. There is a wealth of information on the technical treatment conditions of PEF, however, there is a lack of information about its effect on the structural properties that affect texture and its synergistic interactions with the other manufacturing steps of french fry production. The effect of PEF on starch gelatinisation properties of Russet Burbank potato was measured using a Differential Scanning Calorimeter. Cation content (K+, Ca2+ and Mg2+) was determined by inductively coupled plasma optical emission spectrophotometry. Firmness, and toughness of raw and blanched potatoes were determined in an uniaxial compression test. Moisture content was determined in a vacuum oven and oil content was measured using the soxhlet system with hexane. The final texture of the french fries – crispness - was determined using a three bend point test. Triangle tests were conducted to determine if consumers were able to perceive sensory differences between French fries that were PEF treated and those without treatment. The concentration of K+, Ca2+ and Mg2+ decreased significantly in the raw potatoes after the PEF treatment. The PEF treatment significantly increased modulus of elasticity, compression strain, compression force and toughness in the raw potato. The PEF-treated raw potato were firmer and stiffer, and its structure integrity held together longer, resisted higher force before fracture and stretched further than the untreated ones. The strain stress relationship exhibited by the PEF-treated raw potato could be due to an increase in the permeability of the plasmalema and tonoplasm allowing Ca2+ and Mg2+ cations to reach the cell wall and middle lamella, and be available for cross linking with the pectin molecule. The PEF-treated raw potato exhibited a slightly higher onset gelatinisation temperatures, similar peak temperatures and lower gelatinisation ranges than the untreated raw potatoes. The final moisture content of the french fries was not significantly affected by the PEF treatment. Oil content in the PEF- treated potatoes was lower than the untreated french fries, however, not statistically significant at 5 %. The PEF treatment did not have an overall significant effect on french fry crispness (modulus of elasticity), flexure stress or strain. The triangle tests show that most consumers could not detect a difference between French fries that received a PEF treatment from those that did not.

Keywords: french fries, mechanical properties, PEF, potatoes

Procedia PDF Downloads 236
1096 Tribological Behaviour of the Degradation Process of Additive Manufactured Stainless Steel 316L

Authors: Yunhan Zhang, Xiaopeng Li, Zhongxiao Peng

Abstract:

Additive manufacturing (AM) possesses several key characteristics, including high design freedom, energy-efficient manufacturing process, reduced material waste, high resolution of finished products, and excellent performance of finished products. These advantages have garnered widespread attention and fueled rapid development in recent decades. AM has significantly broadened the spectrum of available materials in the manufacturing industry and is gradually replacing some traditionally manufactured parts. Similar to components produced via traditional methods, products manufactured through AM are susceptible to degradation caused by wear during their service life. Given the prevalence of 316L stainless steel (SS) parts and the limited research on the tribological behavior of 316L SS samples or products fabricated using AM technology, this study aims to investigate the degradation process and wear mechanisms of 316L SS disks fabricated using AM technology. The wear mechanisms and tribological performance of these AM-manufactured samples are compared with commercial 316L SS samples made using conventional methods. Additionally, methods to enhance the tribological performance of additive-manufactured SS samples are explored. Four disk samples with a diameter of 75 mm and a thickness of 10 mm are prepared. Two of them (Group A) are prepared from a purchased SS bar using a milling method. The other two disks (Group B), with the same dimensions, are made of Gas Atomized 316L Stainless Steel (size range: 15-45 µm) purchased from Carpenter Additive and produced using Laser Powder Bed Fusion (LPBF). Pin-on-disk tests are conducted on these disks, which have similar surface roughness and hardness levels. Multiple tests are carried out under various operating conditions, including varying loads and/or speeds, and the friction coefficients are measured during these tests. In addition, the evolution of the surface degradation processes is monitored by creating moulds of the wear tracks and quantitatively analyzing the surface morphologies of the mould images. This analysis involves quantifying the depth and width of the wear tracks and analyzing the wear debris generated during the wear processes. The wear mechanisms and wear performance of these two groups of SS samples are compared. The effects of load and speed on the friction coefficient and wear rate are investigated. The ultimate goal is to gain a better understanding of the surface degradation of additive-manufactured SS samples. This knowledge is crucial for enhancing their anti-wear performance and extending their service life.

Keywords: degradation process, additive manufacturing, stainless steel, surface features

Procedia PDF Downloads 79
1095 On implementing Sumak Kawsay in Post Bellum Principles: The Reconstruction of Natural Damage in the Aftermath of War

Authors: Lisa Tragbar

Abstract:

In post-war scenarios, reconstruction is a principle towards creating a Just Peace in order to restore a stable post-war society. Just peace theorists explore normative behaviour after war, including the duties and responsibilities of different actors and peacebuilding strategies to achieve a lasting, positive peace. Environmental peace ethicists have argued for including the role of nature in the Ethics of War and Peace. This text explores the question of why and how to rethink the value of nature in post-war scenarios. The aim is to include the rights of nature within a maximalist account of reconstruction by highlighting sumak kawsay in the post-war period. Destruction of nature is usually considered collateral damage in war scenarios. Common universal standards for post-war reconstruction are restitution, compensation and reparation programmes, which is mostly anthropocentric approach. The problem of reconstruction in the aftermath of war is the instrumental value of nature. The responsibility to rebuild needs to be revisited within a non-anthropocentric context. There is an ongoing debate about a minimalist or maximalist approach to post-war reconstruction. While Michael Walzer argues for minimalist in-and-out interventions, Alex Bellamy argues for maximalist strategies such as the responsibility to protect, a UN-concept on how face mass atrocity crimes and how to reconstruct peace. While supporting the tradition of maximalist responsibility to rebuild, these normative post-Bellum concepts do not yet sufficiently consider the rights of nature in the aftermath of war. While reconstruction of infrastructures seems important and necessary, concepts that strengthen the intrinsic value of nature in post-bellum measures must also be included. Peace is not Just Peace without a thriving nature that provides the conditions and resources to live and guarantee human rights. Ecuador's indigenous philosophy of life can contribute to the restoration of nature after war by changing the perspective on the value of nature. The sumak kawsay includes the de-hierarchisation of humans and nature and the principle of reciprocity towards nature. Transferring this idea of life and interconnectedness to post-war reconstruction practices, post bellum perpetrators have restorative obligations not only to people but also to nature. This maximalist approach would include both a restitutive principle, by restoring the balance between humans and nature, and a retributive principle, by punishing the perpetrators through compensatory duties to nature. A maximalist approach to post-war reconstruction that takes into account the rights of nature expands the normative post-war questions to include a more complex field of responsibilities. After a war, Just Peace is restored once not only human rights but also the rights of nature are secured. A minimalist post-bellum approach to reconstruction does not locate future problems at their source and does not offer a solution for the inclusion of obligations to nature. There is a lack of obligations towards nature after a war, which can be changed through a different perspective: The indigenous philosophy of life provides the necessary principles for a comprehensive reconstruction of Just Peace.

Keywords: normative ethics, peace, post-war, sumak kawsay, applied ethics

Procedia PDF Downloads 78
1094 Role of Indigenous Peoples in Climate Change

Authors: Neelam Kadyan, Pratima Ranga, Yogender

Abstract:

Indigenous people are the One who are affected by the climate change the most, although there have contributed little to its causes. This is largely a result of their historic dependence on local biological diversity, ecosystem services and cultural landscapes as a source of their sustenance and well-being. Comprising only four percent of the world’s population they utilize 22 percent of the world’s land surface. Despite their high exposure-sensitivity indigenous peoples and local communities are actively responding to changing climatic conditions and have demonstrated their resourcefulness and resilience in the face of climate change. Traditional Indigenous territories encompass up to 22 percent of the world’s land surface and they coincide with areas that hold 80 percent of the planet’s biodiversity. Also, the greatest diversity of indigenous groups coincides with the world’s largest tropical forest wilderness areas in the Americas (including Amazon), Africa, and Asia, and 11 percent of world forest lands are legally owned by Indigenous Peoples and communities. This convergence of biodiversity-significant areas and indigenous territories presents an enormous opportunity to expand efforts to conserve biodiversity beyond parks, which tend to benefit from most of the funding for biodiversity conservation. Tapping on Ancestral Knowledge Indigenous Peoples are carriers of ancestral knowledge and wisdom about this biodiversity. Their effective participation in biodiversity conservation programs as experts in protecting and managing biodiversity and natural resources would result in more comprehensive and cost effective conservation and management of biodiversity worldwide. Addressing the Climate Change Agenda Indigenous Peoples has played a key role in climate change mitigation and adaptation. The territories of indigenous groups who have been given the rights to their lands have been better conserved than the adjacent lands (i.e., Brazil, Colombia, Nicaragua, etc.). Preserving large extensions of forests would not only support the climate change objectives, but it would respect the rights of Indigenous Peoples and conserve biodiversity as well. A climate change agenda fully involving Indigenous Peoples has many more benefits than if only government and/or the private sector are involved. Indigenous peoples are some of the most vulnerable groups to the negative effects of climate change. Also, they are a source of knowledge to the many solutions that will be needed to avoid or ameliorate those effects. For example, ancestral territories often provide excellent examples of a landscape design that can resist the negatives effects of climate change. Over the millennia, Indigenous Peoples have developed adaptation models to climate change. They have also developed genetic varieties of medicinal and useful plants and animal breeds with a wider natural range of resistance to climatic and ecological variability.

Keywords: ancestral knowledge, cost effective conservation, management, indigenous peoples, climate change

Procedia PDF Downloads 677
1093 Assessment of Indoor Air Pollution in Naturally Ventilated Dwellings of Mega-City Kolkata

Authors: Tanya Kaur Bedi, Shankha Pratim Bhattacharya

Abstract:

The US Environmental Protection Agency defines indoor air pollution as “The air quality within and around buildings, especially as it relates to the health and comfort of building occupants”. According to the 2021 report by the Energy Policy Institute at Chicago, Indian residents, a country which is home to the highest levels of air pollution in the world, lose about 5.9 years from life expectancy due to poor air quality and yet has numerous dwellings dependent on natural ventilation. Currently the urban population spends 90% of the time indoors, this scenario raises a concern for occupant health and well-being. This study attempts to demonstrate the causal relationship between the indoor air pollution and its determining aspects. Detailed indoor air pollution audits were conducted in residential buildings located in Kolkata, India in the months of December and January 2021. According to the air pollution knowledge assessment city program in India, Kolkata is also the second most polluted mega-city after Delhi. Although the air pollution levels are alarming year-long, the winter months are most crucial due to the unfavourable environmental conditions. While emissions remain typically constant throughout the year, cold air is denser and moves slower than warm air, trapping the pollution in place for much longer and consequently is breathed in at a higher rate than the summers. The air pollution monitoring period was selected considering environmental factors and major pollution contributors like traffic and road dust. This study focuses on the relationship between the built environment and the spatial-temporal distribution of air pollutants in and around it. The measured parameters include, temperature, relative humidity, air velocity, particulate matter, volatile organic compounds, formaldehyde, and benzene. A total of 56 rooms were audited, selectively targeting the most dominant middle-income group in the urban area of the metropolitan. The data-collection was conducted using a set of instruments positioned in the human breathing-zone. The study assesses the relationship between indoor air pollution levels and factors determining natural ventilation and air pollution dispersion such as surrounding environment, dominant wind, openable window to floor area ratio, windward or leeward side openings, and natural ventilation type in the room: single side or cross-ventilation, floor height, residents cleaning habits, etc.

Keywords: indoor air quality, occupant health, air pollution, architecture, urban environment

Procedia PDF Downloads 107
1092 Controlling the Release of Cyt C and L- Dopa from pNIPAM-AAc Nanogel Based Systems

Authors: Sulalit Bandyopadhyay, Muhammad Awais Ashfaq Alvi, Anuvansh Sharma, Wilhelm R. Glomm

Abstract:

Release of drugs from nanogels and nanogel-based systems can occur under the influence of external stimuli like temperature, pH, magnetic fields and so on. pNIPAm-AAc nanogels respond to the combined action of both temperature and pH, the former being mostly determined by hydrophilic-to-hydrophobic transitions above the volume phase transition temperature (VPTT), while the latter is controlled by the degree of protonation of the carboxylic acid groups. These nanogels based systems are promising candidates in the field of drug delivery. Combining nanogels with magneto-plasmonic nanoparticles (NPs) introduce imaging and targeting modalities along with stimuli-response in one hybrid system, thereby incorporating multifunctionality. Fe@Au core-shell NPs possess optical signature in the visible spectrum owing to localized surface plasmon resonance (LSPR) of the Au shell, and superparamagnetic properties stemming from the Fe core. Although there exist several synthesis methods to control the size and physico-chemical properties of pNIPAm-AAc nanogels, yet, there is no comprehensive study that highlights the dependence of incorporation of one or more layers of NPs to these nanogels. In addition, effective determination of volume phase transition temperature (VPTT) of the nanogels is a challenge which complicates their uses in biological applications. Here, we have modified the swelling-collapse properties of pNIPAm-AAc nanogels, by combining with Fe@Au NPs using different solution based methods. The hydrophilic-hydrophobic transition of the nanogels above the VPTT has been confirmed to be reversible. Further, an analytical method has been developed to deduce the average VPTT which is found to be 37.3°C for the nanogels and 39.3°C for nanogel coated Fe@Au NPs. An opposite swelling –collapse behaviour is observed for the latter where the Fe@Au NPs act as bridge molecules pulling together the gelling units. Thereafter, Cyt C, a model protein drug and L-Dopa, a drug used in the clinical treatment of Parkinson’s disease were loaded separately into the nanogels and nanogel coated Fe@Au NPs, using a modified breathing-in mechanism. This gave high loading and encapsulation efficiencies (L Dopa: ~9% and 70µg/mg of nanogels, Cyt C: ~30% and 10µg/mg of nanogels respectively for both the drugs. The release kinetics of L-Dopa, monitored using UV-vis spectrophotometry was observed to be rather slow (over several hours) with highest release happening under a combination of high temperature (above VPTT) and acidic conditions. However, the release of L-Dopa from nanogel coated Fe@Au NPs was the fastest, accounting for release of almost 87% of the initially loaded drug in ~30 hours. The chemical structure of the drug, drug incorporation method, location of the drug and presence of Fe@Au NPs largely alter the drug release mechanism and the kinetics of these nanogels and Fe@Au NPs coated with nanogels.

Keywords: controlled release, nanogels, volume phase transition temperature, l-dopa

Procedia PDF Downloads 331
1091 An Economic Way to Toughen Poly Acrylic Acid Superabsorbent Polymer Using Hyper Branched Polymer

Authors: Nazila Dehbari, Javad Tavakoli, Yakani Kambu, Youhong Tang

Abstract:

Superabsorbent hydrogels (SAP), as an enviro-sensitive material have been widely used for industrial and biomedical applications due to their unique structure and capabilities. Poor mechanical properties of SAPs - which is extremely related to their large volume change – count as a great weakness in adopting for high-tech applications. Therefore, improving SAPs’ mechanical properties via toughening methods by mixing different types of cross-linked polymer or introducing energy-dissipating mechanisms is highly focused. In this work, in order to change the intrinsic brittle character of commercialized Poly Acrylic Acid (here as SAP) to be semi-ductile, a commercial available highly branched tree-like dendritic polymers with numerous –OH end groups known as hyper-branched polymer (HB) has been added to PAA-SAP system in a single step, cost effective and environment friendly solvent casting method. Samples were characterized by FTIR, SEM and TEM and their physico-chemical characterization including swelling capabilities, hydraulic permeability, surface tension and thermal properties had been performed. Toughness energy, stiffness, elongation at breaking point, viscoelastic properties and samples extensibility were mechanical properties that had been performed and characterized as a function of samples lateral cracks’ length in different HB concentration. Addition of HB to PAA-SAP significantly improved mechanical and surface properties. Increasing equilibrium swelling ratio by about 25% had been experienced by the SAP-HB samples in comparison with SAPs; however, samples swelling kinetics remained without changes as initial rate of water uptake and equilibrium time haven’t been subjected to any changes. Thermal stability analysis showed that HB is participating in hybrid network formation while improving mechanical properties. Samples characterization by TEM showed that, the aggregated HB polymer binders into nano-spheres with diameter in range of 10–200 nm. So well dispersion in the SAP matrix occurred as it was predictable due to the hydrophilic character of the numerous hydroxyl groups at the end of HB which enhance the compatibility of HB with PAA-SAP. As the profused -OH groups in HB could react with -COOH groups in the PAA-SAP during the curing process, the formation of a 2D structure in the SAP-HB could be attributed to the strong interfacial adhesion between HB and the PAA-SAP matrix which hinders the activity of PAA chains (SEM analysis). FTIR spectra introduced new peaks at 1041 and 1121 cm-1 that attributed to the C–O(–OH) stretching hydroxyl and O–C stretching ester groups of HB polymer binder indicating the incorporation of HB polymer into the SAP structure. SAP-HB polymer has significant effects on the final mechanical properties. The brittleness of PAA hydrogels are decreased by introducing HB as the fracture energies of hydrogels increased from 8.67 to 26.67. PAA-HBs’ stretch ability enhanced about 10 folds while reduced as a function of different notches depth.

Keywords: superabsorbent polymer, toughening, viscoelastic properties, hydrogel network

Procedia PDF Downloads 323
1090 Cross-Validation of the Data Obtained for ω-6 Linoleic and ω-3 α-Linolenic Acids Concentration of Hemp Oil Using Jackknife and Bootstrap Resampling

Authors: Vibha Devi, Shabina Khanam

Abstract:

Hemp (Cannabis sativa) possesses a rich content of ω-6 linoleic and ω-3 linolenic essential fatty acid in the ratio of 3:1, which is a rare and most desired ratio that enhances the quality of hemp oil. These components are beneficial for the development of cell and body growth, strengthen the immune system, possess anti-inflammatory action, lowering the risk of heart problem owing to its anti-clotting property and a remedy for arthritis and various disorders. The present study employs supercritical fluid extraction (SFE) approach on hemp seed at various conditions of parameters; temperature (40 - 80) °C, pressure (200 - 350) bar, flow rate (5 - 15) g/min, particle size (0.430 - 1.015) mm and amount of co-solvent (0 - 10) % of solvent flow rate through central composite design (CCD). CCD suggested 32 sets of experiments, which was carried out. As SFE process includes large number of variables, the present study recommends the application of resampling techniques for cross-validation of the obtained data. Cross-validation refits the model on each data to achieve the information regarding the error, variability, deviation etc. Bootstrap and jackknife are the most popular resampling techniques, which create a large number of data through resampling from the original dataset and analyze these data to check the validity of the obtained data. Jackknife resampling is based on the eliminating one observation from the original sample of size N without replacement. For jackknife resampling, the sample size is 31 (eliminating one observation), which is repeated by 32 times. Bootstrap is the frequently used statistical approach for estimating the sampling distribution of an estimator by resampling with replacement from the original sample. For bootstrap resampling, the sample size is 32, which was repeated by 100 times. Estimands for these resampling techniques are considered as mean, standard deviation, variation coefficient and standard error of the mean. For ω-6 linoleic acid concentration, mean value was approx. 58.5 for both resampling methods, which is the average (central value) of the sample mean of all data points. Similarly, for ω-3 linoleic acid concentration, mean was observed as 22.5 through both resampling. Variance exhibits the spread out of the data from its mean. Greater value of variance exhibits the large range of output data, which is 18 for ω-6 linoleic acid (ranging from 48.85 to 63.66 %) and 6 for ω-3 linoleic acid (ranging from 16.71 to 26.2 %). Further, low value of standard deviation (approx. 1 %), low standard error of the mean (< 0.8) and low variance coefficient (< 0.2) reflect the accuracy of the sample for prediction. All the estimator value of variance coefficients, standard deviation and standard error of the mean are found within the 95 % of confidence interval.

Keywords: resampling, supercritical fluid extraction, hemp oil, cross-validation

Procedia PDF Downloads 141