Search results for: values pedagogy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7297

Search results for: values pedagogy

5827 Impact of Mathematical Modeling on Mathematics Achievement, Attitude, and Interest of Pre-Service Teachers in Niger State, Nigeria

Authors: Mohammed Abubakar Ndanusa, A. A. Hassan, R. W. Gimba, A. M. Alfa, M. T. Abari

Abstract:

This study investigated the Impact of Mathematical Modeling on Mathematics Achievement, Attitude and Interest of Pre-Service Teachers in Niger States, Nigeria. It was an attempt to ease students’ difficulties in comprehending mathematics. The study used randomized pretest, posttest control group design. Two Colleges of Education were purposively selected from Niger State with a sample size of eighty-four 84 students. Three research instruments used are Mathematical Modeling Achievement Test (MMAT), Attitudes Towards Mathematical Modeling Questionnaire (ATMMQ) and Mathematical Modeling Students Interest Questionnaire (MMSIQ). Pearson Product Moment Correlation (PPMC) formula was used for MMAT and Alpha Cronbach was used for ATMMQ and MMSIQ to determine their reliability coefficient and the values the following values were obtained respectively 0.76, 0.75 and 0.73. Independent t-test statistics was used to test hypothesis One while Mann Whitney U-test was used to test hypothesis Two and Three. Findings revealed that students taught Mathematics using Mathematical Modeling performed better than their counterparts taught using lecture method. However, there was a significant difference in the attitude and interest of pre-service mathematics teachers after being exposed to mathematical modeling. The strategy, therefore, was recommended to be used by Mathematics teachers with a view to improving students’ attitude and interest towards Mathematics. Also, modeling should be taught at NCE level in order to prepare pre-service teachers towards real task in the field of Mathematics.

Keywords: achievement, attitude, interest, mathematical modeling, pre-service teachers

Procedia PDF Downloads 285
5826 Activated Carbon Content Influence in Mineral Barrier Performance

Authors: Raul Guerrero, Sandro Machado, Miriam Carvalho

Abstract:

Soil and aquifer pollution, caused by hydrocarbon liquid spilling, is induced by misguided operational practices and inefficient safety guidelines. According to the Environmental Brazilian Institute (IBAMA), during 2013 alone, over 472.13 m3 of diesel oil leaked into the environment nationwide for those reported cases only. Regarding the aforementioned information, there’s an indisputable need to adopt appropriate environmental safeguards specially in those areas intended for the production, treatment, transportation and storage of hydrocarbon fluids. According to Brazilian norm, ABNT-NBR 7505-1:2000, compacted soil or mineral barriers used in structural contingency levees, such as storage tanks, are required to present a maximum water permeability coefficient, k, of 1x10-6 cm/s. However, as discussed by several authors, water can not be adopted as the reference fluid to determine the site’s containment performance against organic fluids. Mainly, due to the great discrepancy observed in polarity values (dielectric constant) between water and most organic fluids. Previous studies, within this same research group, proposed an optimal range of values for the soil’s index properties for mineral barrier composition focused on organic fluid containment. Unfortunately, in some circumstances, it is not possible to encounter a type of soil with the required geotechnical characteristics near the containment site, increasing prevention and construction costs, as well as environmental risks. For these specific cases, the use of an organic product or material as an additive to enhance mineral-barrier containment performance may be an attractive geotechnical solution. This paper evaluates the effect of activated carbon (AC) content additions into a clayey soil towards hydrocarbon fluid permeability. Variables such as compaction energy, carbon texture and addition content (0%, 10% and 20%) were analyzed through laboratory falling-head permeability tests using distilled water and commercial diesel as percolating fluids. The obtained results showed that the AC with smaller particle-size reduced k values significantly against diesel, indicating a direct relationship between particle-size reduction (surface area increase) of the organic product and organic fluid containment.

Keywords: activated carbon, clayey soils, permeability, surface area

Procedia PDF Downloads 242
5825 Binding Studies of Complexes of Anticancer Drugs with DNA and Enzymes Involved in DNA Replication Using Molecular Docking and Cell Culture Techniques

Authors: Fouzia Perveen, Rumana Qureshi

Abstract:

The presently studied twelve anticancer drugs are the cytotoxic agents which inhibit the replication of DNA and activity of enzymes involved in DNA replication namely topoisomerase-II, polymerase and helicase and have shown remarkable anticancer activity in clinical trials. In this study, we performed molecular docking studies of twelve antitumor drugs against DNA and DNA enzymes in the presence and absence of ascorbic acid (AA) and developed the quantitative structure-activity relationship (QSAR) model for anticancer activity screening. A number of electronic and steric descriptors were calculated using MOE software package. QSAR was established showing a correlation of binding strength with various physicochemical descriptors. Out of these twelve, eight cytotoxic drugs were tested on Non-Small Cell Lung Cancer cell lines (H-157 and H-1299) in the absence and presence of ascorbic acid and experimental IC50 values were calculated. From the docking studies, binding constants were calculated indicating the strength of drug-DNA and drug-enzyme complex formation and it was correlated to the IC50 values (both experimental and theoretical). These results can offer useful references for directing the molecular design of DNA enzyme inhibitor with improved anticancer activity.

Keywords: ascorbic acid, binding constant, cytotoxic agents, cell culture, DNA, DNA enzymes, molecular docking

Procedia PDF Downloads 411
5824 A One-Dimensional Model for Contraction in Burn Wounds: A Sensitivity Analysis and a Feasibility Study

Authors: Ginger Egberts, Fred Vermolen, Paul van Zuijlen

Abstract:

One of the common complications in post-burn scars is contractions. Depending on the extent of contraction and the wound dimensions, the contracture can cause a limited range-of-motion of joints. A one-dimensional morphoelastic continuum hypothesis-based model describing post-burn scar contractions is considered. The beauty of the one-dimensional model is the speed; hence it quickly yields new results and, therefore, insight. This model describes the movement of the skin and the development of the strain present. Besides these mechanical components, the model also contains chemical components that play a major role in the wound healing process. These components are fibroblasts, myofibroblasts, the so-called signaling molecules, and collagen. The dermal layer is modeled as an isotropic morphoelastic solid, and pulling forces are generated by myofibroblasts. The solution to the model equations is approximated by the finite-element method using linear basis functions. One of the major challenges in biomechanical modeling is the estimation of parameter values. Therefore, this study provides a comprehensive description of skin mechanical parameter values and a sensitivity analysis. Further, since skin mechanical properties change with aging, it is important that the model is feasible for predicting the development of contraction in burn patients of different ages, and hence this study provides a feasibility study. The variability in the solutions is caused by varying the values for some parameters simultaneously over the domain of computation, for which the results of the sensitivity analysis are used. The sensitivity analysis shows that the most sensitive parameters are the equilibrium concentration of collagen, the apoptosis rate of fibroblasts and myofibroblasts, and the secretion rate of signaling molecules. This suggests that most of the variability in the evolution of contraction in burns in patients of different ages might be caused mostly by the decreasing equilibrium of collagen concentration. As expected, the feasibility study shows this model can be used to show distinct extents of contractions in burns in patients of different ages. Nevertheless, contraction formation in children differs from contraction formation in adults because of the growth. This factor has not been incorporated in the model yet, and therefore the feasibility results for children differ from what is seen in the clinic.

Keywords: biomechanics, burns, feasibility, fibroblasts, morphoelasticity, sensitivity analysis, skin mechanics, wound contraction

Procedia PDF Downloads 134
5823 Geochemical Characterization of the Fahdene Formation in the Kef-Tedjerouine Area (Northwestern Tunisia)

Authors: Tahani Hallek, Dhaou Akrout, Riadh Ahmadi, Mabrouk Montacer

Abstract:

The present work is an organo-geochemical study of the Fahdene Formation outcrops at the Mahjouba region belonging to the Eastern part of the Kalaat Senan structure in northwestern Tunisia (the Kef-Tedjerouine area). The analytical study of the organic content of the samples collected, allowed us to point out that the Formation in question is characterized by an average to good oil potential. This fossilized organic matter has a planktonic marine origin (type II), as indicated by the relatively high values of hydrogen index. Tmax values are in the range 440°C and attest a thermal stage of the oil window beginning. Mineralogical study found the existence of macro and micro fractures that are parallel to rock stratification or oblique with a high density. Fill standpoint, the major component of the mineralized veins is the fibrous calcite with bitumen traces. The composition of these fractures is mainly due to the availability of chemical elements scattered in the surrounding rock. As for the origin of these fractures, we assume that fluid pressure processes are heavily involved, together with the regional compressional tectonic stress regime. The Fahdene Formation has a great importance in conventional oil development as a potential source rock, and even in terms of unconventional oil exploitation through the intense fracturing allowing the percolation of gas shale and facilitating its exploitation.

Keywords: fluid pressure, fracturation, oil exploration, organic matter

Procedia PDF Downloads 242
5822 Heat and Mass Transfer Modelling of Industrial Sludge Drying at Different Pressures and Temperatures

Authors: L. Al Ahmad, C. Latrille, D. Hainos, D. Blanc, M. Clausse

Abstract:

A two-dimensional finite volume axisymmetric model is developed to predict the simultaneous heat and mass transfers during the drying of industrial sludge. The simulations were run using COMSOL-Multiphysics 3.5a. The input parameters of the numerical model were acquired from a preliminary experimental work. Results permit to establish correlations describing the evolution of the various parameters as a function of the drying temperature and the sludge water content. The selection and coupling of the equation are validated based on the drying kinetics acquired experimentally at a temperature range of 45-65 °C and absolute pressure range of 200-1000 mbar. The model, incorporating the heat and mass transfer mechanisms at different operating conditions, shows simulated values of temperature and water content. Simulated results are found concordant with the experimental values, only at the first and last drying stages where sludge shrinkage is insignificant. Simulated and experimental results show that sludge drying is favored at high temperatures and low pressure. As experimentally observed, the drying time is reduced by 68% for drying at 65 °C compared to 45 °C under 1 atm. At 65 °C, a 200-mbar absolute pressure vacuum leads to an additional reduction in drying time estimated by 61%. However, the drying rate is underestimated in the intermediate stage. This rate underestimation could be improved in the model by considering the shrinkage phenomena that occurs during sludge drying.

Keywords: industrial sludge drying, heat transfer, mass transfer, mathematical modelling

Procedia PDF Downloads 113
5821 Performance of a Sailing Vessel with a Solid Wing Sail Compared to a Traditional Sail

Authors: William Waddington, M. Jahir Rizvi

Abstract:

Sail used to propel a vessel functions in a similar way to an aircraft wing. Traditionally, cloth and ropes were used to produce sails. However, there is one major problem with traditional sail design, the increase in turbulence and flow separation when compared to that of an aircraft wing with the same camber. This has led to the development of the solid wing sail focusing mainly on the sail shape. Traditional cloth sails are manufactured as a single element whereas solid wing sail is made of two segments. To the authors’ best knowledge, the phenomena behind the performances of this type of sail at various angles of wind direction with respect to a sailing vessel’s direction (known as the angle of attack) is still an area of mystery. Hence, in this study, the thrusts of a sailing vessel produced by wing sails constructed with various angles (22°, 24°, 26° and 28°) between the two segments have been compared to that of a traditional cloth sail made of carbon-fiber material. The reason for using carbon-fiber material is to achieve the correct and the exact shape of a commercially available mainsail. NACA 0024 and NACA 0016 foils have been used to generate two-segment wing sail shape which incorporates a flap between the first and the second segments. Both the two-dimensional and the three-dimensional sail models designed in commercial CAD software Solidworks have been analyzed through Computational Fluid Dynamics (CFD) techniques using Ansys CFX considering an apparent wind speed of 20.55 knots with an apparent wind angle of 31°. The results indicate that the thrust from traditional sail increases from 8.18 N to 8.26 N when the angle of attack is increased from 5° to 7°. However, the thrust value decreases if the angle of attack is further increased. A solid wing sail which possesses 20° angle between its two segments, produces thrusts from 7.61 N to 7.74 N with an increase in the angle of attack from 7° to 8°. The thrust remains steady up to 9° angle of attack and drops dramatically beyond 9°. The highest thrust values that can be obtained for the solid wing sails with 22°, 24°, 26° and 28° angle respectively between the two segments are 8.75 N, 9.10 N, 9.29 N and 9.19 N respectively. The optimum angle of attack for each of the solid wing sails is identified as 7° at which these thrust values are obtained. Therefore, it can be concluded that all the thrust values predicted for the solid wing sails of angles between the two segments above 20° are higher compared to the thrust predicted for the traditional sail. However, the best performance from a solid wing sail is expected when the sail is created with an angle between the two segments above 20° but below or equal to 26°. In addition, 1/29th scale models in the wind tunnel have been tested to observe the flow behaviors around the sails. The experimental results support the numerical observations as the flow behaviors are exactly the same.

Keywords: CFD, drag, sailing vessel, thrust, traditional sail, wing sail

Procedia PDF Downloads 259
5820 Determination of in Situ Degradation Kinetics of Some Legumes Waste Unused for Human Consumption

Authors: Şevket Evci, Mehmet Akif Karsli

Abstract:

The aim of this study is to determine nutrient contents, in situ ruminal degradation kinetics and protein fractions of screenings bean (B), chick pea (ChP), red lentil (RL) and green lentil (GL) that is used as residue in grain legume packing industry. For this purpose, four samples of each legumes species-a total of 16 samples, collected from different parts of our country were utilized. Feedstuffs used in the experiment were incubated for 0, 2 4, 8, 12, 24, and 48 hours in the rumen of 3 ruminally cannulated Akkaraman rams as duplicate. The nutrient contents, in situ ruminal dry matter (DM), organic matter (OM) and crude protein (CP) degradabilities and fractions, and escape protein contents were evaluated. The highest OM and CP contents were observed in RL (P<0.05). Chick pea had the highest ether extract (EE) content and EE values were 3.47, 6.72, 2.26, 8.66 % for RL, B, GL and ChP, respectively (P<0.05). Crude fiber (CF), ADF, and NDF contents were the highest in RL and the lowest in ChP. CF values were 24.03, 10.80, 4.09 and 3.57 % for RL, GL, B and ChP (P<0.05). Acid detergent insoluble nitrogen content of samples did not differ. Escape protein content was the highest in RL and the lowest in B (P<0.05). After 48 h incubation, the lowest OM and CP degradabilities were observed in RL. While the highest OM degradability was seen in ChP the highest CP degradability was observed in B (P<0.05). The lowest water soluble OM and CP contents were observed in RL whereas the highest potentially degradable OM and CP contents were seen in B and ChP (P<0.05). Both rate of OM and CP degradations (k-1) did not differ among samples (P>0.05). In conclusion, it was noted that feedstuffs (GL, ChP and B) used in the experiment except RL had a greater ruminal degradibilities of both OM and CP and moreover, had a higher escape protein contents, except B. It was thought that these feedstuffs can be substituted with some of common protein sources used in animal nutrition.

Keywords: in situ, nutrient contents, ruminant, subsieve

Procedia PDF Downloads 464
5819 An Evaluation of the Relationship between the Anthropometric Measurements and Blood Lipid Profiles in Adolescents

Authors: Nalan Hakime Nogay

Abstract:

Childhood obesity is a significant health issue that is currently on the rise all over the world. In recent years, the relationship between childhood obesity and cardiovascular disease risk has been pointed out. The purpose of this study is to evaluate the relationship between some of the anthropometric indicators and blood lipid levels in adolescents. The present study has been conducted on a total of 252 adolescents -200 girls and 52 boys- within an age group of 12 to 18 years. Blood was drawn from each participant in the morning -after having fasted for 10 hours from the day before- to analyze their total cholesterol, HDL, LDL and triglyceride levels. Their body weight, height, waist circumference, subscapular skinfold thicknesses and triceps skinfold thicknesses measurements were taken and their individual waist/height ratios, BMI and body fat ratios were calculated. The blood lipid levels of the participants were categorized as acceptable, borderline and high in accordance with the 2011 Expert Panel Integrated Guidelines. The body fat ratios, total blood cholesterol and HDL levels of the girls were significantly higher than the boys whereas their waist circumference values were lower. The triglyceride levels, total cholesterol/HDL, LDL/HDL, triglyceride/HDL ratios of the group with the BMI ≥ 95 percentile ratio (the obese group) were higher than the groups that were considered to be overweight and normal weight as per their respective BMI values, while the HDL level of the obese group was lower; a fact that was found to be statistically significant. No significant relationship could be established, however, between the total blood cholesterol and LDL levels with their anthropometric measurements. The BMI, waist circumference, waist/height ratio, body fat ratio and triglyceride level of the group with the higher triglyceride level ( ≥ 130mg/dl) were found to be significantly higher compared to borderline (90-129 mg/dl) and the normal group (< 90 mg/dl). The BMI, waist circumference, waist/height ratio values of the group with the lower HDL level ( < 40 mg/dl) were significantly higher than the normal ( > 45 mg/dl) and borderline (40-45 mg/dl) groups. All of the anthropometric measurements of the group with the higher triglyceride/HDL ratio ( ≥ 3) were found to be significantly higher than that of the group with the lower ratio (< 3). Having a high BMI, waist/height ratio and waist circumference is related to low HDL and high blood triglyceride and triglyceride/HDL ratio. A high body fat ratio, on the other hand, is associated with a low HDL and high triglyceride/HDL ratio. Tackling childhood and adolescent obesity are important in terms of preventing cardiovascular diseases.

Keywords: adolescent, body fat, body mass index, lipid profile

Procedia PDF Downloads 248
5818 Comparative Safety Performance Evaluation of Profiled Deck Composite Slab from the Use of Slope-Intercept and Partial Shear Methods

Authors: Izian Abd. Karim, Kachalla Mohammed, Nora Farah Abd Aznieta Aziz, Law Teik Hua

Abstract:

The economic use and ease of construction of profiled deck composite slab is marred with the complex and un-economic strength verification required for the serviceability and general safety considerations. Beside these, albeit factors such as shear span length, deck geometries and mechanical frictions greatly influence the longitudinal shear strength, that determines the ultimate strength of profiled deck composite slab, and number of methods available for its determination; partial shear and slope-intercept are the two methods according to Euro-code 4 provision. However, the complexity associated with shear behavior of profiled deck composite slab, the use of these methods in determining the load carrying capacities of such slab yields different and conflicting values. This couple with the time and cost constraint associated with the strength verification is a source of concern that draws more attentions nowadays, the issue is critical. Treating some of these known shear strength influencing factors as random variables, the load carrying capacity violation of profiled deck composite slab from the use of the two-methods defined according to Euro-code 4 are determined using reliability approach, and comparatively studied. The study reveals safety values from the use of m-k method shows good standing compared with that from the partial shear method.

Keywords: composite slab, first order reliability method, longitudinal shear, partial shear connection, slope-intercept

Procedia PDF Downloads 340
5817 Using the Technological, Pedagogical, and Content Knowledge (TPACK) Model to Address College Instructors Weaknesses in Integration of Technology in Their Current Area Curricula

Authors: Junior George Martin

Abstract:

The purpose of this study was to explore college instructors’ integration of technology in their content area curriculum. The instructors indicated that they were in need of additional training to successfully integrate technology in their subject areas. The findings point to the implementation of a proposed the Technological, Pedagogical, and Content Knowledge (TPACK) model professional development workshop to satisfactorily address the weaknesses of the instructors in technology integration. The professional development workshop is proposed as a rational solution to adequately address the instructors’ inability to the successful integration of technology in their subject area in an effort to improve their pedagogy. The intense workshop would last for 5 days and will be designed to provide instructors with training in areas such as a use of technology applications and tools, and using modern methodologies to improve technology integration. Exposing the instructors to the specific areas identified will address the weaknesses they demonstrated during the study. Professional development is deemed the most appropriate intervention based on the opportunities it provides the instructors to access hands-on training to overcome their weaknesses. The purpose of the TPACK professional development workshop will be to improve the competence of the instructors so that they are adequately prepared to integrate technology successfully in their curricula. At the end of the period training, the instructors are expected to adopt strategies that will have a positive impact on the learning experiences of the students.

Keywords: higher education, modern technology tools, professional development, technology integration

Procedia PDF Downloads 295
5816 Soil Matric Potential Based Irrigation in Rice: A Solution to Water Scarcity

Authors: S. N. C. M. Dias, Niels Schuetze, Franz Lennartz

Abstract:

The current focus in irrigated agriculture will move from maximizing crop production per unit area towards maximizing the crop production per unit amount of water (water productivity) used. At the same time, inadequate water supply or deficit irrigation will be the only solution to cope with water scarcity in the near future. Soil matric potential based irrigation plays an important role in such deficit irrigated agriculture to grow any crop including rice. Rice as the staple food for more than half of the world population, grows mainly under flooded conditions. It requires more water compared to other upland cereals. A major amount of this water is used in the land preparation and is lost at field level due to evaporation, deep percolation, and seepage. A field experimental study was conducted in the experimental premises of rice research and development institute of Sri Lanka in Kurunegala district to estimate the water productivity of rice under deficit irrigation. This paper presents the feasibility of improving current irrigation management in rice cultivation under water scarce conditions. The experiment was laid out in a randomized complete block design with four different irrigation treatments with three replicates. Irrigation treatments were based on soil matric potential threshold values. Treatment W0 was maintained between 60-80mbars. W1 was maintained between 80-100mbars. Other two dry treatments W2 and W3 were maintained at 100-120 mbar and 120 -140 mbar respectively. The sprinkler system was used to irrigate each plot individually upon reaching the maximum threshold value in respective treatment. Treatments were imposed two weeks after seed establishment and continued until two weeks before physiological maturity. Fertilizer applications, weed management, and other management practices were carried out per the local recommendations. Weekly plant growth measurements, daily climate parameters, soil parameters, soil tension values, and water content were measured throughout the growing period. Highest plant growth and grain yield (5.61t/ha) were observed in treatment W2 followed by W0, W1, and W3 in comparison to the reference yield (5.23t/ha) of flooded rice grown in the study area. Water productivity was highest in W3. Concerning the irrigation water savings, grain yield, and water productivity together, W2 showed the better performance. Rice grown under unsaturated conditions (W2) shows better performance compared to the continuously saturated conditions(W0). In conclusion, soil matric potential based irrigation is a promising practice in irrigation management in rice. Higher irrigation water savings can be achieved in this method. This strategy can be applied to a wide range of locations under different climates and soils. In future studies, higher soil matric potential values can be applied to evaluate the maximum possible values for rice to get higher water savings at minimum yield losses.

Keywords: irrigation, matric potential, rice, water scarcity

Procedia PDF Downloads 183
5815 Connecting African Ubuntu and Social Work Practices for Human Rights: The Value of Dignity and Worth of a Person

Authors: Meinrad Haule Lembuka

Abstract:

Social work profession one of its primary mission is to restore and maintain human rights where social workers recognise all humanity as equal, and so too the philosophies that have developed across the world’s regions. Ubuntu means African Humanism, where realization of human rights has been a primary role for every member of community to protect other member. Before Universal declaration of human rights, African societies had a long history of embracing human rights through Ubuntu approach model. The article used Ubuntu theory to guide the review process of existing literature since Ubuntu theory since is grounded in African cultural values and ecology, and it was thought that application of Ubuntu theory was relevant to reflect reality of Ubuntu model and indigenization of social work in African context. Results have shown that in realization of human rights, Ubuntu was practiced is termed as model, philosophy, cultural values, way of life or framework originated in sub-sahara Africa and some of remarkably practice model in several African communities such as Angola, (gimuntu), Botswana (muthu), Burkina Faso (maaya), Ghana (biako ye), Malawi (umunthu), Mali (maaya/hadama de ya), Namibia (omundu), Nigeria (mutunchi/iwa/agwa), (bantu), Sierra Leonne (maaya), South Africa (ubuntu/botho) and Tanzania (utu/obuntu/bumuntu). Collective and holistic mechanism of Ubuntu is found through an Ubuntu framework that is contributed by individual, family, community and spirit that is characterised by interconnectedness of all things and beings. Each society has its own name but the practice remained the same and realization of human rights in Africa context was centred through human dignity, Ubuntu is built under cultural values of humanism that brings implications for African social worker to integrate this indigenous model into social work practice in restoring and maintain human rights. Social workers should promote policies and practices that demonstrate respect for human life, difference, support and expansion of cultural knowledge and resources, advocate for programmes and institutions that demonstrate cultural competence and promote policies that safeguard the rights and confirm equity and social justice for all people.

Keywords: African ubuntu, indigenous practice, African humanism, African human rights, social work and human rights

Procedia PDF Downloads 47
5814 Estimating Groundwater Seepage Rates: Case Study at Zegveld, Netherlands

Authors: Wondmyibza Tsegaye Bayou, Johannes C. Nonner, Joost Heijkers

Abstract:

This study aimed to identify and estimate dynamic groundwater seepage rates using four comparative methods; the Darcian approach, the water balance approach, the tracer method, and modeling. The theoretical background to these methods is put together in this study. The methodology was applied to a case study area at Zegveld following the advice of the Water Board Stichtse Rijnlanden. Data collection has been from various offices and a field campaign in the winter of 2008/09. In this complex confining layer of the study area, the location of the phreatic groundwater table is at a shallow depth compared to the piezometric water level. Data were available for the model years 1989 to 2000 and winter 2008/09. The higher groundwater table shows predominately-downward seepage in the study area. Results of the study indicated that net recharge to the groundwater table (precipitation excess) and the ditch system are the principal sources for seepage across the complex confining layer. Especially in the summer season, the contribution from the ditches is significant. Water is supplied from River Meije through a pumping system to meet the ditches' water demand. The groundwater seepage rate was distributed unevenly throughout the study area at the nature reserve averaging 0.60 mm/day for the model years 1989 to 2000 and 0.70 mm/day for winter 2008/09. Due to data restrictions, the seepage rates were mainly determined based on the Darcian method. Furthermore, the water balance approach and the tracer methods are applied to compute the flow exchange within the ditch system. The site had various validated groundwater levels and vertical flow resistance data sources. The phreatic groundwater level map compared with TNO-DINO groundwater level data values overestimated the groundwater level depth by 28 cm. The hydraulic resistance values obtained based on the 3D geological map compared with the TNO-DINO data agreed with the model values before calibration. On the other hand, the calibrated model significantly underestimated the downward seepage in the area compared with the field-based computations following the Darcian approach.

Keywords: groundwater seepage, phreatic water table, piezometric water level, nature reserve, Zegveld, The Netherlands

Procedia PDF Downloads 67
5813 Full-Field Estimation of Cyclic Threshold Shear Strain

Authors: E. E. S. Uy, T. Noda, K. Nakai, J. R. Dungca

Abstract:

Cyclic threshold shear strain is the cyclic shear strain amplitude that serves as the indicator of the development of pore water pressure. The parameter can be obtained by performing either cyclic triaxial test, shaking table test, cyclic simple shear or resonant column. In a cyclic triaxial test, other researchers install measuring devices in close proximity of the soil to measure the parameter. In this study, an attempt was made to estimate the cyclic threshold shear strain parameter using full-field measurement technique. The technique uses a camera to monitor and measure the movement of the soil. For this study, the technique was incorporated in a strain-controlled consolidated undrained cyclic triaxial test. Calibration of the camera was first performed to ensure that the camera can properly measure the deformation under cyclic loading. Its capacity to measure deformation was also investigated using a cylindrical rubber dummy. Two-dimensional image processing was implemented. Lucas and Kanade optical flow algorithm was applied to track the movement of the soil particles. Results from the full-field measurement technique were compared with the results from the linear variable displacement transducer. A range of values was determined from the estimation. This was due to the nonhomogeneous deformation of the soil observed during the cyclic loading. The minimum values were in the order of 10-2% in some areas of the specimen.

Keywords: cyclic loading, cyclic threshold shear strain, full-field measurement, optical flow

Procedia PDF Downloads 219
5812 Building Carbon Footprint Comparison between Building Permit, as Built, as Built with Circular Material Usage

Authors: Kadri-Ann Kertsmik, Martin Talvik, Kimmo Lylykangas, Simo Ilomets, Targo Kalamees

Abstract:

This study compares the building carbon footprint (CF) values for a case study of a private house located in a cold climate, using the Level(s) methodology. It provides a framework for measuring the environmental performance of buildings throughout their life cycle, taking into account various factors. The study presents the results of the three scenarios, comparing their carbon emissions and highlighting the benefits of circular material usage. The construction process was thoroughly documented, and all materials and components (including minuscule mechanical fasteners, each meter of cable, a kilogram of mortar, and the component of HVAC systems, among other things) delivered to the construction site were noted. Transportation distances of each delivery, the fuel consumption of construction machines, and electricity consumption for temporary heating and electrical tools were also monitored. Using the detailed data on material and energy resources, the CF was calculated for two scenarios: one where circular material usage was applied and another where virgin materials were used instead of reused ones. The results were compared with the CF calculated based on the building permit design model using the Level(s) methodology. To study the range of possible results in the early stage of CF assessment, the same building permit design was given to several experts. Results showed that embodied carbon values for a built scenario were significantly lower than the values predicted by the building permit stage as a result of more precise material quantities, as the calculation methodology is designed to overestimate the CF. Moreover, designers made an effort to reduce the building's CF by reusing certain materials such as ceramic tiles, lightweight concrete blocks, and timber during the construction process. However, in a cold climate context where operational energy (B6) continues to dominate, the total building CF value changes between the three scenarios were less significant. The calculation for the building permit project was performed by several experts, and CF results were in the same range. It alludes that, for the first estimation of preliminary building CF, using average values proves to be an appropriate method for the Estonian national carbon footprint estimation phase during building permit application. The study also identified several opportunities for reducing the carbon footprint of the building, such as reusing materials from other construction sites, preferring local material producers, and reducing wastage on site. The findings suggest that using circular materials can significantly reduce the carbon footprint of buildings. Overall, the study highlights the importance of using a comprehensive approach to measure the environmental performance of buildings, taking into account both the project and the actually built house. It also emphasises the need for ongoing monitoring for designing the building and construction site waste. The study also gives some examples of how to enable future circularity of building components and materials, e.g., building in layers, using wood as untreated, etc.

Keywords: carbon footprint, circular economy, sustainable construction, level(s) methodology

Procedia PDF Downloads 68
5811 Stakeholder-Driven Development of a One Health Platform to Prevent Non-Alimentary Zoonoses

Authors: A. F. G. Van Woezik, L. M. A. Braakman-Jansen, O. A. Kulyk, J. E. W. C. Van Gemert-Pijnen

Abstract:

Background: Zoonoses pose a serious threat to public health and economies worldwide, especially as antimicrobial resistance grows and newly emerging zoonoses can cause unpredictable outbreaks. In order to prevent and control emerging and re-emerging zoonoses, collaboration between veterinary, human health and public health domains is essential. In reality however, there is a lack of cooperation between these three disciplines and uncertainties exist about their tasks and responsibilities. The objective of this ongoing research project (ZonMw funded, 2014-2018) is to develop an online education and communication One Health platform, “eZoon”, for the general public and professionals working in veterinary, human health and public health domains to support the risk communication of non-alimentary zoonoses in the Netherlands. The main focus is on education and communication in times of outbreak as well as in daily non-outbreak situations. Methods: A participatory development approach was used in which stakeholders from veterinary, human health and public health domains participated. Key stakeholders were identified using business modeling techniques previously used for the design and implementation of antibiotic stewardship interventions and consisted of a literature scan, expert recommendations, and snowball sampling. We used a stakeholder salience approach to rank stakeholders according to their power, legitimacy, and urgency. Semi-structured interviews were conducted with stakeholders (N=20) from all three disciplines to identify current problems in risk communication and stakeholder values for the One Health platform. Interviews were transcribed verbatim and coded inductively by two researchers. Results: The following key values were identified (but were not limited to): (a) need for improved awareness of veterinary and human health of each other’s fields, (b) information exchange between veterinary and human health, in particularly at a regional level; (c) legal regulations need to match with daily practice; (d) professionals and general public need to be addressed separately using tailored language and information; (e) information needs to be of value to professionals (relevant, important, accurate, and have financial or other important consequences if ignored) in order to be picked up; and (f) need for accurate information from trustworthy, centrally organised sources to inform the general public. Conclusion: By applying a participatory development approach, we gained insights from multiple perspectives into the main problems of current risk communication strategies in the Netherlands and stakeholder values. Next, we will continue the iterative development of the One Health platform by presenting key values to stakeholders for validation and ranking, which will guide further development. We will develop a communication platform with a serious game in which professionals at the regional level will be trained in shared decision making in time-critical outbreak situations, a smart Question & Answer (Q&A) system for the general public tailored towards different user profiles, and social media to inform the general public adequately during outbreaks.

Keywords: ehealth, one health, risk communication, stakeholder, zoonosis

Procedia PDF Downloads 264
5810 Correlation between Overweightness and the Extent of Coronary Atherosclerosis among the South Caspian Population

Authors: Maryam Nabati, Mahmood Moosazadeh, Ehsan Soroosh, Hanieh Shiraj, Mahnaneh Gholami, Ali Ghaemian

Abstract:

Background: Reported effects of obesity on the extent of angiographic coronary artery disease(CAD) have beeninconsistent. The present study aimed to investigate the relationships between the indices of obesity and otheranthropometric markers with the extent of CAD. Methods: This study was conducted on 1008 consecutive patients who underwent coronary angiography. Bodymass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR) wereseparately calculated for each patient. Extent, severity, and complexity of CAD were determined by the Gensini andSYNTAX scores. Results: According to the results, there was a significant inverse correlation between the SYNTAX score with BMI(r = − 0.110; P < 0.001), WC (r = − 0.074; P = 0.018), and WHtR (r = − 0.089; P = 0.005). Furthermore, a significant inversecorrelation was observed between the Gensini score with BMI (r = − 0.090; P = 0.004) and WHtR (r = − 0.065; P =0.041). However, the results of multivariate linear regression analysis did not show any association between theSYNTAX and Gensini scores with the indices of obesity and overweight. On the other hand, the patients with anunhealthy WC had a higher prevalence of diabetes mellitus (DM) (P = 0.004) and hypertension (HTN) (P < 0.001) compared to the patients with healthy values. Coexistence of HTN and DM was more prevalent in subjects with anunhealthy WC and WHR compared to that in those with healthy values (P = 0.002 and P = 0.032, respectively). Conclusion: It seems that the anthropometric indices of obesity are not the predictors of the angiographic severityof CAD. However, they are associated with an increased risk of cardiovascular risk factors and higher risk profile.

Keywords: body mass index, BMI, coronary artery disease, waist circumference

Procedia PDF Downloads 120
5809 Neutrophil-to-Lymphocyte Ratio: A Predictor of Cardiometabolic Complications in Morbid Obese Girls

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Obesity is a low-grade inflammatory state. Childhood obesity is a multisystem disease, which is associated with a number of complications as well as potentially negative consequences. Gender is an important universal risk factor for many diseases. Hematological indices differ significantly by gender. This should be considered during the evaluation of obese children. The aim of this study is to detect hematologic indices that differ by gender in morbid obese (MO) children. A total of 134 MO children took part in this study. The parents filled an informed consent form and the approval from the Ethics Committee of Namik Kemal University was obtained. Subjects were divided into two groups based on their genders (64 females aged 10.2±3.1 years and 70 males aged 9.8±2.2 years; p ≥ 0.05). Waist-to-hip as well as head-to-neck ratios and body mass index (BMI) values were calculated. The children, whose WHO BMI-for age and sex percentile values were > 99 percentile, were defined as MO. Hematological parameters [haemoglobin, hematocrit, erythrocyte count, mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, red blood cell distribution width, leukocyte count, neutrophil %, lymphocyte %, monocyte %, eosinophil %, basophil %, platelet count, platelet distribution width, mean platelet volume] were determined by the automatic hematology analyzer. SPSS was used for statistical analyses. P ≤ 0.05 was the degree for statistical significance. The groups included children having mean±SD value of BMI as 26.9±3.4 kg/m2 for males and 27.7±4.4 kg/m2 for females (p ≥ 0.05). There was no significant difference between ages of females and males (p ≥ 0.05). Males had significantly increased waist-to-hip ratios (0.95±0.08 vs 0.91±0.08; p=0.005) and mean corpuscular hemoglobin concentration values (33.6±0.92 vs 33.1±0.83; p=0.001) compared to those of females. Significantly elevated neutrophil (4.69±1.59 vs 4.02±1.42; p=0.011) and neutrophil-to-lymphocyte ratios (1.70±0.71 vs 1.39±0.48; p=0.004) were detected in females. There was no statistically significant difference between groups in terms of C-reactive protein values (p ≥ 0.05). Adipose tissue plays important roles during the development of obesity and associated diseases such as metabolic syndrom and cardiovascular diseases (CVDs). These diseases may cause changes in complete blood cell count parameters. These alterations are even more important during childhood. Significant gender effects on the changes of neutrophils, one of the white blood cell subsets, were observed. The findings of the study demonstrate the importance of considering gender in clinical studies. The males and females may have distinct leukocyte-trafficking profiles in inflammation. Female children had more circulating neutrophils, which may be the indicator of an increased risk of CVDs, than male children within this age range during the late stage of obesity. In recent years, females represent about half of deaths from CVDs; therefore, our findings may be the indicator of the increasing tendency of this risk in females starting from childhood.

Keywords: children, gender, morbid obesity, neutrophil-to-lymphocyte ratio

Procedia PDF Downloads 259
5808 Formulation and Evaluation of Glimepiride (GMP)-Solid Nanodispersion and Nanodispersed Tablets

Authors: Ahmed. Abdel Bary, Omneya. Khowessah, Mojahed. al-jamrah

Abstract:

Introduction: The major challenge with the design of oral dosage forms lies with their poor bioavailability. The most frequent causes of low oral bioavailability are attributed to poor solubility and low permeability. The aim of this study was to develop solid nanodispersed tablet formulation of Glimepiride for the enhancement of the solubility and bioavailability. Methodology: Solid nanodispersions of Glimepiride (GMP) were prepared using two different ratios of 2 different carriers, namely; PEG6000, pluronic F127, and by adopting two different techniques, namely; solvent evaporation technique and fusion technique. A full factorial design of 2 3 was adopted to investigate the influence of formulation variables on the prepared nanodispersion properties. The best chosen formula of nanodispersed powder was formulated into tablets by direct compression. The Differential Scanning Calorimetry (DSC) analysis and Fourier Transform Infra-Red (FTIR) analysis were conducted for the thermal behavior and surface structure characterization, respectively. The zeta potential and particle size analysis of the prepared glimepiride nanodispersions was determined. The prepared solid nanodispersions and solid nanodispersed tablets of GMP were evaluated in terms of pre-compression and post-compression parameters, respectively. Results: The DSC and FTIR studies revealed that there was no interaction between GMP and all the excipients used. Based on the resulted values of different pre-compression parameters, the prepared solid nanodispersions powder blends showed poor to excellent flow properties. The resulted values of the other evaluated pre-compression parameters of the prepared solid nanodispersion were within the limits of pharmacopoeia. The drug content of the prepared nanodispersions ranged from 89.6 ± 0.3 % to 99.9± 0.5% with particle size ranged from 111.5 nm to 492.3 nm and the resulted zeta potential (ζ ) values of the prepared GMP-solid nanodispersion formulae (F1-F8) ranged from -8.28±3.62 mV to -78±11.4 mV. The in-vitro dissolution studies of the prepared solid nanodispersed tablets of GMP concluded that GMP- pluronic F127 combinations (F8), exhibited the best extent of drug release, compared to other formulations, and to the marketed product. One way ANOVA for the percent of drug released from the prepared GMP-nanodispersion formulae (F1- F8) after 20 and 60 minutes showed significant differences between the percent of drug released from different GMP-nanodispersed tablet formulae (F1- F8), (P<0.05). Conclusion: Preparation of glimepiride as nanodispersed particles proven to be a promising tool for enhancing the poor solubility of glimepiride.

Keywords: glimepiride, solid Nanodispersion, nanodispersed tablets, poorly water soluble drugs

Procedia PDF Downloads 477
5807 Isolation and Structural Elucidation of 20 Hydroxyecdystone from Vitex doniana Sweet Stem Bark

Authors: Mustapha A. Tijjani, Fanna I. Abdulrahman, Irfan Z. Khan, Umar K. Sandabe, Cong Li

Abstract:

Air dried sample V. doniana after collection and identification was extracted with ethanol and further partition with chloroform, ethyl acetate and n-butanol. Ethanolic extract (11.9g) was fractionated on a silica gel accelerated column chromatography using solvents such as n-hexane, ethyl acetate and methanol. Each eluent fractions (150ml aliquots) were collected and monitored with thin layer chromatography. Fractions with similar Rf values from same solvents system were pooled together. Phytochemical test of all the fractions were performed using standard procedure. Complete elution yielded 48 fractions (150ml/fraction) which were pooled to 24 fractions base on the Rf values. It was further recombined and 12 fractions were obtained on the basis on Rf values and coded Vd1 to Vd12 fractions. Vd8 was further eluted with ethylacetate and methanol and gave fourteen sub fractions Vd8-a, -Vd8-m. Fraction Vd8-a (56mg) gave a white crystal compound coded V1. It was further checked on TLC and observed under ultraviolet lamp and was found to give a single spot. The Rf values were calculated to be 0.433. The melting point was determined using Gallenkamp capillary melting point apparatus and found to be 241-243°C uncorrected. Characterization of the isolated compound coded V1 was done using FT-infra-red spectroscopy, HNMR, 13CNMR(1and 2D) and HRESI-MS. The IR spectrum of compound V1 shows prominent peaks that corresponds to OHstr (3365cm-1) and C=0 (1652cm-1) etc. This spectrum suggests that among the functional moiety in compound V1 are the carbonyl and hydroxyl group. The 1H NMR (400 MHz) spectrum of compound V1 in DMSO-d6 displayed five singlet signals at δ 0.72 (3H, s, H-18), 0.79 (3H, s, H-19), 1.03 (3H, s, H-21), 1.04 (3H, s, H-26), 1.06 (3H, s, H-27) each integrating for three protons indicating the five methyl functional groups present in the compound. It further showed a broad singlet at δ 5.58 integrated for 1 H due to an olefinic H-atom adjacent to the carbonyl carbon atom. Three signals at δ 3.10 (d, J = 9.0 Hz, H-22), 3.59 (m, 1H, 2H-a) and 3.72 (m, 1H, 3H-e), each integrating for one proton is due to oxymethine protons indicating that three oxymethine H-atoms are present in the compound. These all signals are characteristic to the ecdysteroid skeletons. The 13C-NMR spectrum showed the presence of 27 carbon atoms, suggesting that may be steroid skeleton. The DEPT-135 experiment showed the presence of five CH3, eight CH2, and seven CH groups, and seven quaternary C-atoms. The molecular formula was established as C27H44O7 by high resolution electron spray ionization-mass spectroscopy (HRESI-MS) positive ion mode m/z 481.3179. The signals in mass spectrum are 463, 445, and 427 peaks corresponding to losses of one, two, three, or four water molecules characteristic for ecdysterone skeleton reported in the literature. Based on the spectral analysis (HNMR, 13CNMR, DEPT, HMQC, IR, HRESI-MS) the compound V1 is thus concluded to have ecdysteriod skeleton and conclusively conforms with 2β, 3β 14α, 20R, 22R, 25-hexahydroxy-5 β cholest-7-ene-6- one, or 2, 3, 14, 20, 22, 25 hexahydroxy cholest-7-ene-6-one commonly known as 20-hydroxyecdysone.

Keywords: vitex, phytochemical, purification, isolation, chromatography, spectroscopy

Procedia PDF Downloads 337
5806 Environmental Impact Assessment of OMI Irrigation Scheme, Nigeria

Authors: Olumuyiwa I. Ojo, Kola Amao, Josiah A. Adeyemo, Fred A. O. Otieno

Abstract:

A study was carried out to assess the environmental impact of Kampe (Omi) irrigation scheme with respect to public health hazards, the rising water table, salinity and alkalinity problems on the project site. A structured questionnaire was used as the main tool to gather information on the effect of the irrigation project on the various communities around the project site. The different sections of the questionnaire enabled the gathering of information ranging from general to more specific information. The results obtained from the study showed that the two effects are obvious: the 'positive effects' which include increasing the socioeconomic development of the entire communities, resulting in an increase in employment opportunities and better lifestyle and the 'negative effects' in which malaria (100% occurrence) and schistosomiasis (66.7%) were found to be active diseases caused by irrigation activities. Increase in height of water table and salinity is eminent in the irrigation site unless adequate drainage is provided. The collection and experimental analyses of representation soil and water samples from each scheme were used to assess the current status of each receptor. Results obtained indicate the absence of soil with sodium adsorption ration (SAR) values ranging from 3.0 to 3.89, exchangeable sodium percentage (ESP) ranged from 3.8% to 5.5% while pH values ranged from 6.60 to 7.00. Drainage facilities of the project site are inadequate, therefore making it difficult to leach the soil and flood history is occasional.

Keywords: irrigation, impact, soil analysis, Nigeria

Procedia PDF Downloads 275
5805 Pedagogy to Involve Research Process in an Undergraduate Physical Fitness Course: A Case Study

Authors: Indhumathi Gopal

Abstract:

Undergraduate research is well documented in Science, Technology, Engineering, and Mathematics (STEM), neurosciences, and microbiology disciplines, though it is hardly part of a physical fitness & wellness discipline. However, students need experiential learning opportunities, like internships and research assistantships, to get ahead with graduate schools and be gainfully employed. The first step towards this goal is to have students do a simple research project in a semester-long course. The value of research experiences and how to integrate research activity in a physical fitness & wellness course are discussed. The investigator looks into a mini research project, “Awareness of Obesity among College Students” and explains how to guide students through the research process, including journal search, data collection, and basic statistics. Besides, students will be introduced to the statistical package program SPSS 22.0 to assist with data evaluation. The lab component of the combined lecture-physical activity course could include the measurement of student’s weight with respect to their height to obtain body mass index (BMI). Students could categorize themselves in accordance with the World Health Organization’s guidelines. Results obtained after completing the data analysis help students be aware of their own potential health risks associated with overweight and obesity. Overweight and obesity are risk factors for hypertension, hypercholesterolemia, heart disease, stroke, diabetes, and certain types of cancer. It is hoped that this experience will get students interested in scientific studies, gain confidence, think critically, and develop problem-solving and good communication skills.

Keywords: physical fitness, undergraduate research experience, obesity, BMI

Procedia PDF Downloads 55
5804 Dimensional Investigation of Food Addiction in Individuals Who Have Undergone Bariatric Surgery

Authors: Ligia Florio, João Mauricio Castaldelli-Maia

Abstract:

Background: Food addiction (FA) emerged in the 1990s as a possible contributor to the increasing prevalence of obesity and overweight, in conjunction with changing food environments and mental health conditions. However, FA is not yet listed as one of the disorders in the DSM-5 and/or the ICD-11. Although there are controversies and debates in the literature about the classification and construct of FA, the most common approach to access it is the use of a research tool - the Yale Food Addiction Scale (YFAS) - which approximates the concept of FA to the concept diagnosis of dependence on psychoactive substances. There is a need to explore the dimensional phenotypes accessed by YFAS in different population groups for a better understanding and scientific support of FA diagnoses. Methods: The primary objective of this project was to investigate the construct validity of the FA concept by mYFAS 2.0 in individuals who underwent bariatric surgery (n = 100) at the Hospital Estadual Mário Covas since 2011. Statistical analyzes were conducted using the STATA software. In this sense, structural or factor validity was the type of construct validity investigated using exploratory factor analysis (EFA) and item response theory (IRT) techniques. Results: EFA showed that the one-dimensional model was the most parsimonious. The IRT showed that all criteria contributed to the latent structure, presenting discrimination values greater than 0.5, with most presenting values greater than 2. Conclusion: This study reinforces a FA dimension in patients who underwent bariatric surgery. Within this dimension, we identified the most severe and discriminating criteria for the diagnosis of FA.

Keywords: obesity, food addiction, bariatric surgery, regain

Procedia PDF Downloads 58
5803 Cultural Artifact, Sign Language and Perspectives of Meaning in Select-Nollywood Films

Authors: Aniekan James Akpan

Abstract:

The use of signs and symbols to represent cardinal information is inalienable among African communities. It has been the tenable instrument of cultural transmission for decades, but in the current transposal of Western values, a good number of communicating codes and symbolic images have been gradually relegated to the background. This paper discusses the regeneration of cultural artifacts and sign languages in Nigerian films using Johnpaul Rebecca and Ayamma as models in a qualitative research based on Charles Sanders Pierce's Semiotics as well as quantitative methods of survey using questionnaire and focus group discussion as instruments to obtain data. With a population of 2,343 viewers of the movies used for the study and a sample size of 322 respondents using Philip Meyer’s guide, findings show that cultural relics can stabilise the subject matter of a film. Artifacts can stimulate curiosity and invoke nostalgia. Sign languages encode deeper information that ordinary speech may not properly convey in films. It concludes that the use of non-verbal codes in filmmaking deserves deep research into the culture portrayed and that non-verbal cues communicate deeper information about a people's cosmos in a film than dialogue. It recommends that adequate research should be made before producing a film and the idea of cultural values represented in artifacts and sign language should be ingrained in the courses for students to acquaint themselves with.

Keywords: cultural artifact, Nollywood films, non-verbal communication, sign language

Procedia PDF Downloads 18
5802 Thermo-Mechanical Approach to Evaluate Softening Behavior of Polystyrene: Validation and Modeling

Authors: Salah Al-Enezi, Rashed Al-Zufairi, Naseer Ahmad

Abstract:

A Thermo-mechanical technique was developed to determine softening point temperature/glass transition temperature (Tg) of polystyrene exposed to high pressures. The design utilizes the ability of carbon dioxide to lower the glass transition temperature of polymers and acts as plasticizer. In this apparatus, the sorption of carbon dioxide to induce softening of polymers as a function of temperature/pressure is performed and the extent of softening is measured in three-point-flexural-bending mode. The polymer strip was placed in the cell in contact with the linear variable differential transformer (LVDT). CO2 was pumped into the cell from a supply cylinder to reach high pressure. The results clearly showed that full softening point of the samples, accompanied by a large deformation on the polymer strip. The deflection curves are initially relatively flat and then undergo a dramatic increase as the temperature is elevated. It was found that increasing the pressure of CO2 causes the temperature curves to shift from higher to lower by increment of about 45 K, over the pressure range of 0-120 bars. The obtained experimental Tg values were validated with the values reported in the literature. Finally, it is concluded that the defection model fits consistently to the generated experimental results, which attempts to describe in more detail how the central deflection of a thin polymer strip affected by the CO2 diffusions in the polymeric samples.

Keywords: softening, high-pressure, polystyrene, CO₂ diffusions

Procedia PDF Downloads 114
5801 New Analytical Current-Voltage Model for GaN-based Resonant Tunneling Diodes

Authors: Zhuang Guo

Abstract:

In the field of GaN-based resonant tunneling diodes (RTDs) simulations, the traditional Tsu-Esaki formalism failed to predict the values of peak currents and peak voltages in the simulated current-voltage(J-V) characteristics. The main reason is that due to the strong internal polarization fields, two-dimensional electron gas(2DEG) accumulates at emitters, resulting in 2D-2D resonant tunneling currents, which become the dominant parts of the total J-V characteristics. By comparison, based on the 3D-2D resonant tunneling mechanism, the traditional Tsu-Esaki formalism cannot predict the J-V characteristics correctly. To overcome this shortcoming, we develop a new analytical model for the 2D-2D resonant tunneling currents generated in GaN-based RTDs. Compared with Tsu-Esaki formalism, the new model has made the following modifications: Firstly, considering the Heisenberg uncertainty, the new model corrects the expression of the density of states around the 2DEG eigenenergy levels at emitters so that it could predict the half width at half-maximum(HWHM) of resonant tunneling currents; Secondly, taking into account the effect of bias on wave vectors on the collectors, the new model modifies the expression of the transmission coefficients which could help to get the values of peak currents closer to the experiment data compared with Tsu-Esaki formalism. The new analytical model successfully predicts the J-V characteristics of GaN-based RTDs, and it also reveals more detailed mechanisms of resonant tunneling happened in GaN-based RTDs, which helps to design and fabricate high-performance GaN RTDs.

Keywords: GaN-based resonant tunneling diodes, tsu-esaki formalism, 2D-2D resonant tunneling, heisenberg uncertainty

Procedia PDF Downloads 60
5800 Investigating the Role of Artificial Intelligence in Developing Creativity in Architecture Education in Egypt: A Case Study of Design Studios

Authors: Ahmed Radwan, Ahmed Abdel Ghaney

Abstract:

This paper delves into the transformative potential of artificial intelligence (AI) in fostering creativity within the domain of architecture education, especially with a specific emphasis on its implications within the Design Studios; the convergence of AI and architectural pedagogy has introduced avenues for redefining the boundaries of creative expression and problem-solving. By harnessing AI-driven tools, students and educators can collaboratively explore a spectrum of design possibilities, stimulate innovative ideation, and engage in multidimensional design processes. This paper investigates the ways in which AI contributes to architectural creativity by facilitating generative design, pattern recognition, virtual reality experiences, and sustainable design optimization. Furthermore, the study examines the balance between AI-enhanced creativity and the preservation of core principles of architectural design/education, ensuring that technology is harnessed to augment rather than replace foundational design skills. Through an exploration of Egypt's architectural heritage and contemporary challenges, this research underscores how AI can synergize with cultural context and historical insights to inspire cutting-edge architectural solutions. By analyzing AI's impact on nurturing creativity among Egyptian architecture students, this paper seeks to contribute to the ongoing discourse on the integration of technology within global architectural education paradigms. It is hoped that this research will guide the thoughtful incorporation of AI in fostering creativity while preserving the authenticity and richness of architectural design education in Egypt and beyond.

Keywords: architecture, artificial intelligence, architecture education, Egypt

Procedia PDF Downloads 60
5799 Flexural Performance of the Sandwich Structures Having Aluminum Foam Core with Different Thicknesses

Authors: Emre Kara, Ahmet Fatih Geylan, Kadir Koç, Şura Karakuzu, Metehan Demir, Halil Aykul

Abstract:

The structures obtained with the use of sandwich technologies combine low weight with high energy absorbing capacity and load carrying capacity. Hence, there is a growing and markedly interest in the use of sandwiches with aluminium foam core because of very good properties such as flexural rigidity and energy absorption capability. The static (bending and penetration) and dynamic (dynamic bending and low velocity impact) tests were already performed on the aluminum foam cored sandwiches with different types of outer skins by some of the authors. In the current investigation, the static three-point bending tests were carried out on the sandwiches with aluminum foam core and glass fiber reinforced polymer (GFRP) skins at different values of support span distances (L= 55, 70, 80, 125 mm) aiming the analyses of their flexural performance. The influence of the core thickness and the GFRP skin type was reported in terms of peak load, energy absorption capacity and energy efficiency. For this purpose, the skins with two different types of fabrics ([0°/90°] cross ply E-Glass Woven and [0°/90°] cross ply S-Glass Woven which have same thickness value of 1.5 mm) and the aluminum foam core with two different thicknesses (h=10 and 15 mm) were bonded with a commercial polyurethane based flexible adhesive in order to combine the composite sandwich panels. The GFRP skins fabricated via Vacuum Assisted Resin Transfer Molding (VARTM) technique used in the study can be easily bonded to the aluminum foam core and it is possible to configure the base materials (skin, adhesive and core), fiber angle orientation and number of layers for a specific application. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, energy efficiency, collapse mechanisms and the effect of the support span length and core thickness. The results of the experimental study showed that the sandwich with the skins made of S-Glass Woven fabrics and with the thicker foam core presented higher mechanical values such as load carrying and energy absorption capacities. The increment of the support span distance generated the decrease of the mechanical values for each type of panels, as expected, because of the inverse proportion between the force and span length. The most common failure types of the sandwiches are debonding of the upper or lower skin and the core shear. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry (automotive, aerospace, shipbuilding and marine industry), where the problems of collision and crash have increased in the last years.

Keywords: aluminum foam, composite panel, flexure, transport application

Procedia PDF Downloads 314
5798 Predicting the Compressive Strength of Geopolymer Concrete Using Machine Learning Algorithms: Impact of Chemical Composition and Curing Conditions

Authors: Aya Belal, Ahmed Maher Eltair, Maggie Ahmed Mashaly

Abstract:

Geopolymer concrete is gaining recognition as a sustainable alternative to conventional Portland Cement concrete due to its environmentally friendly nature, which is a key goal for Smart City initiatives. It has demonstrated its potential as a reliable material for the design of structural elements. However, the production of Geopolymer concrete is hindered by batch-to-batch variations, which presents a significant challenge to the widespread adoption of Geopolymer concrete. To date, Machine learning has had a profound impact on various fields by enabling models to learn from large datasets and predict outputs accurately. This paper proposes an integration between the current drift to Artificial Intelligence and the composition of Geopolymer mixtures to predict their mechanical properties. This study employs Python software to develop machine learning model in specific Decision Trees. The research uses the percentage oxides and the chemical composition of the Alkali Solution along with the curing conditions as the input independent parameters, irrespective of the waste products used in the mixture yielding the compressive strength of the mix as the output parameter. The results showed 90 % agreement of the predicted values to the actual values having the ratio of the Sodium Silicate to the Sodium Hydroxide solution being the dominant parameter in the mixture.

Keywords: decision trees, geopolymer concrete, machine learning, smart cities, sustainability

Procedia PDF Downloads 64