Search results for: radio networks
1765 Optimization of Gastro-Retentive Matrix Formulation and Its Gamma Scintigraphic Evaluation
Authors: Swapnila V. Shinde, Hemant P. Joshi, Sumit R. Dhas, Dhananjaysingh B. Rajput
Abstract:
The objective of the present study is to develop hydro-dynamically balanced system for atenolol, β-blocker as a single unit floating tablet. Atenolol shows pH dependent solubility resulting into a bioavailability of 36%. Thus, site specific oral controlled release floating drug delivery system was developed. Formulation includes novice use of rate controlling polymer such as locust bean gum (LBG) in combination of HPMC K4M and gas generating agent sodium bicarbonate. Tablet was prepared by direct compression method and evaluated for physico-mechanical properties. The statistical method was utilized to optimize the effect of independent variables, namely amount of HPMC K4M, LBG and three dependent responses such as cumulative drug release, floating lag time, floating time. Graphical and mathematical analysis of the results allowed the identification and quantification of the formulation variables influencing the selected responses. To study the gastrointestinal transit of the optimized gastro-retentive formulation, in vivo gamma scintigraphy was carried out in six healthy rabbits, after radio labeling the formulation with 99mTc. The transit profiles demonstrated that the dosage form was retained in the stomach for more than 5 hrs. The study signifies the potential of the developed system for stomach targeted delivery of atenolol with improved bioavailability.Keywords: floating tablet, factorial design, gamma scintigraphy, antihypertensive model drug, HPMC, locust bean gum
Procedia PDF Downloads 2751764 ANDASA: A Web Environment for Artistic and Cultural Data Representation
Authors: Carole Salis, Marie F. Wilson, Fabrizio Murgia, Cristian Lai, Franco Atzori, Giulia M. Orrù
Abstract:
ANDASA is a knowledge management platform for the capitalization of knowledge and cultural assets for the artistic and cultural sectors. It was built based on the priorities expressed by the participating artists. Through mapping artistic activities and specificities, it enables to highlight various aspects of the artistic research and production. Such instrument will contribute to create networks and partnerships, as it enables to evidentiate who does what, in what field, using which methodology. The platform is accessible to network participants and to the general public.Keywords: cultural promotion, knowledge representation, cultural maping, ICT
Procedia PDF Downloads 4261763 Physics Informed Deep Residual Networks Based Type-A Aortic Dissection Prediction
Abstract:
Purpose: Acute Type A aortic dissection is a well-known cause of extremely high mortality rate. A highly accurate and cost-effective non-invasive predictor is critically needed so that the patient can be treated at earlier stage. Although various CFD approaches have been tried to establish some prediction frameworks, they are sensitive to uncertainty in both image segmentation and boundary conditions. Tedious pre-processing and demanding calibration procedures requirement further compound the issue, thus hampering their clinical applicability. Using the latest physics informed deep learning methods to establish an accurate and cost-effective predictor framework are amongst the main goals for a better Type A aortic dissection treatment. Methods: Via training a novel physics-informed deep residual network, with non-invasive 4D MRI displacement vectors as inputs, the trained model can cost-effectively calculate all these biomarkers: aortic blood pressure, WSS, and OSI, which are used to predict potential type A aortic dissection to avoid the high mortality events down the road. Results: The proposed deep learning method has been successfully trained and tested with both synthetic 3D aneurysm dataset and a clinical dataset in the aortic dissection context using Google colab environment. In both cases, the model has generated aortic blood pressure, WSS, and OSI results matching the expected patient’s health status. Conclusion: The proposed novel physics-informed deep residual network shows great potential to create a cost-effective, non-invasive predictor framework. Additional physics-based de-noising algorithm will be added to make the model more robust to clinical data noises. Further studies will be conducted in collaboration with big institutions such as Cleveland Clinic with more clinical samples to further improve the model’s clinical applicability.Keywords: type-a aortic dissection, deep residual networks, blood flow modeling, data-driven modeling, non-invasive diagnostics, deep learning, artificial intelligence.
Procedia PDF Downloads 891762 Improving Waste Recycling and Resource Productivity by Integrating Smart Resource Tracking System
Authors: Atiq Zaman
Abstract:
The high contamination rate in the recycling waste stream is one of the major problems in Australia. In addition, a lack of reliable waste data makes it even more difficult for designing and implementing an effective waste management plan. This article conceptualizes the opportunity to improve resource productivity by integrating smart resource tracking system (SRTS) into the Australian household waste management system. The application of the smart resource tracking system will be implemented through the following ways: (i) mobile application-based resource tracking system used to measure the household’s material flow; (ii) RFID, smart image and weighing system used to track waste generation, recycling and contamination; (iii) informing and motivating manufacturer and retailers to improve their problematic products’ packaging; and (iv) ensure quality and reliable data through open-sourced cloud data for public use. The smart mobile application, imaging, radio-frequency identification (RFID) and weighing technologies are not new, but the very straightforward idea of using these technologies in the household resource consumption, waste bins and collection trucks will open up a new era of accurately measuring and effectively managing our waste. The idea will bring the most urgently needed reliable, data and clarity on household consumption, recycling behaviour and waste management practices in the context of available local infrastructure and policies. Therefore, the findings of this study would be very important for decision makers to improve resource productivity in the waste industry by using smart resource tracking system.Keywords: smart devices, mobile application, smart sensors, resource tracking, waste management, resource productivity
Procedia PDF Downloads 1441761 Combined Treatment of PARP-1 Inhibitor and Carbon Ion or Gamma Exposure Reduces the Metastatic Potential in Cultured Human Cells
Authors: Priyanka Chowdhury, Asitikantha Sarma, Utpal Ghosh
Abstract:
Hadron therapy using high Linear Energy Transfer (LET) ion beam is producing promising clinical results worldwide. The major advantages are its ability to kill radio-resistant tumor and its anti-metastatic activity. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors have been widely used as radiosensitizer, but its role in metastasis is unknown. The purpose of our study was to investigate the effect of PARP-1 depletion in combination with either Carbon Ion Beam (CIB) or gamma irradiation on metastatic potential of cultured cancerous cells. A549 cells were irradiated with CIB (0-4Gy) or gamma (0, 2, 4, 6 and 10 Gy) with and without PARP-1 inhibition. The metastatic potential of the cells was determined by cell migratory assay, expression, and activity of MMP-2 and MMP-9, expression of Cadherin, Fibronectin, and Vimentin. CIB exposure reduced migratory property and activity of MMP-2 and MMP-9 significantly. CIB with PARP-1 inhibition reduced cell migration and Matrix Metalloproteinase (MMPs) activity in a synergistic manner. Expression of MMPs was also down-regulated in CIB and combined treatment. On the contrary, MMP- 2 and MMP-9 activity was significantly increased in gamma irradiated cells but decreased upon combined treatment of gamma and PARP-1 inhibitor. MMPs expression and migration was reduced when gamma irradiation was combined with PARP-1 inhibition. Thus, our study clearly demonstrates that PARP-1 inhibition in combination with either high or low LET can significantly suppress metastatic potential in cancer cells and thereby can be a promising tool in controlling metastatic cancers.Keywords: high LET, low LET, matrix metalloproteinase (MMP), PARP-1
Procedia PDF Downloads 2141760 Neural Networks Models for Measuring Hotel Users Satisfaction
Authors: Asma Ameur, Dhafer Malouche
Abstract:
Nowadays, user comments on the Internet have an important impact on hotel bookings. This confirms that the e-reputation issue can influence the likelihood of customer loyalty to a hotel. In this way, e-reputation has become a real differentiator between hotels. For this reason, we have a unique opportunity in the opinion mining field to analyze the comments. In fact, this field provides the possibility of extracting information related to the polarity of user reviews. This sentimental study (Opinion Mining) represents a new line of research for analyzing the unstructured textual data. Knowing the score of e-reputation helps the hotelier to better manage his marketing strategy. The score we then obtain is translated into the image of hotels to differentiate between them. Therefore, this present research highlights the importance of hotel satisfaction ‘scoring. To calculate the satisfaction score, the sentimental analysis can be manipulated by several techniques of machine learning. In fact, this study treats the extracted textual data by using the Artificial Neural Networks Approach (ANNs). In this context, we adopt the aforementioned technique to extract information from the comments available in the ‘Trip Advisor’ website. This actual paper details the description and the modeling of the ANNs approach for the scoring of online hotel reviews. In summary, the validation of this used method provides a significant model for hotel sentiment analysis. So, it provides the possibility to determine precisely the polarity of the hotel users reviews. The empirical results show that the ANNs are an accurate approach for sentiment analysis. The obtained results show also that this proposed approach serves to the dimensionality reduction for textual data’ clustering. Thus, this study provides researchers with a useful exploration of this technique. Finally, we outline guidelines for future research in the hotel e-reputation field as comparing the ANNs with other technique.Keywords: clustering, consumer behavior, data mining, e-reputation, machine learning, neural network, online hotel ‘reviews, opinion mining, scoring
Procedia PDF Downloads 1361759 The Use of Network Theory in Heritage Cities
Authors: J. L. Oliver, T. Agryzkov, L. Tortosa, J. Vicent, J. Santacruz
Abstract:
This paper aims to demonstrate how the use of Network Theory can be applied to a very interesting and complex urban situation: The parts of a city which may have some patrimonial value, but because of their lack of relevant architectural elements, they are not considered to be historic in a conventional sense. In this paper, we use the suburb of La Villaflora in the city of Quito, Ecuador as our case study. We first propose a system of indicators as a tool to characterize and quantify the historic value of a geographic area. Then, we apply these indicators to the suburb of La Villaflora and use Network Theory to understand and propose actions.Keywords: graphs, mathematics, networks, urban studies
Procedia PDF Downloads 3691758 Hematological Changes in Oral Cancer Patients with Smokable and Chewable Tobacco
Authors: Mohsin Ali Baloch, Saira Baloch
Abstract:
Objective: To analyze hematological changes in patients of oral cancer with history of smokable and chewable tobacco use, and to compare them with healthy controls. Study Design: Descriptive type of study survey. Setting: This study was conducted at the Department of Oral and Maxillofacial Surgery, LUMHS, Jamshoro. Study Period: One year July, 2013 to July, 2014. Subject and Methods: Histopathologically confirmed hundred cases of oral cancer with the history of smokable and non-smokable tobacco were selected to analyze the hematological variation. Inclusion Criteria: Histopathologically diagnosed patients of oral squamous cell carcinoma, with history of smokable and non-smokable tobacco. Exclusion Criteria: Patient with any systemic medically compromising problem, terminally ill patients, radio or chemotherapeutically treated patients, patients with metastasis to lungs or any distant metastasis, patients with the history of more than one well-defined etiological factor involved. Results: There were 73% patients of oral cancer reported with anemic. Significantly lower values of Hb, platelet, and higher mean values of ESR, TLC, and were observed in both groups of oral cancer patients; tobacco smokers and tobacco chewers as compared to non-smokers healthy controls. There was more decline in the level of haemoglobin and incline in the level of ESR observed in tobacco chewer oral cancer patients as compared to tobacco smokers patients, while TLC was more observed in smokers. Conclusion: Oral cancer patients with a history of chewable/smokable tobacco have likely worse hematological profile, which increases the anesthetic and surgical challenges for maxillofacial surgeons, which have a significant impact on treatment planning as well.Keywords: oral cancer, hematological variations, tobacco, smokers
Procedia PDF Downloads 4361757 The Impact of E-Learning on the Performance of History Learners in Eswatini General Certificate of Secondary Education
Authors: Joseph Osodo, Motsa Thobekani Phila
Abstract:
The study investigated the impact of e-learning on the performance of history learners in Eswatini general certificate of secondary education in the Manzini region of Eswatini. The study was guided by the theory of connectivism. The study had three objectives which were to find out the significance of e-learning during the COVID-19 era in learning History subject; challenges faced by history teachers’ and learners’ in e-learning; and how the challenges were mitigated. The study used a qualitative research approach and descriptive research design. Purposive sampling was used to select eight History teachers and eight History learners from four secondary schools in the Manzini region. Data were collected using face to face interviews. The collected data were analyzed and presented in thematically. The findings showed that history teachers had good knowledge on what e-learning was, while students had little understanding of e-learning. Some of the forms of e-learning that were used during the pandemic in teaching history in secondary schools included TV, radio, computer, projectors, and social media especially WhatsApp. E-learning enabled the continuity of teaching and learning of history subject. The use of e-learning through the social media was more convenient to the teacher and the learners. It was concluded that in some secondary school in the Manzini region, history teacher and learners encountered challenges such as lack of finances to purchase e-learning gadgets and data bundles, lack of skills as well as access to the Internet. It was recommended that History teachers should create more time to offer additional learning support to students whose performance was affected by the COVID-19 pandemic effects.Keywords: e-learning, performance, COVID-19, history, connectivism
Procedia PDF Downloads 761756 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland
Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski
Abstract:
PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks
Procedia PDF Downloads 1491755 Evaluating the Social Learning Processes Involved in Developing Community-Informed Wildfire Risk Reduction Strategies in the Prince Albert Forest Management Area
Authors: Carly Madge, Melanie Zurba, Ryan Bullock
Abstract:
The Boreal Forest has experienced some of the most drastic climate change-induced temperature rises in Canada, with average winter temperatures increasing by 3°C since 1948. One of the main concerns of the province of Saskatchewan, and particularly wildfire managers, is the increased risk of wildfires due to climate change. With these concerns in mind Sakaw Askiy Management Inc., a forestry corporation located in Prince Albert, Saskatchewan with operations in the Boreal Forest biome, is developing wildfire risk reduction strategies that are supported by the shareholders of the corporation as well as the stakeholders of the Prince Albert Forest Management Area (which includes citizens, hunters, trappers, cottage owners, and outfitters). In the past, wildfire management strategies implemented through harvesting have been received with skepticism by some community members of Prince Albert. Engagement of the stakeholders of the Prince Albert Management Area through the development of the wildfire risk reduction strategies aims to reduce this skepticism and rebuild some of the trust that has been lost between industry and community. This research project works with the framework of social learning, which is defined as the learning that occurs when individuals come together to form a group with the purpose of understanding environmental challenges and determining appropriate responses to them. The project evaluates the social learning processes that occur through the development of the risk reduction strategies and how the learning has allowed Sakaw to work towards implementing the strategies into their forest harvesting plans. The incorporation of wildfire risk reduction strategies works to increase the adaptive capacity of Sakaw, which in this case refers to the ability to adjust to climate change, moderate potential damages, take advantage of opportunities, and cope with consequences. Using semi-structured interviews and wildfire workshop meetings shareholders and stakeholders shared their knowledge of wildfire, their main wildfire concerns, and changes they would like to see made in the Prince Albert Forest Management Area. Interviews and topics discussed in the workshops were inductively coded for themes related to learning, adaptive capacity, areas of concern, and preferred methods of wildfire risk reduction strategies. Analysis determined that some of the learning that has occurred has resulted through social interactions and the development of networks oriented towards wildfire and wildfire risk reduction strategies. Participants have learned new knowledge and skills regarding wildfire risk reduction. The formation of wildfire networks increases access to information on wildfire and the social capital (trust and strengthened relations) of wildfire personnel. Both factors can be attributed to increases in adaptive capacity. Interview results were shared with the General Manager of Sakaw, where the areas of concern and preferred strategies of wildfire risk reduction will be considered and accounted for in the implementation of new harvesting plans. This research also augments the growing conceptual and empirical evidence of the important role of learning and networks in regional wildfire risk management efforts.Keywords: adaptive capacity, community-engagement, social learning, wildfire risk reduction
Procedia PDF Downloads 1461754 Attracting European Youths to STEM Education and Careers: A Pedagogical Approach to a Hybrid Learning Environment
Authors: M. Assaad, J. Mäkiö, T. Mäkelä, M. Kankaanranta, N. Fachantidis, V. Dagdilelis, A. Reid, C. R. del Rio, E. V. Pavlysh, S. V. Piashkun
Abstract:
To bring science and society together in Europe, thus increasing the continent’s international competitiveness, STEM (science, technology, engineering and mathematics) education must be more relatable to European youths in their everyday life. STIMEY (Science, Technology, Innovation, Mathematics, Engineering for the Young) project researches and develops a hybrid educational environment with multi-level components that is being designed and developed based on a well-researched pedagogical framework, aiming to make STEM education more attractive to young people aged 10 to 18 years in this digital era. This environment combines social media components, robotic artefacts, and radio to educate, engage and increase students’ interest in STEM education and careers from a young age. Additionally, it offers educators the necessary modern tools to deliver STEM education in an attractive and engaging manner in or out of class. Moreover, it enables parents to keep track of their children’s education, and collaborate with their teachers on their development. Finally, the open platform allows businesses to invest in the growth of the youths’ talents and skills in line with the economic and labour market needs through entrepreneurial tools. Thus, universities, schools, teachers, students, parents, and businesses come together to complete a circle in which STEM becomes part of the daily life of youths through a hybrid educational environment that also prepares them for future careers.Keywords: e-learning, entrepreneurship, pedagogy, robotics, serious gaming, social media, STEM education
Procedia PDF Downloads 3731753 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text
Authors: Duncan Wallace, M-Tahar Kechadi
Abstract:
In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.Keywords: artificial neural networks, data-mining, machine learning, medical informatics
Procedia PDF Downloads 1311752 Artificial Neural Network Based Model for Detecting Attacks in Smart Grid Cloud
Authors: Sandeep Mehmi, Harsh Verma, A. L. Sangal
Abstract:
Ever since the idea of using computing services as commodity that can be delivered like other utilities e.g. electric and telephone has been floated, the scientific fraternity has diverted their research towards a new area called utility computing. New paradigms like cluster computing and grid computing came into existence while edging closer to utility computing. With the advent of internet the demand of anytime, anywhere access of the resources that could be provisioned dynamically as a service, gave rise to the next generation computing paradigm known as cloud computing. Today, cloud computing has become one of the most aggressively growing computer paradigm, resulting in growing rate of applications in area of IT outsourcing. Besides catering the computational and storage demands, cloud computing has economically benefitted almost all the fields, education, research, entertainment, medical, banking, military operations, weather forecasting, business and finance to name a few. Smart grid is another discipline that direly needs to be benefitted from the cloud computing advantages. Smart grid system is a new technology that has revolutionized the power sector by automating the transmission and distribution system and integration of smart devices. Cloud based smart grid can fulfill the storage requirement of unstructured and uncorrelated data generated by smart sensors as well as computational needs for self-healing, load balancing and demand response features. But, security issues such as confidentiality, integrity, availability, accountability and privacy need to be resolved for the development of smart grid cloud. In recent years, a number of intrusion prevention techniques have been proposed in the cloud, but hackers/intruders still manage to bypass the security of the cloud. Therefore, precise intrusion detection systems need to be developed in order to secure the critical information infrastructure like smart grid cloud. Considering the success of artificial neural networks in building robust intrusion detection, this research proposes an artificial neural network based model for detecting attacks in smart grid cloud.Keywords: artificial neural networks, cloud computing, intrusion detection systems, security issues, smart grid
Procedia PDF Downloads 3181751 Muslims in Diaspora Negotiating Islam through Muslim Public Sphere and the Role of Media
Authors: Sabah Khan
Abstract:
The idea of universal Islam tends to exaggerate the extent of homogeneity in Islamic beliefs and practices across Muslim communities. In the age of migration, various Muslim communities are in diaspora. The immediate implication of this is what happens to Islam in diaspora? How Islam gets represented in new forms? Such pertinent questions need to be dealt with. This paper shall draw on the idea of religious transnationalism, primarily transnational Islam. There are multiple ways to conceptualize transnational phenomenon with reference to Islam in terms of flow of people, transnational organizations and networks; Ummah oriented solidarity and the new Muslim public sphere. This paper specifically deals with the new Muslim public sphere. It primarily refers to the space and networks enabled by new media and communication technologies, whereby Muslim identity and Islamic normativity are rehearsed, debated by people in different locales. A new sense of public is emerging across Muslim communities, which needs to be contextualized. This paper uses both primary and secondary data. Primary data elicited through content analysis of audio-visuals on social media and secondary sources of information ranging from books, articles, journals, etc. The basic aim of the paper is to focus on the emerging Muslim public sphere and the role of media in expanding public spheres of Islam. It also explores how Muslims in diaspora negotiate Islam and Islamic practices through media and the new Muslim public sphere. This paper cogently weaves in discussions firstly, of re-intellectualization of Islamic discourse in the public sphere. In other words, how Muslims have come to reimagine their collective identity and critically look at fundamental principles and authoritative tradition. Secondly, the emerging alternative forms of Islam by young Muslims in diaspora. In other words, how young Muslims search for unorthodox ways and media for religious articulation, including music, clothing and TV. This includes transmission and distribution of Islam in diaspora in terms of emerging ‘media Islam’ or ‘soundbite Islam’. The new Muslim public sphere has offered an arena to a large number of participants to critically engage with Islam, which leads not only to a critical engagement with traditional forms of Islamic authority but also emerging alternative forms of Islam and Islamic practices.Keywords: Islam, media, Muslims, public sphere
Procedia PDF Downloads 2701750 Opportunities and Challenges of Digital Diplomacy in the Public Diplomacy of the Islamic Republic of Iran
Authors: Somayeh Pashaee
Abstract:
The ever-increasing growth of the Internet and the development of information and communication technology have prompted the politicians of different countries to use virtual networks as an efficient tool for their foreign policy. The communication of governments and countries, even in the farthest places from each other, through electronic networks, has caused vast changes in the way of statecraft and governance. Importantly, in the meantime, diplomacy, which is always based on information and communication, has been affected by the new prevailing conditions and new technologies more than other areas and has faced greater changes. The emergence of virtual space and the formation of new communication tools in the field of public diplomacy has led to the redefinition of the framework of diplomacy and politics in the international arena and the appearance of a new aspect of diplomacy called digital diplomacy. Digital diplomacy is in the concept of changing relations from a face-to-face and traditional way to a non-face-to-face and new way, and its purpose is to solve foreign policy issues using virtual space. Digital diplomacy, by affecting diplomatic procedures and its change, explains the role of technology in the visualization and implementation of diplomacy in different ways. The purpose of this paper is to investigate the position of digital diplomacy in the public diplomacy of the Islamic Republic of Iran. The paper tries to answer these two questions in a descriptive-analytical way, considering the progress of communication and the role of virtual space in the service of diplomacy, what is the approach of the Islamic Republic of Iran towards digital diplomacy and the use of a new way of establishing foreign relations in public diplomacy? What capacities and damages are facing the country after the use of this type of new diplomacy? In this paper, various theoretical concepts in the field of public diplomacy and modern diplomacy, including Geoff Berridge, Charles Kegley, Hans Tuch and Ronald Peter Barston, as well as the theoretical framework of Marcus Holmes on digital diplomacy, will be used as a conceptual basis to support the analysis. As a result, in order to better achieve the political goals of the country, especially in foreign policy, the approach of the Islamic Republic of Iran to public diplomacy with a focus on digital diplomacy should be strengthened and revised. Today, only emphasizing on advancing diplomacy through traditional methods may weaken Iran's position in the public opinion level from other countries.Keywords: digital diplomacy, public diplomacy, islamic republic of Iran, foreign policy, opportunities and challenges
Procedia PDF Downloads 1131749 Bayesian Networks Scoping the Climate Change Impact on Winter Wheat Freezing Injury Disasters in Hebei Province, China
Authors: Xiping Wang,Shuran Yao, Liqin Dai
Abstract:
Many studies report the winter is getting warmer and the minimum air temperature is obviously rising as the important climate warming evidences. The exacerbated air temperature fluctuation tending to bring more severe weather variation is another important consequence of recent climate change which induced more disasters to crop growth in quite a certain regions. Hebei Province is an important winter wheat growing province in North of China that recently endures more winter freezing injury influencing the local winter wheat crop management. A winter wheat freezing injury assessment Bayesian Network framework was established for the objectives of estimating, assessing and predicting winter wheat freezing disasters in Hebei Province. In this framework, the freezing disasters was classified as three severity degrees (SI) among all the three types of freezing, i.e., freezing caused by severe cold in anytime in the winter, long extremely cold duration in the winter and freeze-after-thaw in early season after winter. The factors influencing winter wheat freezing SI include time of freezing occurrence, growth status of seedlings, soil moisture, winter wheat variety, the longitude of target region and, the most variable climate factors. The climate factors included in this framework are daily mean and range of air temperature, extreme minimum temperature and number of days during a severe cold weather process, the number of days with the temperature lower than the critical temperature values, accumulated negative temperature in a potential freezing event. The Bayesian Network model was evaluated using actual weather data and crop records at selected sites in Hebei Province using real data. With the multi-stage influences from the various factors, the forecast and assessment of the event-based target variables, freezing injury occurrence and its damage to winter wheat production, were shown better scoped by Bayesian Network model.Keywords: bayesian networks, climatic change, freezing Injury, winter wheat
Procedia PDF Downloads 4081748 Hybrid Approach for Country’s Performance Evaluation
Authors: C. Slim
Abstract:
This paper presents an integrated model, which hybridized data envelopment analysis (DEA) and support vector machine (SVM) together, to class countries according to their efficiency and performance. This model takes into account aspects of multi-dimensional indicators, decision-making hierarchy and relativity of measurement. Starting from a set of indicators of performance as exhaustive as possible, a process of successive aggregations has been developed to attain an overall evaluation of a country’s competitiveness.Keywords: Artificial Neural Networks (ANN), Support vector machine (SVM), Data Envelopment Analysis (DEA), Aggregations, indicators of performance
Procedia PDF Downloads 3381747 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities
Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun
Abstract:
The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids
Procedia PDF Downloads 641746 Comparison of Frequency-Domain Contention Schemes in Wireless LANs
Authors: Li Feng
Abstract:
In IEEE 802.11 networks, it is well known that the traditional time-domain contention often leads to low channel utilization. The first frequency-domain contention scheme, the time to frequency (T2F), has recently been proposed to improve the channel utilization and has attracted a great deal of attention. In this paper, we survey the latest research progress on the weighed frequency-domain contention. We present the basic ideas, work principles of these related schemes and point out their differences. This paper is very useful for further study on frequency-domain contention.Keywords: 802.11, wireless LANs, frequency-domain contention, T2F
Procedia PDF Downloads 4591745 Analysis of Waiting Time and Drivers Fatigue at Manual Toll Plaza and Suggestion of an Automated Toll Tax Collection System
Authors: Muhammad Dawood Idrees, Maria Hafeez, Arsalan Ansari
Abstract:
Toll tax collection is the earliest method of tax collection and revenue generation. This revenue is utilized for the development of roads networks, maintenance, and connecting to roads and highways across the country. Pakistan is one of the biggest countries, covers a wide area of land, roads networks, and motorways are important source of connecting cities. Every day millions of people use motorways, and they have to stop at toll plazas to pay toll tax as majority of toll plazas are manually collecting toll tax. The purpose of this study is to calculate the waiting time of vehicles at Karachi Hyderabad (M-9) motorway. As Karachi is the biggest city of Pakistan and hundreds of thousands of people use this route to approach other cities. Currently, toll tax collection is manual system which is a major cause for long time waiting at toll plaza. This study calculates the waiting time of vehicles, fuel consumed in waiting time, manpower employed at toll plaza as all process is manual, and it also leads to mental and physical fatigue of driver. All wastages of sources are also calculated, and a most feasible automatic toll tax collection system is proposed which is not only beneficial to reduce waiting time but also beneficial in reduction of fuel, reduction of manpower employed, and reduction in physical and mental fatigue. A cost comparison in terms of wastages is also shown between manual and automatic toll tax collection system (E-Z Pass). Results of this study reveal that, if automatic tool collection system is implemented at Karachi to Hyderabad motorway (M-9), there will be a significance reduction in waiting time of vehicles, which leads to reduction of fuel consumption, environmental pollution, mental and physical fatigue of driver. All these reductions are also calculated in terms of money (Pakistani rupees) and it is obtained that millions of rupees can be saved by using automatic tool collection system which will lead to improve the economy of country.Keywords: toll tax collection, waiting time, wastages, driver fatigue
Procedia PDF Downloads 1501744 Transnational Initiatives, Local Perspectives: The Potential of Australia-Asia BRIDGE School Partnerships Project to Support Teacher Professional Development in India
Authors: Atiya Khan
Abstract:
Recent research on the condition of school education in India has reaffirmed the importance of quality teacher professional development, especially in light of the rapid changes in teaching methods, learning theories, curriculum, and major shifts in information and technology that education systems are experiencing around the world. However, the quality of programs of teacher professional development in India is often uneven, in some cases non-existing. The educational authorities in India have long recognized this and have developed a range of programs to assist in-service teacher education. But, these programs have been mostly inadequate at improving the quality of teachers in India. Policy literature and reports indicate that the unevenness of these programs and more generally the lack of quality teacher professional development in India are due to factors such as a large number of teachers, budgetary constraints, top-down decision making, teacher overload, lack of infrastructure, and little or no follow-up. The disparity between the government stated goals for quality teacher professional development in India and its inability to meet the learning needs of teachers suggests that new interventions are needed. The realization that globalization has brought about an increase in the social, cultural, political and economic interconnectedness between countries has also given rise to transnational opportunities for education systems, such as India’s, aiming to build their capacity to support teacher professional development. Moreover, new developments in communication technologies seem to present a plausible means of achieving high-quality professional development for teachers through the creation of social learning spaces, such as transnational learning networks. This case study investigates the potential of one such transnational learning network to support the quality of teacher professional development in India, namely the Australia-Asia BRIDGE School Partnerships Project. It explores the participation of some fifteen teachers and their principals from BRIDGE participating schools in Delhi region of India; focusing on their professional development expectations from the BRIDGE program and account for their experiences in the program, in order to determine the program’s potential for the professional development of teachers in this study.Keywords: case study, Australia-Asia BRIDGE Project, teacher professional development, transnational learning networks
Procedia PDF Downloads 2661743 Knowledge, Attitudes, and Practices regarding Anthrax among Community Members, Health and Veterinary Workers in Maragua, Kenya
Authors: Isaiah Chacha, Samuel Arimi, Andrew Thaiya
Abstract:
Background: This study was conducted to assess knowledge, attitudes and practices regarding anthrax in Maragua, Kenya to provide baseline information to design interventions. Methods: A cross sectional survey was conducted among head of households, health and veterinary workers in Maragua Sub-county in August and September 2014. Administered questionnaires were used to collect data from household members and a key informant interview held with health and veterinary workers. Multi stage sampling was used to obtain participants’ knowledge, attitudes and practices. Questions were scored and descriptively analyzed using Excel spreadsheet then exported to GenStat Discovery Edition 4. Results: A total of 293 community members were recruited in this study. The overall level of knowledge was 77.9% of all community members regarding cause, transmission, symptoms and prevention of the disease in both humans and animals. Majority of the participants (96.3%) had heard about anthrax. A total of 99 (33.8%) correspondents had seen a person with anthrax and 75.1% think that anthrax is a very serious disease in the area. Of the interviewed correspondents, 14.3% of them have had their animals (mostly cattle) suffer from anthrax while 15.7% had either suffered from anthrax or have had their family member who suffered from anthrax. Conclusion: The study findings indicate above average knowledge on cause, symptoms, transmission and prevention of anthrax among community members in humans and animals. Practices in this study were still risk among community members. Veterinary and Medical health planners should design anthrax awareness interventions as a team targeting to reach these communities and the public through barazas, radio, CHW and other communication channel on a regular basis.Keywords: anthrax, attitudes, Kenya, knowledge, Maragua, practices
Procedia PDF Downloads 3171742 The Role of Oral and Intestinal Microbiota in European Badgers
Authors: Emma J. Dale, Christina D. Buesching, Kevin R. Theis, David W. Macdonald
Abstract:
This study investigates the oral and intestinal microbiomes of wild-living European badgers (Meles meles) and will relate inter-individual differences to social contact networks, somatic and reproductive fitness, varying susceptibility to bovine tuberculous (bTB) and to the olfactory advertisement. Badgers are an interesting model for this research, as they have great variation in body condition, despite living in complex social networks and having access to the same resources. This variation in somatic fitness, in turn, affects breeding success, particularly in females. We postulate that microbiota have a central role to play in determining the successfulness of an individual. Our preliminary results, characterising the microbiota of individual badgers, indicate unique compositions of microbiota communities within social groups of badgers. This basal information will inform further questions related to the extent microbiota influence fitness. Hitherto, the potential role of microbiota has not been considered in determining host condition, but also other key fitness variables, namely; communication and resistance to disease. Badgers deposit their faeces in communal latrines, which play an important role in olfactory communication. Odour profiles of anal and subcaudal gland secretions are highly individual-specific and encode information about group-membership and fitness-relevant parameters, and their chemical composition is strongly dependent on symbiotic microbiota. As badgers sniff/ lick (using their Vomeronasal organ) and over-mark faecal deposits of conspecifics, these microbial communities can be expected to vary with social contact networks. However, this is particularly important in the context of bTB, where badgers are assumed to transmit bTB to cattle as well as conspecifics. Interestingly, we have found that some individuals are more susceptible to bTB than are others. As acquired immunity and thus potential susceptibility to infectious diseases are known to depend also on symbiotic microbiota in other members of the mustelids, a role of particularly oral microbiota can currently not be ruled out as a potential explanation for inter-individual differences in infection susceptibility of bTB in badgers. Tri annually badgers are caught in the context of a long-term population study that began in 1987. As all badgers receive an individual tattoo upon first capture, age, natal as well as previous and current social group-membership and other life history parameters are known for all animals. Swabs (subcaudal ‘scent gland’, anal, genital, nose, mouth and ear) and fecal samples will be taken from all individuals, stored at -80oC until processing. Microbial samples will be processed and identified at Wayne State University’s Theis (Host-Microbe Interactions) Lab, using High Throughput Sequencing (16S rRNA-encoding gene amplification and sequencing). Acknowledgments: Gas-Chromatography/ Mass-spectrometry (in the context of olfactory communication) analyses will be performed through an established collaboration with Dr. Veronica Tinnesand at Telemark University, Norway.Keywords: communication, energetics, fitness, free-ranging animals, immunology
Procedia PDF Downloads 1871741 Building a Blockchain-based Internet of Things
Authors: Rob van den Dam
Abstract:
Today’s Internet of Things (IoT) comprises more than a billion intelligent devices, connected via wired/wireless communications. The expected proliferation of hundreds of billions more places us at the threshold of a transformation sweeping across the communications industry. Yet, we found that the IoT architecture and solutions that currently work for billions of devices won’t necessarily scale to tomorrow’s hundreds of billions of devices because of high cost, lack of privacy, not future-proof, lack of functional value and broken business models. As the IoT scales exponentially, decentralized networks have the potential to reduce infrastructure and maintenance costs to manufacturers. Decentralization also promises increased robustness by removing single points of failure that could exist in traditional centralized networks. By shifting the power in the network from the center to the edges, devices gain greater autonomy and can become points of transactions and economic value creation for owners and users. To validate the underlying technology vision, IBM jointly developed with Samsung Electronics the autonomous decentralized peer-to- peer proof-of-concept (PoC). The primary objective of this PoC was to establish a foundation on which to demonstrate several capabilities that are fundamental to building a decentralized IoT. Though many commercial systems in the future will exist as hybrid centralized-decentralized models, the PoC demonstrated a fully distributed proof. The PoC (a) validated the future vision for decentralized systems to extensively augment today’s centralized solutions, (b) demonstrated foundational IoT tasks without the use of centralized control, (c) proved that empowered devices can engage autonomously in marketplace transactions. The PoC opens the door for the communications and electronics industry to further explore the challenges and opportunities of potential hybrid models that can address the complexity and variety of requirements posed by the internet that continues to scale. Contents: (a) The new approach for an IoT that will be secure and scalable, (b) The three foundational technologies that are key for the future IoT, (c) The related business models and user experiences, (d) How such an IoT will create an 'Economy of Things', (e) The role of users, devices, and industries in the IoT future, (f) The winners in the IoT economy.Keywords: IoT, internet, wired, wireless
Procedia PDF Downloads 3351740 Speckle-Based Phase Contrast Micro-Computed Tomography with Neural Network Reconstruction
Authors: Y. Zheng, M. Busi, A. F. Pedersen, M. A. Beltran, C. Gundlach
Abstract:
X-ray phase contrast imaging has shown to yield a better contrast compared to conventional attenuation X-ray imaging, especially for soft tissues in the medical imaging energy range. This can potentially lead to better diagnosis for patients. However, phase contrast imaging has mainly been performed using highly brilliant Synchrotron radiation, as it requires high coherence X-rays. Many research teams have demonstrated that it is also feasible using a laboratory source, bringing it one step closer to clinical use. Nevertheless, the requirement of fine gratings and high precision stepping motors when using a laboratory source prevents it from being widely used. Recently, a random phase object has been proposed as an analyzer. This method requires a much less robust experimental setup. However, previous studies were done using a particular X-ray source (liquid-metal jet micro-focus source) or high precision motors for stepping. We have been working on a much simpler setup with just small modification of a commercial bench-top micro-CT (computed tomography) scanner, by introducing a piece of sandpaper as the phase analyzer in front of the X-ray source. However, it needs a suitable algorithm for speckle tracking and 3D reconstructions. The precision and sensitivity of speckle tracking algorithm determine the resolution of the system, while the 3D reconstruction algorithm will affect the minimum number of projections required, thus limiting the temporal resolution. As phase contrast imaging methods usually require much longer exposure time than traditional absorption based X-ray imaging technologies, a dynamic phase contrast micro-CT with a high temporal resolution is particularly challenging. Different reconstruction methods, including neural network based techniques, will be evaluated in this project to increase the temporal resolution of the phase contrast micro-CT. A Monte Carlo ray tracing simulation (McXtrace) was used to generate a large dataset to train the neural network, in order to address the issue that neural networks require large amount of training data to get high-quality reconstructions.Keywords: micro-ct, neural networks, reconstruction, speckle-based x-ray phase contrast
Procedia PDF Downloads 2571739 Coherent All-Fiber and Polarization Maintaining Source for CO2 Range-Resolved Differential Absorption Lidar
Authors: Erwan Negre, Ewan J. O'Connor, Juha Toivonen
Abstract:
The need for CO2 monitoring technologies grows simultaneously with the worldwide concerns regarding environmental challenges. To that purpose, we developed a compact coherent all-fiber ranged-resolved Differential Absorption Lidar (RR-DIAL). It has been designed along a tunable 2x1fiber optic switch set to a frequency of 1 Hz between two Distributed FeedBack (DFB) lasers emitting in the continuous-wave mode at 1571.41 nm (absorption line of CO2) and 1571.25 nm (CO2 absorption-free line), with linewidth and tuning range of respectively 1 MHz and 3 nm over operating wavelength. A three stages amplification through Erbium and Erbium-Ytterbium doped fibers coupled to a Radio Frequency (RF) driven Acousto-Optic Modulator (AOM) generates 100 ns pulses at a repetition rate from 10 to 30 kHz with a peak power up to 2.5 kW and a spatial resolution of 15 m, allowing fast and highly resolved CO2 profiles. The same afocal collection system is used for the output of the laser source and the backscattered light which is then directed to a circulator before being mixed with the local oscillator for heterodyne detection. Packaged in an easily transportable box which also includes a server and a Field Programmable Gate Array (FPGA) card for on-line data processing and storing, our setup allows an effective and quick deployment for versatile in-situ analysis, whether it be vertical atmospheric monitoring, large field mapping or sequestration site continuous oversight. Setup operation and results from initial field measurements will be discussed.Keywords: CO2 profiles, coherent DIAL, in-situ atmospheric sensing, near infrared fiber source
Procedia PDF Downloads 1281738 Randomized, Controlled Blind Study Comparing Sacroiliac Intra-Articular Steroid Injection to Radiofrequency Denervation for Management of Sacroiliac Joint Pain
Authors: Ossama Salman
Abstract:
Background and objective: Sacroiliac joint pain is a common cause for chronic axial low back pain, with up to 20% prevalence rate. To date, no effective long-term treatment intervention has been embarked on yet. The aim of our study was to compare steroid block to radiofrequency ablation for SIJ pain conditions. Methods: A randomized, blind, study was conducted in 30 patients with sacroiliac joint pain. Fifteen patients received radiofrequency denervation of L4-5 primary dorsal rami and S1-3 lateral sacral branch, and 15 patients received steroid under fluoroscopy. Those in the steroid group who did not respond to steroid injections were offered to cross over to get radiofrequency ablation. Results: At 1-, 3- and 6-months post-intervention, 73%, 60% and 53% of patients, respectively, gained ≥ 50 % pain relief in the radiofrequency (RF) ablation group. In the steroid group, at one month post intervention follow up, only 20% gained ≥ 50 % pain relief, but failed to show any improvement at 3 months and 6 months follow up. Conclusions: Radiofrequency ablation at L4 and L5 primary dorsal rami and S1-3 lateral sacral branch may provide effective and longer pain relief compared to the classic intra-articular steroid injection, in properly selected patients with suspected sacroiliac joint pain. Larger studies are called for to confirm our results and lay out the optimal patient selection and treatment parameters for this poorly comprehended disorder.Keywords: lateral branch denervation, LBD, radio frequency, RF, sacroiliac joint, SIJ, visual analogue scale, VAS
Procedia PDF Downloads 2191737 Integrating Music on Construction Sites: Key Benefits and Cautions: A Literature Perspective
Authors: Oluwatayomi Daniel Fadumo, Chinyere Celestina Esimone
Abstract:
The construction industry, as a massive human capital-related sector, requires an always motivated workforce. The inability to maintain this state has been found to hamper productivity which ultimately leads to poor project delivery, infrastructural development decline, and low morale among citizens. The need to develop an approach to keep this set of people inspired before, during, and after work becomes a necessity; this paper aims to evaluate the key benefits and cautions in integrating music on construction sites in Nigeria to improve effective project delivery. In attaining this, the study identified the advantages of music on construction sites, evaluated the key considerations in introducing music on construction sites, and recommended measures for the effective integration of music on construction sites in Nigeria. The study is a descriptive research through the use of secondary data gleaned from relevant literature, journals, and research sites. The study concluded that different forms of music genres can be implemented ranging from Pop music, rock, metal, and classical music. Introducing music has the advantage of industrial branding, improving workers` morale, setting the pace for working, helping in information retention, and improving mental health and happiness. The key consideration, however, is to provide the right volume and music that doesn’t pose health and safety challenges. The study finally recommended that for effective integration of music on construction sites in Nigeria, policies should be drafted regulating its use, specific radio customized for the site be introduced and that research-based music, proven to have previously helped, should be given to a group of workers.Keywords: music, construction sites, workers, construction industry, construction management practice
Procedia PDF Downloads 521736 An Approach towards Smart Future: Ict Infrastructure Integrated into Urban Water Networks
Authors: Ahsan Ali, Mayank Ostwal, Nikhil Agarwal
Abstract:
Abstract—According to a World Bank report, millions of people across the globe still do not have access to improved water services. With uninterrupted growth of cities and urban inhabitants, there is a mounting need to safeguard the sustainable expansion of cities. Efficient functioning of the urban components and high living standards of the residents are needed to be ensured. The water and sanitation network of an urban development is one of its most essential parts of its critical infrastructure. The growth in urban population is leading towards increased water demand, and thus, the local water resources are severely strained. 'Smart water' is referred to water and waste water infrastructure that is able to manage the limited resources and the energy used to transport it. It enables the sustainable consumption of water resources through co-ordinate water management system, by integrating Information Communication Technology (ICT) solutions, intended at maximizing the socioeconomic benefits without compromising the environmental values. This paper presents a case study from a medium sized city in North-western Pakistan. Currently, water is getting contaminated due to the proximity between water and sewer pipelines in the study area, leading to public health issues. Due to unsafe grey water infiltration, the scarce ground water is also getting polluted. This research takes into account the design of smart urban water network by integrating ICT (Information and Communication Technology) with urban water network. The proximity between the existing water supply network and sewage network is analyzed and a design of new water supply system is proposed. Real time mapping of the existing urban utility networks will be projected with the help of GIS applications. The issue of grey water infiltration is addressed by providing sustainable solutions with the help of locally available materials, keeping in mind the economic condition of the area. To deal with the current growth of urban population, it is vital to develop new water resources. Hence, distinctive and cost effective procedures to harness rain water would be suggested as a part of the research study experiment.Keywords: GIS, smart water, sustainability, urban water management
Procedia PDF Downloads 215