Search results for: panel data regression analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42895

Search results for: panel data regression analysis

41425 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices

Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu

Abstract:

Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.

Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction

Procedia PDF Downloads 105
41424 Prediction of Alzheimer's Disease Based on Blood Biomarkers and Machine Learning Algorithms

Authors: Man-Yun Liu, Emily Chia-Yu Su

Abstract:

Alzheimer's disease (AD) is the public health crisis of the 21st century. AD is a degenerative brain disease and the most common cause of dementia, a costly disease on the healthcare system. Unfortunately, the cause of AD is poorly understood, furthermore; the treatments of AD so far can only alleviate symptoms rather cure or stop the progress of the disease. Currently, there are several ways to diagnose AD; medical imaging can be used to distinguish between AD, other dementias, and early onset AD, and cerebrospinal fluid (CSF). Compared with other diagnostic tools, blood (plasma) test has advantages as an approach to population-based disease screening because it is simpler, less invasive also cost effective. In our study, we used blood biomarkers dataset of The Alzheimer’s disease Neuroimaging Initiative (ADNI) which was funded by National Institutes of Health (NIH) to do data analysis and develop a prediction model. We used independent analysis of datasets to identify plasma protein biomarkers predicting early onset AD. Firstly, to compare the basic demographic statistics between the cohorts, we used SAS Enterprise Guide to do data preprocessing and statistical analysis. Secondly, we used logistic regression, neural network, decision tree to validate biomarkers by SAS Enterprise Miner. This study generated data from ADNI, contained 146 blood biomarkers from 566 participants. Participants include cognitive normal (healthy), mild cognitive impairment (MCI), and patient suffered Alzheimer’s disease (AD). Participants’ samples were separated into two groups, healthy and MCI, healthy and AD, respectively. We used the two groups to compare important biomarkers of AD and MCI. In preprocessing, we used a t-test to filter 41/47 features between the two groups (healthy and AD, healthy and MCI) before using machine learning algorithms. Then we have built model with 4 machine learning methods, the best AUC of two groups separately are 0.991/0.709. We want to stress the importance that the simple, less invasive, common blood (plasma) test may also early diagnose AD. As our opinion, the result will provide evidence that blood-based biomarkers might be an alternative diagnostics tool before further examination with CSF and medical imaging. A comprehensive study on the differences in blood-based biomarkers between AD patients and healthy subjects is warranted. Early detection of AD progression will allow physicians the opportunity for early intervention and treatment.

Keywords: Alzheimer's disease, blood-based biomarkers, diagnostics, early detection, machine learning

Procedia PDF Downloads 320
41423 Cross Cultural Adaptation and Content Validation of the Assessment Instrument Preschooler Awareness of Stuttering Survey

Authors: Catarina Belchior, Catarina Martins, Sara Mendes, Ana Rita S. Valente, Elsa Marta Soares

Abstract:

Introduction: The negative feelings and attitudes that a person who stutters can develop are extremely relevant when considering assessment and intervention in Speech and Language Therapy. This relates to the fact that the person who stutters can experience feelings such as shame, fear and negative beliefs when communicating. Considering the complexity and importance of integrating diverse aspects in stuttering intervention, it is central to identify those emotions as early as possible. Therefore, this research aimed to achieve the translation, adaptation to European Portuguese and to analyze the content validation of the Preschooler Awareness Stuttering Survey (Abbiati, Guitar & Hutchins, 2015), an instrument that allows the assessment of the impact of stuttering on preschool children who stutter considering feelings and attitudes. Methodology: Cross-sectional descriptive qualitative research. The following methodological procedures were followed: translation, back-translation, panel of experts and pilot study. This abstract describes the results of the first three phases of this process. The translation was accomplished by two Speech Language Therapists (SLT). Both professionals have more than five years of experience and are users of English language. One of them has a broad experience in the field of stuttering. Back-translation was conducted by two bilingual individuals without experience in health or any knowledge about the instrument. The panel of experts was composed by 3 different SLT, experts in the field of stuttering. Results and Discussion: In the translation and back-translation process it was possible to verify differences in semantic and idiomatic equivalences of several concepts and expressions, as well as the need to include new information to enhance the understanding of the application of the instrument. The meeting between the two translators and the researchers allowed the achievement of a consensus version that was used in back-translation. Considering adaptation and content validation, the main change made by the experts was the conceptual equivalence of the questions and answers of the instrument's sheets. Considering that in the translated consensus version the questions began with various nouns such as 'is' or 'the cow' and that the answers did not contain the adverb 'much' as in the original instrument, the panel agreed that it would be more appropriate if the questions all started with 'how' and that all the answers should present the adverb 'much'. This decision was made to ensure that the translate instrument would be similar to the original and so that the results obtained could be comparable between the original and the translated instrument. There was also elaborated one semantic equivalence between concepts. The panel of experts found that all other items and specificities of the instrument were adequate, concluding the adequacy of the instrument considering its objectives and its intended target population. Conclusion: This research aspires to diversify the existing validated resources in this scope, adding a new instrument that allows the assessment of preschool children who stutter. Consequently, it is hoped that this instrument will provide a real and reliable assessment that can lead to an appropriate therapeutic intervention according to the characteristics and needs of each child.

Keywords: stuttering, assessment, feelings and attitudes, speech language therapy

Procedia PDF Downloads 149
41422 Wind Fragility of Window Glass in 10-Story Apartment with Two Different Window Models

Authors: Viriyavudh Sim, WooYoung Jung

Abstract:

Damage due to high wind is not limited to load resistance components such as beam and column. The majority of damage is due to breach in the building envelope such as broken roof, window, and door. In this paper, wind fragility of window glass in residential apartment was determined to compare the difference between two window configuration models. Monte Carlo Simulation method had been used to derive damage data and analytical fragilities were constructed. Fragility of window system showed that window located in leeward wall had higher probability of failure, especially those close to the edge of structure. Between the two window models, Model 2 had higher probability of failure, this was due to the number of panel in this configuration.

Keywords: wind fragility, glass window, high rise building, wind disaster

Procedia PDF Downloads 254
41421 Predictive Value of ¹⁸F-Fdg Accumulation in Visceral Fat Activity to Detect Colorectal Cancer Metastases

Authors: Amil Suleimanov, Aigul Saduakassova, Denis Vinnikov

Abstract:

Objective: To assess functional visceral fat (VAT) activity evaluated by ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) positron emission tomography/computed tomography (PET/CT) as a predictor of metastases in colorectal cancer (CRC). Materials and methods: We assessed 60 patients with histologically confirmed CRC who underwent 18F-FDG PET/CT after a surgical treatment and courses of chemotherapy. Age, histology, stage, and tumor grade were recorded. Functional VAT activity was measured by maximum standardized uptake value (SUVmax) using ¹⁸F-FDG PET/CT and tested as a predictor of later metastases in eight abdominal locations (RE – Epigastric Region, RLH – Left Hypochondriac Region, RRL – Right Lumbar Region, RU – Umbilical Region, RLL – Left Lumbar Region, RRI – Right Inguinal Region, RP – Hypogastric (Pubic) Region, RLI – Left Inguinal Region) and pelvic cavity (P) in the adjusted regression models. We also report the best areas under the curve (AUC) for SUVmax with the corresponding sensitivity (Se) and specificity (Sp). Results: In both adjusted for age regression models and ROC analysis, 18F-FDG accumulation in RLH (cutoff SUVmax 0.74; Se 75%; Sp 61%; AUC 0.668; p = 0.049), RU (cutoff SUVmax 0.78; Se 69%; Sp 61%; AUC 0.679; p = 0.035), RRL (cutoff SUVmax 1.05; Se 69%; Sp 77%; AUC 0.682; p = 0.032) and RRI (cutoff SUVmax 0.85; Se 63%; Sp 61%; AUC 0.672; p = 0.043) could predict later metastases in CRC patients, as opposed to age, sex, primary tumor location, tumor grade and histology. Conclusions: VAT SUVmax is significantly associated with later metastases in CRC patients and can be used as their predictor.

Keywords: ¹⁸F-FDG, PET/CT, colorectal cancer, predictive value

Procedia PDF Downloads 114
41420 A Method for Identifying Unusual Transactions in E-commerce Through Extended Data Flow Conformance Checking

Authors: Handie Pramana Putra, Ani Dijah Rahajoe

Abstract:

The proliferation of smart devices and advancements in mobile communication technologies have permeated various facets of life with the widespread influence of e-commerce. Detecting abnormal transactions holds paramount significance in this realm due to the potential for substantial financial losses. Moreover, the fusion of data flow and control flow assumes a critical role in the exploration of process modeling and data analysis, contributing significantly to the accuracy and security of business processes. This paper introduces an alternative approach to identify abnormal transactions through a model that integrates both data and control flows. Referred to as the Extended Data Petri net (DPNE), our model encapsulates the entire process, encompassing user login to the e-commerce platform and concluding with the payment stage, including the mobile transaction process. We scrutinize the model's structure, formulate an algorithm for detecting anomalies in pertinent data, and elucidate the rationale and efficacy of the comprehensive system model. A case study validates the responsive performance of each system component, demonstrating the system's adeptness in evaluating every activity within mobile transactions. Ultimately, the results of anomaly detection are derived through a thorough and comprehensive analysis.

Keywords: database, data analysis, DPNE, extended data flow, e-commerce

Procedia PDF Downloads 53
41419 Analyzing Medical Workflows Using Market Basket Analysis

Authors: Mohit Kumar, Mayur Betharia

Abstract:

Healthcare domain, with the emergence of Electronic Medical Record (EMR), collects a lot of data which have been attracting Data Mining expert’s interest. In the past, doctors have relied on their intuition while making critical clinical decisions. This paper presents the means to analyze the Medical workflows to get business insights out of huge dumped medical databases. Market Basket Analysis (MBA) which is a special data mining technique, has been widely used in marketing and e-commerce field to discover the association between products bought together by customers. It helps businesses in increasing their sales by analyzing the purchasing behavior of customers and pitching the right customer with the right product. This paper is an attempt to demonstrate Market Basket Analysis applications in healthcare. In particular, it discusses the Market Basket Analysis Algorithm ‘Apriori’ applications within healthcare in major areas such as analyzing the workflow of diagnostic procedures, Up-selling and Cross-selling of Healthcare Systems, designing healthcare systems more user-friendly. In the paper, we have demonstrated the MBA applications using Angiography Systems, but can be extrapolated to other modalities as well.

Keywords: data mining, market basket analysis, healthcare applications, knowledge discovery in healthcare databases, customer relationship management, healthcare systems

Procedia PDF Downloads 171
41418 Improving the Analytical Power of Dynamic DEA Models, by the Consideration of the Shape of the Distribution of Inputs/Outputs Data: A Linear Piecewise Decomposition Approach

Authors: Elias K. Maragos, Petros E. Maravelakis

Abstract:

In Dynamic Data Envelopment Analysis (DDEA), which is a subfield of Data Envelopment Analysis (DEA), the productivity of Decision Making Units (DMUs) is considered in relation to time. In this case, as it is accepted by the most of the researchers, there are outputs, which are produced by a DMU to be used as inputs in a future time. Those outputs are known as intermediates. The common models, in DDEA, do not take into account the shape of the distribution of those inputs, outputs or intermediates data, assuming that the distribution of the virtual value of them does not deviate from linearity. This weakness causes the limitation of the accuracy of the analytical power of the traditional DDEA models. In this paper, the authors, using the concept of piecewise linear inputs and outputs, propose an extended DDEA model. The proposed model increases the flexibility of the traditional DDEA models and improves the measurement of the dynamic performance of DMUs.

Keywords: Dynamic Data Envelopment Analysis, DDEA, piecewise linear inputs, piecewise linear outputs

Procedia PDF Downloads 159
41417 Age Estimation and Sex Determination by CT-Scan Analysis of the Hyoid Bone: Application on a Tunisian Population

Authors: N. Haj Salem, M. Belhadj, S. Ben Jomâa, R. Dhouieb, S. Saadi, M. A. Mesrati, A. Chadly

Abstract:

Introduction: The hyoid bone is considered as one of many bones used to identify a missed person. There is a specificity of each population group in human identifications. Objective: To analyze the relationship between age, sex and metric parameters of hyoid bone in Tunisian population sample, using CT-scan. Materials and Methods: A prospective study was conducted in the Department of Forensic Medicine of FattoumaBourguiba Hospital of Monastir-Tunisia during 4 years. A total of 240 samples of hyoid bone were studied. The age of cases ranged from 18 days to 81 years. The specimens were collected only from the deceased of known age. Once dried, each hyoid bone was scanned using CT scan. For each specimen, 10 measurements were taken using a computer program. The measurements consisted of 6 lengths and 4 widths. A regression analysis was used to estimate the relationship between age, sex, and different measurements. For age estimation, a multiple logistic regression was carried out for samples ≤ 35 years. For sex determination, ROC curve was performed. Discriminant value finally retained was based on the best specificity with the best sensitivity. Results: The correlation between real age and estimated age was good (r²=0.72) for samples aged 35 years or less. The unstandardised canonical function equation was estimated using three variables: maximum length of the right greater cornua, length from the middle of the left joint space to the middle of the right joint space and perpendicular length from the centre point of a line between the distal ends of the right and left greater cornua to the centre point of the anterior view of the body of the hyoid bone. For sex determination, the ROC curve analysis reveals that the area under curve was at 81.8%. Discriminant value was 0.451 with a specificity of 73% and sensibility of 79%. The equation function was estimated based on two variables: maximum length of the greater cornua and maximum length of the hyoid bone. Conclusion: The findings of the current study suggest that metric analysis of the hyoid bone may predict the age ≤ 35 years. Sex estimation seems to be more reliable. Further studies dealing with the fusion of the hyoid bone and the current study could help to achieve more accurate age estimation rates.

Keywords: anthropology, age estimation, CT scan, sex determination, Tunisia

Procedia PDF Downloads 170
41416 The International Monetary Fund’s Treatment Towards Argentina and Brazil During Financial Negotiations for Their First Adjustment Programs, 1958-64

Authors: Fernanda Conforto de Oliveira

Abstract:

The International Monetary Fund (IMF) has a central role in global financial governance as the world’s leading crisis lender. Its practice of conditional lending – conditioning loans on the implementation of economic policy adjustments – is the primary lever by which the institution interacts with and influences the policy choices of member countries and has been a key topic of interest to scholars and public opinion. However, empirical evidence about the economic and (geo)political determinants of IMF lending behavior remains inconclusive, and no model that explains IMF policies has been identified. This research moves beyond panel analysis to focus on financial negotiations for the first IMF programs in Argentina and Brazil in the early post-war period. It seeks to understand why negotiations achieved distinct objectives: Argentinean officials cooperated and complied with IMF policies, whereas their Brazilian counterparts hesitated. Using qualitative and automated text analysis, this paper analyses the hypothesis about whether a differential IMF treatment could help to explain these distinct outcomes. This paper contributes to historical studies on IMF-Latin America relations and the broader literature in international policy economy about IMF policies.

Keywords: international monetary fund, international history, financial history, Latin American economic history, natural language processing, sentiment analysis

Procedia PDF Downloads 62
41415 Value Relevance of Accounting Information: A Study of Steel Sector in India

Authors: Pradyumna Mohanty

Abstract:

The paper aims to explore whether accounting information of Indian companies in the Steel sector are value relevant or not. Ohlson’s model which usually takes into consideration book value per share (BV) and earnings per share (EARN) has been used and the same has been expanded to include two more variables such as cash flow from operations (CFO) and return on equity (ROE). The data were collected from CMIE-Prowess data base in respect of BSE-listed steel companies and the time frame spans from 2010 to 2014. OLS regression has been used to test the value relevance of these accounting numbers. Results indicate that both CFO and BV are having significant influence on the stock price in two out of five years of study. But, BV is emerging as the most significant and highly value relevant of all the four variables during the entire period of study.

Keywords: value relevance, accounting information, book value per share, earnings per share

Procedia PDF Downloads 157
41414 Validity and Reliability of Lifestyle Measurement of the LSAS among Recurrent Stroke Patients in Selected Hospital, Central Java, Indonesia

Authors: Meida Laely Ramdani, Earmporn Thongkrajai, Dedy Purwito

Abstract:

Lifestyle is one of the most important factors affecting health. Measurement of lifestyle behaviors is necessary for the identification of causal associations between unhealthy lifestyle and health outcomes. There was many instruments have been measured for lifestyle, but not specific for stroke recurrence. This study aimed to develop a new questionnaire of Lifestyle Adjustment Scale (LSAS) among recurrent stroke patients in Indonesia and to measure the reliability and validity of LSAS. The instrument consist of 33 items was developed from the responses of 30 recurrent stroke patients with the maximum age 60 years. Data was collected during October to November 2015. The properties of the instrument were evaluated by validity assessment and reliability measures. The content validity was judged adequate by a panel of five experts, with the result of I-CVI was 0.97. The Cronbach’s alpha analysis was carried out to measure the reliability of LSAS. The result showed that Cronbach’s alpha coefficient was 0.819. LSAS were classified under the domains of dietary habit, smoking habit, physical activity, and stress management. The results of Cronbach’s alpha coefficient for each subscale were 0.60, 0.39, 0.67, 0.65 and 0.76 respectively. LSAS instrument was valid and reliable therefore can be used as research tool among recurrent stroke patients. The development of this questionnaire has been adapted to the socio-cultural context in Indonesia.

Keywords: LSAS, recurrent stroke patients, lifestyle, Indonesia

Procedia PDF Downloads 246
41413 An Analysis of Sequential Pattern Mining on Databases Using Approximate Sequential Patterns

Authors: J. Suneetha, Vijayalaxmi

Abstract:

Sequential Pattern Mining involves applying data mining methods to large data repositories to extract usage patterns. Sequential pattern mining methodologies used to analyze the data and identify patterns. The patterns have been used to implement efficient systems can recommend on previously observed patterns, in making predictions, improve usability of systems, detecting events, and in general help in making strategic product decisions. In this paper, identified performance of approximate sequential pattern mining defines as identifying patterns approximately shared with many sequences. Approximate sequential patterns can effectively summarize and represent the databases by identifying the underlying trends in the data. Conducting an extensive and systematic performance over synthetic and real data. The results demonstrate that ApproxMAP effective and scalable in mining large sequences databases with long patterns.

Keywords: multiple data, performance analysis, sequential pattern, sequence database scalability

Procedia PDF Downloads 339
41412 Relation between Properties of Internally Cured Concrete and Water Cement Ratio

Authors: T. Manzur, S. Iffat, M. A. Noor

Abstract:

In this paper, relationship between different properties of IC concrete and water cement ratio, obtained from a comprehensive experiment conducted on IC using local materials (Burnt clay chips- BC) is presented. In addition, saturated SAP was used as an IC material in some cases. Relationships have been developed through regression analysis. The focus of this analysis is on developing relationship between a dependent variable and an independent variable. Different percent replacements of BC and water cement ratios were used. Compressive strength, modulus of elasticity, water permeability and chloride permeability were tested and variations of these parameters were analyzed with respect to water cement ratio.

Keywords: compressive strength, concrete, curing, lightweight, aggregate, superabsorbent polymer, internal curing

Procedia PDF Downloads 463
41411 Prevalence of Near Visual Impairment and Associated Factors among School Teachers in Gondar City, North West Ethiopia, 2022

Authors: Bersufekad Wubie

Abstract:

Introduction: Near visual impairment is presenting near visual acuity of the eye worse than N6 at a 40 cm distance. Teachers' regular duties, such as reading books, writing on the blackboard, and recognizing students' faces, need good near vision. If a teacher has near-visual impairment, the work output is unsatisfactory. Objective: The study was aimed to assess the prevalence and associated factors near vision impairment among school teachers at Gondar city Northwest Ethiopia, August 2022. Methods: To select 567 teachers in Gondar city schools, an institutional-based cross-sectional study design with a multistage sampling technique were used. The study was conducted in selected schools from May 1 to May 30, 2022. Trained data collectors used well-structured Amharic and English language questionnaires and ophthalmic instruments for examination. The collected data were checked for completeness and entered into Epi data version 4.6, then exported to SPSS version 26 for further analysis. A binary and multivariate logistic regression model was fitted. And associated factors of the outcome variable. Result: The prevalence of near visual impairment was 64.6%, with a confidence interval of 60.3%–68.4%. Near visual impairment was significantly associated with age >= 35 years (AOR: 4.90 at 95% CI: 3.15, 7.65), having prolonged years of teaching experience (AOR: 3.29 at 95% CI: 1.70, 4.62), having a history of ocular surgery (AOR: 1.96 at 95% CI: 1.10, 4.62), smokers (AOR: 2.21 at 95% CI: 1.22, 4.07), history of ocular trauma (AOR : 1.80 at 95%CI:1.11,3.18 and uncorrected refractive error (AOR:2.01 at 95%CI:1.13,4.03). Conclusion and recommendations: This study showed the prevalence of near vision impairment among school teachers was high, and it is not a problem of the presbyopia age group alone; it also happens at a young age. So teachers' ocular health should be well accommodated in the school's eye health.

Keywords: Gondar, near visual impairment, school, teachers

Procedia PDF Downloads 137
41410 The Influence of Minority Stress on Depression among Thai Lesbian, Gay, Bisexual, and Transgender Adults

Authors: Priyoth Kittiteerasack, Alana Steffen, Alicia K. Matthews

Abstract:

Depression is a leading cause of the worldwide burden of disability and disease burden. Notably, lesbian, gay, bisexual, and transgender (LGBT) populations are more likely to be a high-risk group for depression compared to their heterosexual and cisgender counterparts. To date, little is known about the rates and predictors of depression among Thai LGBT populations. As such, the purpose of this study was to: 1) measure the prevalence of depression among a diverse sample of Thai LGBT adults and 2) determine the influence of minority stress variables (discrimination, victimization, internalized homophobia, and identity concealment), general stress (stress and loneliness), and coping strategies (problem-focused, avoidance, and seeking social support) on depression outcomes. This study was guided by the Minority Stress Model (MSM). The MSM posits that elevated rates of mental health problems among LGBT populations stem from increased exposures to social stigma due to their membership in a stigmatized minority group. Social stigma, including discrimination and violence, represents unique sources of stress for LGBT individuals and have a direct impact on mental health. This study was conducted as part of a larger descriptive study of mental health among Thai LGBT adults. Standardized measures consistent with the MSM were selected and translated into the Thai language by a panel of LGBT experts using the forward and backward translation technique. The psychometric properties of translated instruments were tested and acceptable (Cronbach’s alpha > .8 and Content Validity Index = 1). Study participants were recruited using convenience and snowball sampling methods. Self-administered survey data were collected via an online survey and via in-person data collection conducted at a leading Thai LGBT organization. Descriptive statistics and multivariate analyses using multiple linear regression models were conducted to analyze study data. The mean age of participants (n = 411) was 29.5 years (S.D. = 7.4). Participants were primarily male (90.5%), homosexual (79.3%), and cisgender (76.6%). The mean score for depression of study participant was 9.46 (SD = 8.43). Forty-three percent of LGBT participants reported clinically significant levels of depression as measured by the Beck Depression Inventory. In multivariate models, the combined influence of demographic, stress, coping, and minority stressors explained 47.2% of the variance in depression scores (F(16,367) = 20.48, p < .001). Minority stressors independently associated with depression included discrimination (β = .43, p < .01) victimization (β = 1.53, p < .05), and identity concealment (β = -.54, p < .05). In addition, stress (β = .81, p < .001), history of a chronic disease (β = 1.20, p < .05), and coping strategies (problem-focused coping β = -1.88, p < .01, seeking social support β = -1.12, p < .05, and avoidance coping β = 2.85, p < .001) predicted depression scores. The study outcomes emphasized that minority stressors uniquely contributed to depression levels among Thai LGBT participants over and above typical non-minority stressors. Study findings have important implications for nursing practice and the development of intervention research.

Keywords: depression, LGBT, minority stress, sexual and gender minority, Thailand

Procedia PDF Downloads 126
41409 An Exhaustive All-Subsets Examination of Trade Theory on WTO Data

Authors: Masoud Charkhabi

Abstract:

We examine trade theory with this motivation. The full set of World Trade Organization data are organized into country-year pairs, each treated as a different entity. Topological Data Analysis reveals that among the 16 region and 240 region-year pairs there exists in fact a distinguishable group of region-period pairs. The generally accepted periods of shifts from dissimilar-dissimilar to similar-similar trade in goods among regions are examined from this new perspective. The period breaks are treated as cumulative and are flexible. This type of all-subsets analysis is motivated from computer science and is made possible with Lossy Compression and Graph Theory. The results question many patterns in similar-similar to dissimilar-dissimilar trade. They also show indications of economic shifts that only later become evident in other economic metrics.

Keywords: econometrics, globalization, network science, topological data, analysis, trade theory, visualization, world trade

Procedia PDF Downloads 370
41408 Plackett-Burman Design to Evaluate the Influence of Operating Parameters on Anaerobic Orthophosphate Release from Enhanced Biological Phosphorus Removal Sludge

Authors: Reza Salehi, Peter L. Dold, Yves Comeau

Abstract:

The aim of the present study was to investigate the effect of a total of 6 operating parameters including pH (X1), temperature (X2), stirring speed (X3), chemical oxygen demand (COD) (X4), volatile suspended solids (VSS) (X5) and time (X6) on anaerobic orthophosphate release from enhanced biological phosphorus removal (EBPR) sludge. An 8-run Plackett Burman design was applied and the statistical analysis of the experimental data was performed using Minitab16.2.4 software package. The Analysis of variance (ANOVA) results revealed that temperature, COD, VSS and time had a significant effect with p-values of less than 0.05 whereas pH and stirring speed were identified as non-significant parameters, but influenced orthophosphate release from the EBPR sludge. The mathematic expression obtained by the first-order multiple linear regression model between orthophosphate release from the EBPR sludge (Y) and the operating parameters (X1-X6) was Y=18.59+1.16X1-3.11X2-0.81X3+3.79X4+9.89X5+4.01X6. The model p-value and coefficient of determination (R2) value were 0.026 and of 99.87%, respectively, which indicates the model is significant and the predicted values of orthophosphate release from the EBPR sludge have been excellently correlated with the observed values.

Keywords: anaerobic, operating parameters, orthophosphate release, Plackett-Burman design

Procedia PDF Downloads 278
41407 Analysis of Travel Behavior Patterns of Frequent Passengers after the Section Shutdown of Urban Rail Transit - Taking the Huaqiao Section of Shanghai Metro Line 11 Shutdown During the COVID-19 Epidemic as an Example

Authors: Hongyun Li, Zhibin Jiang

Abstract:

The travel of passengers in the urban rail transit network is influenced by changes in network structure and operational status, and the response of individual travel preferences to these changes also varies. Firstly, the influence of the suspension of urban rail transit line sections on passenger travel along the line is analyzed. Secondly, passenger travel trajectories containing multi-dimensional semantics are described based on network UD data. Next, passenger panel data based on spatio-temporal sequences is constructed to achieve frequent passenger clustering. Then, the Graph Convolutional Network (GCN) is used to model and identify the changes in travel modes of different types of frequent passengers. Finally, taking Shanghai Metro Line 11 as an example, the travel behavior patterns of frequent passengers after the Huaqiao section shutdown during the COVID-19 epidemic are analyzed. The results showed that after the section shutdown, most passengers would transfer to the nearest Anting station for boarding, while some passengers would transfer to other stations for boarding or cancel their travels directly. Among the passengers who transferred to Anting station for boarding, most of passengers maintained the original normalized travel mode, a small number of passengers waited for a few days before transferring to Anting station for boarding, and only a few number of passengers stopped traveling at Anting station or transferred to other stations after a few days of boarding on Anting station. The results can provide a basis for understanding urban rail transit passenger travel patterns and improving the accuracy of passenger flow prediction in abnormal operation scenarios.

Keywords: urban rail transit, section shutdown, frequent passenger, travel behavior pattern

Procedia PDF Downloads 84
41406 Using Data-Driven Model on Online Customer Journey

Authors: Ing-Jen Hung, Tzu-Chien Wang

Abstract:

Nowadays, customers can interact with firms through miscellaneous online ads on different channels easily. In other words, customer now has innumerable options and limitless time to accomplish their commercial activities with firms, individualizing their own online customer journey. This kind of convenience emphasizes the importance of online advertisement allocation on different channels. Therefore, profound understanding of customer behavior can make considerable benefit from optimizing fund allocation on diverse ad channels. To achieve this objective, multiple firms utilize numerical methodology to create data-driven advertisement policy. In our research, we aim to exploit online customer click data to discover the correlations between each channel and their sequential relations. We use LSTM to deal with sequential property of our data and compare its accuracy with other non-sequential methods, such as CART decision tree, logistic regression, etc. Besides, we also classify our customers into several groups by their behavioral characteristics to perceive the differences between all groups as customer portrait. As a result, we discover distinct customer journey under each customer portrait. Our article provides some insights into marketing research and can help firm to formulate online advertising criteria.

Keywords: LSTM, customer journey, marketing, channel ads

Procedia PDF Downloads 120
41405 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients

Authors: Bliss Singhal

Abstract:

Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.

Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels

Procedia PDF Downloads 83
41404 Transformational Justice for Employees' Job Satisfaction

Authors: Hassan Barau Singhry

Abstract:

Purpose: Leadership or the absence of it is an important behaviour affecting employees’ job satisfaction. Although, there are many models of leadership, one that stands out in a period of change is the transformational behaviour. The aim of this study is to investigate the role of an organizational justice on the relationship between transformational leadership and employee job satisfaction. The study is based on the assumption that change begins with leaders and leaders should be fair and just. Methodology: A cross-sectional survey through structured questionnaire was employed to collect the data of this study. The population is selected the three tiers of government such as the local, state, and federal governments in Nigeria. The sampling method used in this research is stratified random sampling. 418 middle managers of public organizations respondents to the questionnaire. Multiple regression aided by structural equation modeling was employed to test 4 hypothesized relationships. Finding: The regression results support for the mediating role of organizational justice such as distributive, procedural, interpersonal and informational justice in the link between transformational leadership and job satisfaction. Originality/value: This study adds to the literature of human resource management by empirically validating and integrating transformational leadership behaviour with the four dimensions of organizational justice theory. The study is expected to be beneficial to the top and middle-level administrators as well as theory building and testing.

Keywords: distributive justice, job satisfaction, organizational justice, procedural justice, transformational leadership

Procedia PDF Downloads 172
41403 Integrated Mass Rapid Transit System for Smart City Project in Western India

Authors: Debasis Sarkar, Jatan Talati

Abstract:

This paper is an attempt to develop an Integrated Mass Rapid Transit System (MRTS) for a smart city project in Western India. Integrated transportation is one of the enablers of smart transportation for providing a seamless intercity as well as regional level transportation experience. The success of a smart city project at the city level for transportation is providing proper integration to different mass rapid transit modes by way of integrating information, physical, network of routes fares, etc. The methodology adopted for this study was primary data research through questionnaire survey. The respondents of the questionnaire survey have responded on the issues about their perceptions on the ways and means to improve public transport services in urban cities. The respondents were also required to identify the factors and attributes which might motivate more people to shift towards the public mode. Also, the respondents were questioned about the factors which they feel might restrain the integration of various modes of MRTS. Furthermore, this study also focuses on developing a utility equation for respondents with the help of multiple linear regression analysis and its probability to shift to public transport for certain factors listed in the questionnaire. It has been observed that for shifting to public transport, the most important factors that need to be considered were travel time saving and comfort rating. Also, an Integrated MRTS can be obtained by combining metro rail with BRTS, metro rail with monorail, monorail with BRTS and metro rail with Indian railways. Providing a common smart card to transport users for accessing all the different available modes would be a pragmatic solution towards integration of the available modes of MRTS.

Keywords: mass rapid transit systems, smart city, metro rail, bus rapid transit system, multiple linear regression, smart card, automated fare collection system

Procedia PDF Downloads 271
41402 MSIpred: A Python 2 Package for the Classification of Tumor Microsatellite Instability from Tumor Mutation Annotation Data Using a Support Vector Machine

Authors: Chen Wang, Chun Liang

Abstract:

Microsatellite instability (MSI) is characterized by high degree of polymorphism in microsatellite (MS) length due to a deficiency in mismatch repair (MMR) system. MSI is associated with several tumor types and its status can be considered as an important indicator for tumor prognostic. Conventional clinical diagnosis of MSI examines PCR products of a panel of MS markers using electrophoresis (MSI-PCR) which is laborious, time consuming, and less reliable. MSIpred, a python 2 package for automatic classification of MSI was released by this study. It computes important somatic mutation features from files in mutation annotation format (MAF) generated from paired tumor-normal exome sequencing data, subsequently using these to predict tumor MSI status with a support vector machine (SVM) classifier trained by MAF files of 1074 tumors belonging to four types. Evaluation of MSIpred on an independent 358-tumor test set achieved overall accuracy of over 98% and area under receiver operating characteristic (ROC) curve of 0.967. These results indicated that MSIpred is a robust pan-cancer MSI classification tool and can serve as a complementary diagnostic to MSI-PCR in MSI diagnosis.

Keywords: microsatellite instability, pan-cancer classification, somatic mutation, support vector machine

Procedia PDF Downloads 168
41401 Analyzing Preservice Teachers’ Attitudes toward Technology

Authors: Ahmet Oguz Akturk, Kemal Izci, Gurbuz Caliskan, Ismail Sahin

Abstract:

Rapid developments in technology are to necessitate societies to closely follow technological developments and change themselves to adopt those developments. It is obvious that one of the areas that are impacted from technological developments is education. Analyzing preservice teachers’ attitudes toward technology is crucial for both educational and professional purposes since teacher candidates are essential for educating future individual living in technological age. In this study, it is aimed to analyze preservice teachers’ attitudes toward technology and some variables (e.g., gender, daily internet usage and possessed technological devices) that predicting those attitudes. In this study, relational survey model used as research method and 329 preservice teachers who are studying in a large university located at the middle part of Turkey are voluntarily participated. Results of the study showed that mostly preservice teachers displayed positive attitudes toward technology while male preservice teachers’ attitudes toward technology was more positive than female preservice teachers. In order to analyze predicting factors for preservice teachers’ attitudes toward technology, stepwise multiple regressions were utilized. The results of stepwise multiple regression showed that daily internet use was the most strong predicting factor for predicting preservice teachers’ attitudes toward technology.

Keywords: attitudes toward technology, preservice teachers, gender, stepwise multiple regression analysis

Procedia PDF Downloads 290
41400 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks

Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam

Abstract:

In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.

Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion

Procedia PDF Downloads 122
41399 Analysis of Geotechnical Parameters from Geophysical Information

Authors: Adewoyin O. Olusegun, Akinwumi I. Isaac

Abstract:

In some part of the world where legislations related to site investigations before constructions are not strictly enforced, the expenses and time required for carrying out a comprehensive geotechnical investigation to characterize a site can discourage prospective private residential building developers. Another factor that can discourage a developer is the fact that most of the geotechnical tests procedures utilized during site investigations, to a certain extent, alter the existing environment of the site. This study suggests a quick, non-destructive and non-intrusive method of obtaining key subsoil geotechnical properties necessary for foundation design for proposed engineering facilities. Seismic wave velocities generated from near surface refraction method was used to determine the bulk density of soil, Young’s modulus, bulk modulus, shear modulus and allowable bearing capacity of a competent layer that can bear structural load at the particular study site. Also, regression equations were developed in order to directly obtain the bulk density of soil, Young’s modulus, bulk modulus, shear modulus and allowable bearing capacity from the compressional wave velocities. The results obtained correlated with the results of standard geotechnical investigations carried out.

Keywords: characterize, environment, geophysical, geotechnical, regression

Procedia PDF Downloads 368
41398 A Study on Big Data Analytics, Applications and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 81
41397 A Study on Big Data Analytics, Applications, and Challenges

Authors: Chhavi Rana

Abstract:

The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.

Keywords: big data, big data analytics, machine learning, review

Procedia PDF Downloads 93
41396 Spatial Analysis and Determinants of Number of Antenatal Health Care Visit Among Pregnant Women in Ethiopia: Application of Spatial Multilevel Count Regression Models

Authors: Muluwerk Ayele Derebe

Abstract:

Background: Antenatal care (ANC) is an essential element in the continuum of reproductive health care for preventing preventable pregnancy-related morbidity and mortality. Objective: The aim of this study is to assess the spatial pattern and predictors of ANC visits in Ethiopia. Method: This study was done using Ethiopian Demographic and Health Survey data of 2016 among 7,174 pregnant women aged 15-49 years which was a nationwide community-based cross-sectional survey. Spatial analysis was done using Getis-Ord Gi* statistics to identify hot and cold spot areas of ANC visits. Multilevel glmmTMB packages adjusted for spatial effects were used in R software. Spatial multilevel count regression was conducted to identify predictors of antenatal care visits for pregnant women, and proportional change in variance was done to uncover the effect of individual and community-level factors of ANC visits. Results: The distribution of ANC visits was spatially clustered Moran’s I = 0.271, p<.0.001, ICC = 0.497, p<0.001). The highest spatial outlier areas of ANC visit was found in Amhara (South Wollo, Weast Gojjam, North Shewa), Oromo (west Arsi and East Harariga), Tigray (Central Tigray) and Benishangul-Gumuz (Asosa and Metekel) regions. The data was found with excess zeros (34.6%) and over-dispersed. The expected ANC visit of pregnant women with pregnancy complications was higher at 0.7868 [ARR= 2.1964, 95% CI: 1.8605, 2.5928, p-value <0.0001] compared to pregnant women who had no pregnancy complications. The expected ANC visit of a pregnant woman who lived in a rural area was 1.2254 times higher [ARR=3.4057, 95% CI: 2.1462, 5.4041, p-value <0.0001] as compared to a pregnant woman who lived in an urban. The study found dissimilar clusters with a low number of zero counts for a mean number of ANC visits surrounded by clusters with a higher number of counts of an average number of ANC visits when other variables held constant. Conclusion: This study found that the number of ANC visits in Ethiopia had a spatial pattern associated with socioeconomic, demographic, and geographic risk factors. Spatial clustering of ANC visits exists in all regions of Ethiopia. The predictor age of the mother, religion, mother’s education, husband’s education, mother's occupation, husband's occupation, signs of pregnancy complication, wealth index and marital status had a strong association with the number of ANC visits by each individual. At the community level, place of residence, region, age of the mother, sex of the household head, signs of pregnancy complications and distance to health facility factors had a strong association with the number of ANC visits.

Keywords: Ethiopia, ANC, spatial, multilevel, zero inflated Poisson

Procedia PDF Downloads 73