Search results for: space resolved kinetic measurements
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7167

Search results for: space resolved kinetic measurements

5697 Facial Recognition and Landmark Detection in Fitness Assessment and Performance Improvement

Authors: Brittany Richardson, Ying Wang

Abstract:

For physical therapy, exercise prescription, athlete training, and regular fitness training, it is crucial to perform health assessments or fitness assessments periodically. An accurate assessment is propitious for tracking recovery progress, preventing potential injury and making long-range training plans. Assessments include necessary measurements, height, weight, blood pressure, heart rate, body fat, etc. and advanced evaluation, muscle group strength, stability-mobility, and movement evaluation, etc. In the current standard assessment procedures, the accuracy of assessments, especially advanced evaluations, largely depends on the experience of physicians, coaches, and personal trainers. And it is challenging to track clients’ progress in the current assessment. Unlike the tradition assessment, in this paper, we present a deep learning based face recognition algorithm for accurate, comprehensive and trackable assessment. Based on the result from our assessment, physicians, coaches, and personal trainers are able to adjust the training targets and methods. The system categorizes the difficulty levels of the current activity for the client or user, furthermore make more comprehensive assessments based on tracking muscle group over time using a designed landmark detection method. The system also includes the function of grading and correcting the form of the clients during exercise. Experienced coaches and personal trainer can tell the clients' limit based on their facial expression and muscle group movements, even during the first several sessions. Similar to this, using a convolution neural network, the system is trained with people’s facial expression to differentiate challenge levels for clients. It uses landmark detection for subtle changes in muscle groups movements. It measures the proximal mobility of the hips and thoracic spine, the proximal stability of the scapulothoracic region and distal mobility of the glenohumeral joint, as well as distal mobility, and its effect on the kinetic chain. This system integrates data from other fitness assistant devices, including but not limited to Apple Watch, Fitbit, etc. for a improved training and testing performance. The system itself doesn’t require history data for an individual client, but the history data of a client can be used to create a more effective exercise plan. In order to validate the performance of the proposed work, an experimental design is presented. The results show that the proposed work contributes towards improving the quality of exercise plan, execution, progress tracking, and performance.

Keywords: exercise prescription, facial recognition, landmark detection, fitness assessments

Procedia PDF Downloads 128
5696 The Relationship between the Speed of Light and Cosmic Background Potential

Authors: Youping Dai, Xinping Dai, Xiaoyun Li

Abstract:

In this paper, the effect of Cosmic Background Gravitational Potential (CBGP) was discussed. It is helpful to reveal the equivalence of gravitational and inertial mass, and to understand the origin of inertia. The derivation is similar to the classic approach adopted by Landau in the book 'Classical Theory of Fields'.The main differences are that we used CBGP = Lambda^2 instead of c^2, and used CBGP energy E = m*Lambda^2 instead of kinetic energy E = (1/2)m*v^2 as initial assumptions (where Lambda has the same units for measuring velocity). It showed that Lorentz transformation, rest energy and Newtonian mechanics are all affected by $CBGP$, and the square of the speed of light is equal to CBGP too. Finally, the top value of cosmic mass density and cosmic radius were discussed.

Keywords: the origin of inertia, Mach's principle, equivalence principle, cosmic background potential

Procedia PDF Downloads 372
5695 Photoswitchable and Polar-Dependent Fluorescence of Diarylethenes

Authors: Sofia Lazareva, Artem Smolentsev

Abstract:

Fluorescent photochromic materials collect strong interest due to their possible application in organic photonics such as optical logic systems, optical memory, visualizing sensors, as well as characterization of polymers and biological systems. In photochromic fluorescence switching systems the emission of fluorophore is modulated between ‘on’ and ‘off’ via the photoisomerization of photochromic moieties resulting in effective resonance energy transfer (FRET). In current work, we have studied both photochromic and fluorescent properties of several diarylethenes. It was found that coloured forms of these compounds are not fluorescent because of the efficient intramolecular energy transfer. Spectral and photochromic parameters of investigated substances have been measured in five solvents having different polarity. Quantum yields of photochromic transformation A↔B ΦA→B and ΦB→A as well as B isomer extinction coefficients were determined by kinetic method. It was found that the photocyclization reaction quantum yield of all compounds decreases with the increase of solvent polarity. In addition, the solvent polarity is revealed to affect fluorescence significantly. Increasing of the solvent dielectric constant was found to result in a strong shift of emission band position from 450 nm (nhexane) to 550 nm (DMSO and ethanol) for all three compounds. Moreover, the emission intensive in polar solvents becomes weak and hardly detectable in n-hexane. The only one exception in the described dependence is abnormally low fluorescence quantum yield in ethanol presumably caused by the loss of electron-donating properties of nitrogen atom due to the protonation. An effect of the protonation was also confirmed by the addition of concentrated HCl in solution resulting in a complete disappearance of the fluorescent band. Excited state dynamics were investigated by ultrafast optical spectroscopy methods. Kinetic curves of excited states absorption and fluorescence decays were measured. Lifetimes of transient states were calculated from the data measured. The mechanism of ring opening reaction was found to be polarity dependent. Comparative analysis of kinetics measured in acetonitrile and hexane reveals differences in relaxation dynamics after the laser pulse. The most important fact is the presence of two decay processes in acetonitrile, whereas only one is present in hexane. This fact supports an assumption made on the basis of steady-state preliminary experiments that in polar solvents occur stabilization of TICT state. Thus, results achieved prove the hypothesis of two channel mechanism of energy relaxation of compounds studied.

Keywords: diarylethenes, fluorescence switching, FRET, photochromism, TICT state

Procedia PDF Downloads 672
5694 Enhanced Water Vapor Flow in Silica Microtubes Explained by Maxwell’s Tangential Momentum Accommodation and Langmuir’s Adsorption

Authors: Wenwen Lei, David R. Mckenzie

Abstract:

Recent findings of anomalously high gas flow rates in carbon nanotubes show smooth hydrophobic walls can increase specular reflection of molecules and reduce the tangential momentum accommodation coefficient (TMAC). Here we report the first measurements of water vapor flows in microtubes over a wide humidity range and show that for hydrophobic silica there is a range of humidity over which an adsorbed water layer reduces TMAC and accelerates flow. Our results show that this association between hydrophobicity and accelerated moisture flow occurs in readily available materials. We develop a hierarchical theory that unifies Maxwell’s ideas on TMAC with Langmuir’s ideas on adsorption. We fit the TMAC data as a function of humidity with the hierarchical theory based on two stages of Langmuir adsorption and derive total adsorption isotherms for water on hydrophobic silica that agree with direct observations. We propose structures for each stage of the water adsorption, the first reducing TMAC by a passivation of adsorptive patches and a smoothing of the surface, the second resembling bulk water with large TMAC. We find that leak testing of moisture barriers with an ideal gas such as helium may not be accurate enough for critical applications and that direct measurements of the water leak rate should be made.

Keywords: water vapor flows, silica microtubes, TMAC, enhanced flow rates

Procedia PDF Downloads 265
5693 Spatial Data Mining by Decision Trees

Authors: Sihem Oujdi, Hafida Belbachir

Abstract:

Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.

Keywords: C4.5 algorithm, decision trees, S-CART, spatial data mining

Procedia PDF Downloads 609
5692 Disaggregation of Coarser Resolution Radiometer Derived Soil Moisture to Finer Scales

Authors: Gurjeet Singh, Rabindra K. Panda

Abstract:

Soil moisture is a key hydrologic state variable and is intrinsically linked to the Earth's water, climate and carbon cycles. On ecological point of view, the soil moisture is a fundamental natural resource providing the transpirable water for plants. Soil moisture varies both temporally and spatially due to spatiotemporal variation in rainfall, vegetation cover, soil properties and topography. Satellite derived soil moisture provides spatio-temporal extensive data. However, the spatial resolution of a typical satellite (L-band radiometry) is of the order of tens of kilometers, which is not good enough for developing efficient agricultural water management schemes at the field scale. In the present study, the soil moisture from radiometer data has been disaggregated using blending approach to achieve higher resolution soil moisture data. The radiometer estimates of soil moisture at a 40 km resolution have been disaggregated to 10 km, 5 km and 1 km resolutions. The disaggregated soil moisture was compared with the observed data, consisting of continuous sensor based soil moisture profile measurements, at three monitoring sites and extensive spatial near-surface soil moisture measurements, concurrent with satellite monitoring in the 500 km2 study watershed in the Eastern India. The estimated soil moisture status at different spatial scales can help in developing efficient agricultural water management schemes to increase the crop production and water use efficiency.

Keywords: disaggregation, eastern India, radiometers, soil moisture, water use efficiency

Procedia PDF Downloads 272
5691 Nadler's Fixed Point Theorem on Partial Metric Spaces and its Application to a Homotopy Result

Authors: Hemant Kumar Pathak

Abstract:

In 1994, Matthews (S.G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci., vol. 728, 1994, pp. 183-197) introduced the concept of a partial metric as a part of the study of denotational semantics of data flow networks. He gave a modified version of the Banach contraction principle, more suitable in this context. In fact, (complete) partial metric spaces constitute a suitable framework to model several distinguished examples of the theory of computation and also to model metric spaces via domain theory. In this paper, we introduce the concept of almost partial Hausdorff metric. We prove a fixed point theorem for multi-valued mappings on partial metric space using the concept of almost partial Hausdorff metric and prove an analogous to the well-known Nadler’s fixed point theorem. In the sequel, we derive a homotopy result as an application of our main result.

Keywords: fixed point, partial metric space, homotopy, physical sciences

Procedia PDF Downloads 433
5690 Modeling of the Heat and Mass Transfer in Fluids through Thermal Pollution in Pipelines

Authors: V. Radulescu, S. Dumitru

Abstract:

Introduction: Determination of the temperature field inside a fluid in motion has many practical issues, especially in the case of turbulent flow. The phenomenon is greater when the solid walls have a different temperature than the fluid. The turbulent heat and mass transfer have an essential role in case of the thermal pollution, as it was the recorded during the damage of the Thermoelectric Power-plant Oradea (closed even today). Basic Methods: Solving the theoretical turbulent thermal pollution represents a particularly difficult problem. By using the semi-empirical theories or by simplifying the made assumptions, based on the experimental measurements may be assured the elaboration of the mathematical model for further numerical simulations. The three zones of flow are analyzed separately: the vicinity of the solid wall, the turbulent transition zone, and the turbulent core. For each area are determined the distribution law of temperature. It is determined the dependence of between the Stanton and Prandtl numbers with correction factors, based on measurements experimental. Major Findings/Results: The limitation of the laminar thermal substrate was determined based on the theory of Landau and Levice, using the assumption that the longitudinal component of the velocity pulsation and the pulsation’s frequency varies proportionally with the distance to the wall. For the calculation of the average temperature, the formula is used a similar solution as for the velocity, by an analogous mediation. On these assumptions, the numerical modeling was performed with a gradient of temperature for the turbulent flow in pipes (intact or damaged, with cracks) having 4 different diameters, between 200-500 mm, as there were in the Thermoelectric Power-plant Oradea. Conclusions: It was made a superposition between the molecular viscosity and the turbulent one, followed by addition between the molecular and the turbulent transfer coefficients, necessary to elaborate the theoretical and the numerical modeling. The concept of laminar boundary layer has a different thickness when it is compared the flow with heat transfer and that one without a temperature gradient. The obtained results are within the margin of error of 5%, between the semi-empirical classical theories and the developed model, based on the experimental data. Finally, it is obtained a general correlation between the Stanton number and the Prandtl number, for a specific flow (with associated Reynolds number).

Keywords: experimental measurements, numerical correlations, thermal pollution through pipelines, turbulent thermal flow

Procedia PDF Downloads 161
5689 Direct Measurements of the Electrocaloric Effect in Solid Ferroelectric Materials via Thermoreflectance

Authors: Layla Farhat, Mathieu Bardoux, Stéphane Longuemart, Ziad Herro, Abdelhak Hadj Sahraoui

Abstract:

Electrocaloric (EC) effect refers to the isothermal entropy or adiabatic temperature changes of a dielectric material induced by an external electric field. This phenomenon has been largely ignored for application because only modest EC effects (2.6

Keywords: electrocaloric effect, thermoreflectance, ferroelectricity, cooling system

Procedia PDF Downloads 178
5688 Fusing Mentorship, Leadership and Empowerment Among Young Women In STEM

Authors: Anne Bubriski

Abstract:

Despite improvements in gender inequalities, women and girls continue to face glass ceilings, underrepresentation, and harmful stereotypes that can limit their aspirations and opportunities in STEM. While girls are taking similar high school math and science classes, boys are more likely to take physics and six times more likely to take an engineering course. The gap becomes even larger for minority or low-income girls. This gender gap is not due to biology; rather, it is due to cultural, social, and institutional forces. As girls get older, these forces often ‘teach’ them ‘STEM is more for boys’. The STEM gender gap widens in college, with only 20% of engineering degrees being awarded to women, and by the time women enter the workforce, they only occupy about 13% of engineering jobs. At the University of Central Florida, the Women’s and Gender Studies Program has developed a unique mentoring program to address these issues, Science Leadership and Mentoring (SLAM). What is unique about the approach of SLAM is that we look to address this problem through leadership and STEM. We look to help girls make connections between leadership and STEM—that young women can be leaders as scientists and that scientists are leaders making a change. This is particularly needed and relevant to our community because while there are mentoring programs to our knowledge, SLAM is one of the only, if not only, mentoring programs pairing college women and 7th-grade girls that includes a focus both on STEM and leadership in the United States. SLAM is a curriculum-based mentoring program pairing one 7th-grade girl with one UCF undergraduate STEM major. SLAM empowers young women to be assertive, brave, confident, independent, inquisitive and proud leaders in STEM. SLAM seeks to promote young women’s inspiration and excitement into STEM fields and careers while also building leadership abilities such as problem-solving, teamwork and cooperation, cultural identity and ethnic pride, advocacy for positive change, and goals for the future. SLAM serves about fifteen 7th-grade girls for the academic year and about 20 UCF students. SLAM holds weekly mentoring meetings lasting about 90 minutes, covering topics on leadership, STEM majors and careers, and STEM leadership. This past year, SLAM received a Community Action Grant from the American Association of University Women (AAUW) to run a sub-program, SLAM-Space. SLAM-Space focused on exposing SLAM participants to aerospace engineering and other space-related STEM fields, such as physics and astronomy, through guest speakers, workshops and field trips, including the Kenndy Space Center. The proposed paper presentation will present an overview of SLAM-Space and the data findings from pre and post-surveys, in-depth interviews and focus groups from the SLAM participants' experiences in the program.

Keywords: gender, leadership, STEM, empowerment

Procedia PDF Downloads 35
5687 A Study on the Current Challenges Hindering Urban Park Development in Ulaanbaatar City, Mongolia

Authors: Bayarmaa Enkhbold, Kenichi Matsui

Abstract:

Urban parks are important assets to every community in terms of providing space for health, cultural and leisure activities. However, Ulaanbaatar, the capital of Mongolia, faces a shortage of green spaces, particularly urban parks, due to overpopulation and haphazard growth. Therefore, in order to increase green space per person, the city government has planned to increase green space per person up to 20m² by 2020 and 30m² by 2030 by establishing more urban parks throughout the city. But this plan was estimated that it is highly unlikely to reach those goals according to the analysis of the present status of plan implementation because the current amount of green space per person is still 4m². In the past studies globally, city planners and scientists agree that it is highly improbable to develop urban parks and keep maintenance sustainably without reflecting community perceptions and their involvement in the park establishment. Therefore, this research aims to find the challenges which stymie urban park development in Ulaanbaatar city and recommend dealing with the problems. In order to reach the goal, communities’ perceptions about the current challenges and their necessity for urban parks were identified and determined whether they differentiated depending on two different types of residential areas (urban and suburban areas). It also attempted to investigate international good practices on how they deal with similar problems. The research methodology was based on a questionnaire survey among city residents, a document review regarding the involvement of stakeholders, and a literature review of relevant past studies. According to the residents’ perceptions, the biggest challenge was a lack of land availability and followed by a lack of proper policy, planning, management, and maintenance out of seven key challenges identified. The biggest community demand from the urban park was a playground for children and followed by recreation and relaxation out of six types of needs. Based on research findings, the study proposed several recommendations for enhancements as institutional and legal framework, park plan and management, supportive environment and monitoring, evaluation, and reporting.

Keywords: challenges of urban park planning and maintenance, community-based urban park establishment, community perceptions and participation, urban parks in Ulaanbaatar, Mongolia

Procedia PDF Downloads 114
5686 Queer Anti-Urbanism: An Exploration of Queer Space Through Design

Authors: William Creighton, Jan Smitheram

Abstract:

Queer discourse has been tied to a middle-class, urban-centric, white approach to the discussion of queerness. In doing so, the multilayeredness of queer existence has been washed away in favour of palatable queer occupation. This paper uses design to explore a queer anti-urbanist approach to facilitate a more egalitarian architectural occupancy. Scott Herring’s work on queer anti-urbanism is key to this approach. Herring redeploys anti-urbanism from its historical understanding of open hostility, rejection and desire to destroy the city towards a mode of queer critique that counters normative ideals of homonormative metronormative gay lifestyles. He questions how queer identity has been closed down into a more diminutive frame where those who do not fit within this frame are subjected to persecution or silenced through their absence. We extend these ideas through design to ask how a queer anti-urbanist approach facilitates a more egalitarian architectural occupancy. Following a “design as research” methodology, the design outputs allow a vehicle to ask how we might live, otherwise, in architectural space. A design as research methodologically is a process of questioning, designing and reflecting – in a non-linear, iterative approach – establishes itself through three projects, each increasing in scale and complexity. Each of the three scales tackled a different body relationship. The project began exploring the relations between body to body, body to known others, and body to unknown others. Moving through increasing scales was not to privilege the objective, the public and the large scale; instead, ‘intra-scaling’ acts as a tool to re-think how scale reproduces normative ideas of the identity of space. There was a queering of scale. Through this approach, the results were an installation that brings two people together to co-author space where the installation distorts the sensory experience and forces a more intimate and interconnected experience challenging our socialized proxemics: knees might touch. To queer the home, the installation was used as a drawing device, a tool to study and challenge spatial perception, drawing convention, and as a way to process practical information about the site and existing house – the device became a tool to embrace the spontaneous. The final design proposal operates as a multi-scalar boundary-crossing through “private” and “public” to support kinship through communal labour, queer relationality and mooring. The resulting design works to set adrift bodies in a sea of sensations through a mix of pleasure programmes. To conclude, through three design proposals, this design research creates a relationship between queer anti-urbanism and design. It asserts that queering the design process and outcome allows a more inclusive way to consider place, space and belonging. The projects lend to a queer relationality and interdependence by making spaces that support the unsettled, out-of-place, but is it queer enough?

Keywords: queer, queer anti-urbanism, design as research, design

Procedia PDF Downloads 166
5685 Nanomechanical Devices Vibrating at Microwave Frequencies in Simple Liquids

Authors: Debadi Chakraborty, John E. Sader

Abstract:

Nanomechanical devices have emerged as a versatile platform for a host of applications due to their extreme sensitivity to environmental conditions. For example, mass measurements with sensitivity at the atomic level have recently been demonstrated. Ultrafast laser spectroscopy coherently excite the vibrational modes of metal nanoparticles and permits precise measurement of the vibration characteristics as a function of nanoparticle shape, size and surrounding environment. This study reports that the vibration of metal nanoparticles in simple liquids, like water and glycerol are not described by conventional fluid mechanics, i.e., Navier Stokes equations. The intrinsic molecular relaxation processes in the surrounding liquid are found to have a profound effect on the fluid-structure interaction of mechanical devices at nanometre scales. Theoretical models have been developed based on the non-Newtonian viscoelastic fluid-structure interaction theory to investigate the vibration of nanoparticles immersed in simple fluids. The utility of this theoretical framework is demonstrated by comparison to measurements on single nanowires and ensembles of metal rods. This study provides a rigorous foundation for the use of metal nanoparticles as ultrasensitive mechanical sensors in fluid and opens a new paradigm for understanding extremely high frequency fluid mechanics, nanoscale sensing technologies, and biophysical processes.

Keywords: fluid-structure interaction, nanoparticle vibration, ultrafast laser spectroscopy, viscoelastic damping

Procedia PDF Downloads 270
5684 Tip-Apex Distance as a Long-Term Risk Factor for Hospital Readmission Following Intramedullary Fixation of Intertrochanteric Fractures

Authors: Brandon Knopp, Matthew Harris

Abstract:

Purpose: Tip-apex distance (TAD) has long been discussed as a metric for determining risk of failure in the fixation of peritrochanteric fractures. TAD measurements over 25 millimeters (mm) have been associated with higher rates of screw cut out and other complications in the first several months after surgery. However, there is limited evidence for the efficacy of this measurement in predicting the long-term risk of negative outcomes following hip fixation surgery. The purpose of our study was to investigate risk factors including TAD for hospital readmission, loss of pre-injury ambulation and development of complications within 1 year after hip fixation surgery. Methods: A retrospective review of proximal hip fractures treated with single screw intramedullary devices between 2016 and 2020 was performed at a 327-bed regional medical center. Patients included had a postoperative follow-up of at least 12 months or surgery-related complications developing within that time. Results: 44 of the 67 patients in this study met the inclusion criteria with adequate follow-up post-surgery. There was a total of 10 males (22.7%) and 34 females (77.3%) meeting inclusion criteria with a mean age of 82.1 (± 12.3) at the time of surgery. The average TAD in our study population was 19.57mm and the average 1-year readmission rate was 15.9%. 3 out of 6 patients (50%) with a TAD > 25mm were readmitted within one year due to surgery-related complications. In contrast, 3 out of 38 patients (7.9%) with a TAD < 25mm were readmitted within one year due to surgery-related complications (p=0.0254). Individual TAD measurements, averaging 22.05mm in patients readmitted within 1 year of surgery and 19.18mm in patients not readmitted within 1 year of surgery, were not significantly different between the two groups (p=0.2113). Conclusions: Our data indicate a significant improvement in hospital readmission rates up to one year after hip fixation surgery in patients with a TAD < 25mm with a decrease in readmissions of over 40% (50% vs 7.9%). This result builds upon past investigations by extending the follow-up time to 1 year after surgery and utilizing hospital readmissions as a metric for surgical success. With the well-documented physical and financial costs of hospital readmission after hip surgery, our study highlights a reduction of TAD < 25mm as an effective method of improving patient outcomes and reducing financial costs to patients and medical institutions. No relationship was found between TAD measurements and secondary outcomes, including loss of pre-injury ambulation and development of complications.

Keywords: hip fractures, hip reductions, readmission rates, open reduction internal fixation

Procedia PDF Downloads 137
5683 Energy Efficient Shading Strategies for Windows of Hospital ICUs in the Desert

Authors: A. Sherif, A. El Zafarany, R. Arafa

Abstract:

Hospitals, everywhere, are considered heavy energy consumers. Hospital Intensive Care Unit spaces pose a special challenge, where design guidelines requires the provision of external windows for day-lighting and external view. Window protection strategies could be employed to reduce energy loads without detriment effect on comfort or health care. This paper addresses the effectiveness of using various window strategies on the annual cooling, heating and lighting energy use of a typical Hospital Intensive Unit space. Series of experiments were performed using the EnergyPlus simulation software for a typical Intensive Care Unit (ICU) space in Cairo, located in the Egyptian desert. This study concluded that the use of shading systems is more effective in conserving energy in comparison with glazing of different types, in the Cairo ICUs. The highest energy savings in the West and South orientations were accomplished by external perforated solar screens, followed by overhangs positioned at a protection angle of 45°.

Keywords: energy, hospital, intensive care units, shading

Procedia PDF Downloads 283
5682 Deliberation of Daily Evapotranspiration and Evaporative Fraction Based on Remote Sensing Data

Authors: J. Bahrawi, M. Elhag

Abstract:

Estimation of evapotranspiration is always a major component in water resources management. Traditional techniques of calculating daily evapotranspiration based on field measurements are valid only for local scales. Earth observation satellite sensors are thus used to overcome difficulties in obtaining daily evapotranspiration measurements on regional scale. The Surface Energy Balance System (SEBS) model was adopted to estimate daily evapotranspiration and relative evaporation along with other land surface energy fluxes. The model requires agro-climatic data that improve the model outputs. Advance Along Track Scanning Radiometer (AATSR) and Medium Spectral Resolution Imaging Spectrometer (MERIS) imageries were used to estimate the daily evapotranspiration and relative evaporation over the entire Nile Delta region in Egypt supported by meteorological data collected from six different weather stations located within the study area. Daily evapotranspiration maps derived from SEBS model show a strong agreement with actual ground-truth data taken from 92 points uniformly distributed all over the study area. Moreover, daily evapotranspiration and relative evaporation are strongly correlated. The reliable estimation of daily evapotranspiration supports the decision makers to review the current land use practices in terms of water management, while enabling them to propose proper land use changes.

Keywords: daily evapotranspiration, relative evaporation, SEBS, AATSR, MERIS, Nile Delta

Procedia PDF Downloads 256
5681 Linear Regression Estimation of Tactile Comfort for Denim Fabrics Based on In-Plane Shear Behavior

Authors: Nazli Uren, Ayse Okur

Abstract:

Tactile comfort of a textile product is an essential property and a major concern when it comes to customer perceptions and preferences. The subjective nature of comfort and the difficulties regarding the simulation of human hand sensory feelings make it hard to establish a well-accepted link between tactile comfort and objective evaluations. On the other hand, shear behavior of a fabric is a mechanical parameter which can be measured by various objective test methods. The principal aim of this study is to determine the tactile comfort of commercially available denim fabrics by subjective measurements, create a tactile score database for denim fabrics and investigate the relations between tactile comfort and shear behavior. In-plane shear behaviors of 17 different commercially available denim fabrics with a variety of raw material and weave structure were measured by a custom design shear frame and conventional bias extension method in two corresponding diagonal directions. Tactile comfort of denim fabrics was determined via subjective customer evaluations as well. Aforesaid relations were statistically investigated and introduced as regression equations. The analyses regarding the relations between tactile comfort and shear behavior showed that there are considerably high correlation coefficients. The suggested regression equations were likewise found out to be statistically significant. Accordingly, it was concluded that the tactile comfort of denim fabrics can be estimated with a high precision, based on the results of in-plane shear behavior measurements.

Keywords: denim fabrics, in-plane shear behavior, linear regression estimation, tactile comfort

Procedia PDF Downloads 296
5680 Sustaining the Social Memory in a Historic Neighborhood: The Case Study of Uch Dukkan Neighborhood in Ardabil City in Azerbaijani Region of Iran

Authors: Yousef Daneshvar Rouyandozagh, Ece. K. Açikgöz

Abstract:

Conservation of historical urban patterns in the traditional neighborhoods is a part of creating integrated urban environments that are socially more sustainable. Urbanization reflects on life conditions and social, physical, economical characteristics of the society. In this regard, historical zones and traditional regions are affected by dramatic interventions on these characteristics. This article focuses on the Uch Dukkan neighborhood located in Ardabil City in Azarbaijani region of Iran, which has been up to such interventions that leaded its transformation from the past to the present. After introducing a brief inventory of the main elements of the historical zone and the neighborhood; this study explores the changes and transformations in different periods; and their impacts on the quality of the environment and its social sustainability. The survey conducted in the neighborhood as part of this research study revealed that the Uch Dukkan neighborhood and the unique architectural heritage that it possesses have become more inactive physically and functionally in a decade. This condition requires an exploration and comparison of the present and the expected transformations of the meaning of social space from the most private unit to the urban scale. From this token, it is argued that an architectural point of view that is based on space order; use and meaning of space as a social and cultural image, should not be ignored. Based on the interplay between social sustainability, collective memory, and the urban environment, study aims to make the invisible portion of ignorance clear, that ends up with a weakness in defining the collective meaning of the neighborhood as a historic urban district. It reveals that the spatial possessions of the neighborhood are valuable not only for their historical and physical characteristics, but also for their social memory that is to be remembered and constructed further.

Keywords: urban integrity, social sustainability, collective memory, social decay

Procedia PDF Downloads 283
5679 Mathematical Modeling and Analysis of Forced Vibrations in Micro-Scale Microstretch Thermoelastic Simply Supported Beam

Authors: Geeta Partap, Nitika Chugh

Abstract:

The present paper deals with the flexural vibrations of homogeneous, isotropic, generalized micropolar microstretch thermoelastic thin Euler-Bernoulli beam resonators, due to Exponential time varying load. Both the axial ends of the beam are assumed to be at simply supported conditions. The governing equations have been solved analytically by using Laplace transforms technique twice with respect to time and space variables respectively. The inversion of Laplace transform in time domain has been performed by using the calculus of residues to obtain deflection.The analytical results have been numerically analyzed with the help of MATLAB software for magnesium like material. The graphical representations and interpretations have been discussed for Deflection of beam under Simply Supported boundary condition and for distinct considered values of time and space as well. The obtained results are easy to implement for engineering analysis and designs of resonators (sensors), modulators, actuators.

Keywords: microstretch, deflection, exponential load, Laplace transforms, residue theorem, simply supported

Procedia PDF Downloads 305
5678 The Impact of Speech Style on the Production of Spanish Vowels by Spanish-English Bilinguals and Spanish Monolinguals

Authors: Vivian Franco

Abstract:

There has been a great deal of research about vowel production of second language learners of Spanish, vowel variation across Spanish dialects, and more recently, research related to Spanish heritage speakers’ vowel production based on speech style. However, there is little investigation reported on Spanish heritage speakers’ vowel production in regard to task modality by incorporating own comparison groups of monolinguals and late bilinguals. Thus, the present study investigates the influence of speech style on Spanish heritage speakers’ vowel production by comparing Spanish-English early and late bilinguals and Spanish monolinguals. The study was guided by the following research question: How do early bilinguals (heritage speakers) differ/relate to advanced L2 speakers of Spanish (late bilinguals) and Spanish monolinguals in their vowel quality (acoustic distribution) and quantity (duration) based on speech style? The participants were a total of 11 speakers of Spanish: 7 early Spanish-English bilinguals with a similar linguistic background (simultaneous bilinguals of the second generation); 2 advanced L2 speakers of Spanish; and 2 Spanish monolinguals from Mexico. The study consisted of two tasks. The first one adopted a semi-spontaneous style by a solicited narration of life experiences and a description of a favorite movie with the purpose to collect spontaneous speech. The second task was a reading activity in which the participants read two paragraphs of a Mexican literary essay 'La nuez.' This task aimed to obtain a more controlled speech style. From this study, it can be concluded that early bilinguals and monolinguals show a smaller formant vowel space overall compared to the late bilinguals in both speech styles. In terms of formant values by stress, the early bilinguals and the late bilinguals resembled in the semi-spontaneous speech style as their unstressed vowel space overlapped with that of the unstressed vowels different from the monolinguals who displayed a slightly reduced unstressed vowel space. For the controlled data, the early bilinguals were similar to the monolinguals as their stressed and unstressed vowel spaces overlapped in comparison to the late bilinguals who showed a more clear reduction of unstressed vowel space. In regard to stress, the monolinguals revealed longer vowel duration overall. However, findings of duration by stress showed that the early bilinguals and the monolinguals remained stable with shorter values of unstressed vowels in the semi-spontaneous data and longer duration in the controlled data when compared to the late bilinguals who displayed opposite results. These findings suggest an implication for Spanish heritage speakers and L2 Spanish vowels research as it has been frequently argued that Spanish bilinguals differ from the Spanish monolinguals by their vowel reduction and centralized vowel space influenced by English. However, some Spanish varieties are characterized by vowel reduction especially in certain phonetic contexts so that some vowels present more weakening than others. Consequently, it would not be conclusive to affirm an English influence on the Spanish of these bilinguals.

Keywords: Spanish-English bilinguals, Spanish monolinguals, spontaneous and controlled speech, vowel production.

Procedia PDF Downloads 126
5677 Experimental Assessment of Artificial Flavors Production

Authors: M. Unis, S. Turky, A. Elalem, A. Meshrghi

Abstract:

The Esterification kinetics of acetic acid with isopropnol in the presence of sulfuric acid as a homogenous catalyst was studied with isothermal batch experiments at 60,70 and 80°C and at a different molar ratio of isopropnol to acetic acid. Investigation of kinetics of the reaction indicated that the low of molar ratio is favored for esterification reaction, this is due to the reaction is catalyzed by acid. The maximum conversion, approximately 60.6% was obtained at 80°C for molar ratio of 1:3 acid : alcohol. It was found that increasing temperature of the reaction, increases the rate constant and conversion at a certain mole ratio, that is due to the esterification is exothermic. The homogenous reaction has been described with simple power-law model. The chemical equilibrium combustion calculated from the kinetic model in agreement with the measured chemical equilibrium.

Keywords: artificial flavors, esterification, chemical equilibria, isothermal

Procedia PDF Downloads 326
5676 Lead Removal From Ex- Mining Pond Water by Electrocoagulation: Kinetics, Isotherm, and Dynamic Studies

Authors: Kalu Uka Orji, Nasiman Sapari, Khamaruzaman W. Yusof

Abstract:

Exposure of galena (PbS), tealite (PbSnS2), and other associated minerals during mining activities release lead (Pb) and other heavy metals into the mining water through oxidation and dissolution. Heavy metal pollution has become an environmental challenge. Lead, for instance, can cause toxic effects to human health, including brain damage. Ex-mining pond water was reported to contain lead as high as 69.46 mg/L. Conventional treatment does not easily remove lead from water. A promising and emerging treatment technology for lead removal is the application of the electrocoagulation (EC) process. However, some of the problems associated with EC are systematic reactor design, selection of maximum EC operating parameters, scale-up, among others. This study investigated an EC process for the removal of lead from synthetic ex-mining pond water using a batch reactor and Fe electrodes. The effects of various operating parameters on lead removal efficiency were examined. The results obtained indicated that the maximum removal efficiency of 98.6% was achieved at an initial PH of 9, the current density of 15mA/cm2, electrode spacing of 0.3cm, treatment time of 60 minutes, Liquid Motion of Magnetic Stirring (LM-MS), and electrode arrangement = BP-S. The above experimental data were further modeled and optimized using a 2-Level 4-Factor Full Factorial design, a Response Surface Methodology (RSM). The four factors optimized were the current density, electrode spacing, electrode arrangements, and Liquid Motion Driving Mode (LM). Based on the regression model and the analysis of variance (ANOVA) at 0.01%, the results showed that an increase in current density and LM-MS increased the removal efficiency while the reverse was the case for electrode spacing. The model predicted the optimal lead removal efficiency of 99.962% with an electrode spacing of 0.38 cm alongside others. Applying the predicted parameters, the lead removal efficiency of 100% was actualized. The electrode and energy consumptions were 0.192kg/m3 and 2.56 kWh/m3 respectively. Meanwhile, the adsorption kinetic studies indicated that the overall lead adsorption system belongs to the pseudo-second-order kinetic model. The adsorption dynamics were also random, spontaneous, and endothermic. The higher temperature of the process enhances adsorption capacity. Furthermore, the adsorption isotherm fitted the Freundlish model more than the Langmuir model; describing the adsorption on a heterogeneous surface and showed good adsorption efficiency by the Fe electrodes. Adsorption of Pb2+ onto the Fe electrodes was a complex reaction, involving more than one mechanism. The overall results proved that EC is an efficient technique for lead removal from synthetic mining pond water. The findings of this study would have application in the scale-up of EC reactor and in the design of water treatment plants for feed-water sources that contain lead using the electrocoagulation method.

Keywords: ex-mining water, electrocoagulation, lead, adsorption kinetics

Procedia PDF Downloads 143
5675 Deflection Effect on Mirror for Space Applications

Authors: Maamar Fatouma

Abstract:

Mirror optical performance can experience varying levels of stress and tolerances, which can have a notable impact on optical parametric systems. to ensure proper optical figure and position of mirror mounting within design tolerances, it is crucial to have a robust support structure in place for optical systems. The optical figure tolerance determines the allowable deviation from the ideal form of the mirror and the position tolerance determines the location and orientations of the optical axis of the optical systems. A variety of factors influence the optical figure of the mirror. Included are self-weight (Deflection), excitation from temperature change, temperature gradients and dimensional instability. This study employs an analytical approach and finite element method to examine the effects of stress resulting from mirror mounting on the wavefront passing through the mirror. The combined effect of tolerance and deflection on mirror performance is represented by an error budget. Numerical mirror mounting is presented to illustrate the space application of performance techniques.

Keywords: opto-mechanical, bonded optic, tolerance, self-weight distortion, Rayleigh criteria

Procedia PDF Downloads 84
5674 Health and Safety Risk Assesment with Electromagnetic Field Exposure for Call Center Workers

Authors: Dilsad Akal

Abstract:

Aim: Companies communicate with each other and with their costumers via call centers. Call centers are defined as stressful because of their uncertain working hours, inadequate relief time, performance based system and heavy workload. In literature, this sector is defined as risky as mining sector by means of health and safety. The aim of this research is to enlight the relatively dark area. Subject and Methods: The collection of data for this study completed during April-May 2015 for the two selected call centers in different parts of Turkey. The applied question mostly investigated the health conditions of call center workers. Electromagnetic field measurements were completed at the same time with applying the question poll. The ratio of employee accessibility noted as 73% for the first call center and 87% for the second. Results: The results of electromagnetic field measurements were as between 371 V/m-32 V/m for the first location and between 370 V/m-61 V/m for the second. The general complaints of the employees for both workplaces can be counted as; inadequate relief time, inadequate air conditioning, disturbance, poor thermal conditions, inadequate or extreme lighting. Furthermore, musculoskeletal discomfort, stress, ear and eye discomfort are main health problems of employees. Conclusion: The measured values and the responses to the question poll were found parallel with the other similar research results in literature. At the end of this survey, a risk map of workplace was prepared in terms of safety and health at work in general and some suggestions for resolution were provided.

Keywords: call center, health and safety, electromagnetic field, risk map

Procedia PDF Downloads 179
5673 Effects of the Gap on the Cooling Performance of Microchannels Heat Sink

Authors: Mohammed W. Sulaiman, Chi-Chuan Wang

Abstract:

Due to the improved performance of electronic systems, the demand for electronic cooling devices with high heat dissipation has increased. This research evaluates plain microchannel cold plates with a gap above the microchannels. The present study examines the effect of the gap above straight fin microchannels in the cold plate using the dielectric Novec 7000 as a working fluid. The experiments compared two transparency cover with the same geometry and dimension for the test section. One has a gap above the microchannels (GAM) 1/3 of fin height, and another one with no gap above the microchannels (NGAM); the mass flux ranges from 25 to 260 kg/m2s, while the heat flux spans from 50 to 150 W/cm2. The results show quite an improvement in performance with this space gap above the microchannels. The test results showed that the design of the GAM shows a superior heat transfer coefficient (HTC), up 90% than that of NCBM. The GAM design has a much lower pressure drop by about 7~24% compared to the NGAM design at different mass flux and heat flux at the fully liquid inlet. The proposed space gap of 0.33% of fin height above the microchannels enables the surface temperature to decrease by around 3~7 °C compared to no gap above the microchannels, especially at high heat fluxes.

Keywords: microchannels, pressure drop, enhanced performance, electronic cooling, gap

Procedia PDF Downloads 70
5672 Spectroscopic Study of Eu³⁺ Ions Doped Potassium Lead Alumino Borate Glasses for Photonic Device Application

Authors: Nisha Deopa, Allam Srinivasa Rao

Abstract:

Quaternary potassium lead alumino borate (KPbAlB) glasses doped with different concentration of Eu³⁺ ions have been synthesized by melt quench technique and characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), Photoluminescence (PL), Time-resolved photoluminescence (TRPL) and CIE-chromaticity co-ordinates to study their luminescence behavior. A broad hump was observed in XRD spectrum confirms glassy nature of as-prepared glasses. By using Judd-Ofelt (J-O) theory, various radiative parameters for the prominent fluorescent levels of Eu³⁺ have been investigated. The intense emission peak was observed at 613 nm (⁵D₀→⁷F₂) under 393 nm excitation, matches well with the excitation of n-UV LED chips. The decay profiles observed for ⁵D₀ level were exponential for lower Eu³⁺ ion concentration while non-exponential for higher concentration, which may be due to efficient energy transfer between Eu³⁺-Eu³⁺ through cross relaxation and subsequent quenching observed. From the emission cross-sections, branching ratios, quantum efficiency and CIE coordinates, it was concluded that 7 mol % of Eu³⁺ ion concentration (glass B) is optimum in KPbAlB glasses for photonic device application.

Keywords: energy transfer, glasses, J-O parameters, photoluminescence

Procedia PDF Downloads 158
5671 Experimental Research of High Pressure Jet Interaction with Supersonic Crossflow

Authors: Bartosz Olszanski, Zbigniew Nosal, Jacek Rokicki

Abstract:

An experimental study of cold-jet (nitrogen) reaction control jet system has been carried out to investigate the flow control efficiency for low to moderate jet pressure ratios (total jet pressure p0jet over free stream static pressure in the wind tunnel p∞) and different angles of attack for infinite Mach number equal to 2. An investigation of jet influence was conducted on a flat plate geometry placed in the test section of intermittent supersonic wind tunnel of Department of Aerodynamics, WUT. Various convergent jet nozzle geometries to obtain different jet momentum ratios were tested on the same test model geometry. Surface static pressure measurements, Schlieren flow visualizations (using continuous and photoflash light source), load cell measurements gave insight into the supersonic crossflow interaction for different jet pressure and jet momentum ratios and their influence on the efficiency of side jet control as described by the amplification factor (actual to theoretical net force generated by the control nozzle). Moreover, the quasi-steady numerical simulations of flow through the same wind tunnel geometry (convergent-divergent nozzle plus test section) were performed using ANSYS Fluent basing on Reynolds-Averaged Navier-Stokes (RANS) solver incorporated with k-ω Shear Stress Transport (SST) turbulence model to assess the possible spurious influence of test section walls over the jet exit near field area of interest. The strong bow shock, barrel shock, and Mach disk as well as lambda separation region in front of nozzle were observed as images taken by high-speed camera examine the interaction of the jet and the free stream. In addition, the development of large-scale vortex structures (counter-rotating vortex pair) was detected. The history of complex static pressure pattern on the plate was recorded and compared to the force measurement data as well as numerical simulation data. The analysis of the obtained results, especially in the wake of the jet showed important features of the interaction mechanisms between the lateral jet and the flow field.

Keywords: flow visualization techniques, pressure measurements, reaction control jet, supersonic cross flow

Procedia PDF Downloads 290
5670 Time Integrated Measurements of Radon and Thoron Progeny Concentration in Various Dwellings of Bathinda District of Punjab Using Deposition Based Progeny Sensors

Authors: Kirandeep Kaur, Rohit Mehra, Pargin Bangotra

Abstract:

Radon and thoron are pervasive radioactive gases and so are their progenies. The progenies of radon and thoron are present in the indoor atmosphere as attached/unattached fractions. In the present work, seasonal variation of concentration of attached and total (attached + unattached) nanosized decay products of indoor radon and thoron has been studied in the dwellings of Bathinda District of Punjab using Deposition based progeny sensors over long integrated times, which are independent of air turbulence. The preliminary results of these measurements are reported particularly regarding DTPS (Direct Thoron Progeny Sensor) and DRPS (Direct Radon Progeny Sensor) for the first time in Bathinda. It has been observed that there is a strong linear relationship in total EERC (Equilibrium Equivalent Radon Concentration) and EETC (Equilibrium Equivalent Thoron Concentration) in rainy season (R2 = 0.83). Further a strong linear relation between total indoor radon concentration and attached fraction has also been observed for the same rainy season (R2= 0.91). The concentration of attached progeny of radon (EERCatt) is 76.3 % of the total Equilibrium Equivalent Radon Concentration (EERC).

Keywords: radon, thoron, progeny, DTPS/DRPS, EERC, EETC, seasonal variation

Procedia PDF Downloads 412
5669 Space Telemetry Anomaly Detection Based On Statistical PCA Algorithm

Authors: Bassem Nassar, Wessam Hussein, Medhat Mokhtar

Abstract:

The crucial concern of satellite operations is to ensure the health and safety of satellites. The worst case in this perspective is probably the loss of a mission but the more common interruption of satellite functionality can result in compromised mission objectives. All the data acquiring from the spacecraft are known as Telemetry (TM), which contains the wealth information related to the health of all its subsystems. Each single item of information is contained in a telemetry parameter, which represents a time-variant property (i.e. a status or a measurement) to be checked. As a consequence, there is a continuous improvement of TM monitoring systems in order to reduce the time required to respond to changes in a satellite's state of health. A fast conception of the current state of the satellite is thus very important in order to respond to occurring failures. Statistical multivariate latent techniques are one of the vital learning tools that are used to tackle the aforementioned problem coherently. Information extraction from such rich data sources using advanced statistical methodologies is a challenging task due to the massive volume of data. To solve this problem, in this paper, we present a proposed unsupervised learning algorithm based on Principle Component Analysis (PCA) technique. The algorithm is particularly applied on an actual remote sensing spacecraft. Data from the Attitude Determination and Control System (ADCS) was acquired under two operation conditions: normal and faulty states. The models were built and tested under these conditions and the results shows that the algorithm could successfully differentiate between these operations conditions. Furthermore, the algorithm provides competent information in prediction as well as adding more insight and physical interpretation to the ADCS operation.

Keywords: space telemetry monitoring, multivariate analysis, PCA algorithm, space operations

Procedia PDF Downloads 411
5668 A Framework for Strategy Development in Small Companies: A Case Study of a Telecommunication Firm

Authors: Maryam Goodarzi, Mahdieh Sheikhi, Mehdi Goodarzi

Abstract:

This study intends to offer an appropriate strategy development framework for a telecommunication firm (as a case study) which works on Information and Communication Technology (ICT) projects, development of telecommunication networks, and maintenance of local networks, according to its dominant condition. In this approach, first, the objectives were set and the mission was defined. Then, the capability was assessed by SWOT matrix. Using SPACE matrix, the strategy of the company was determined. The strategic direction is set and an appropriate and superior strategy was developed and offered employing QSPM matrix. The theoretical framework or conceptual model of the present study first involves 4 stages of framework development and then from stage 3 (assessing capability) onward, a strategic management model by Fred R. David. In this respect, the tools and methods offered in the framework are appropriate for all kinds of organizations, particularly small firms, and help strategists identify, evaluate, and select strategies.

Keywords: strategy formulation, firm mission, strategic direction, space diagram, quantitative strategic planning matrix, SWOT matrix

Procedia PDF Downloads 364