Search results for: motion data acquisition
25290 Assessment of Arterial Stiffness through Measurement of Magnetic Flux Disturbance and Electrocardiogram Signal
Authors: Jing Niu, Jun X. Wang
Abstract:
Arterial stiffness predicts mortality and morbidity, independently of other cardiovascular risk factors. And it is a major risk factor for age-related morbidity and mortality. The non-invasive industry gold standard measurement system of arterial stiffness utilizes pulse wave velocity method. However, the desktop device is expensive and requires trained professional to operate. The main objective of this research is the proof of concept of the proposed non-invasive method which uses measurement of magnetic flux disturbance and electrocardiogram (ECG) signal for measuring arterial stiffness. The method could enable accurate and easy self-assessment of arterial stiffness at home, and to help doctors in research, diagnostic and prescription in hospitals and clinics. A platform for assessing arterial stiffness through acquisition and analysis of radial artery pulse waveform and ECG signal has been developed based on the proposed method. Radial artery pulse waveform is acquired using the magnetic based sensing technology, while ECG signal is acquired using two dry contact single arm ECG electrodes. The measurement only requires the participant to wear a wrist strap and an arm band. Participants were recruited for data collection using both the developed platform and the industry gold standard system. The results from both systems underwent correlation assessment analysis. A strong positive correlation between the results of the two systems is observed. This study presents the possibility of developing an accurate, easy to use and affordable measurement device for arterial stiffness assessment.Keywords: arterial stiffness, electrocardiogram, pulse wave velocity, Magnetic Flux Disturbance
Procedia PDF Downloads 18825289 Assessing the Values and Destruction Degree of Archaeological Sites in Taiwan
Authors: Yung-Chung Chuang
Abstract:
Current situation and accumulated development of archaeological sites have very high impacts on the preservation value of the site. This research set 3 archaeological sites in Taiwan as study areas. Assessment of the degree of destruction of cultural layers due to land use change and geomorphological change were conducted with aerial photographs (1976-1978; 2016-2017) and digital aerial survey technology on 2D and 3D geographic information system platforms. The results showed that the archaeological sites were all seriously influenced due to the high land use intensity between 1976-2017. Geomorphological changes caused by human cultivation and engineering construction were main causes of site destruction, especially in private lands. Therefore, urban planning methods for land acquisition or land regulation are necessary.Keywords: archaeological sites, accumulated development, destruction of cultural layers, geomorphological changes
Procedia PDF Downloads 21025288 Mathematical Modeling of Switching Processes in Magnetically Controlled MEMS Switches
Authors: Sergey M. Karabanov, Dmitry V. Suvorov, Dmitry Yu. Tarabrin
Abstract:
The operating principle of magnetically controlled microelectromechanical system (MEMS) switches is based on controlling the beam movement under the influence of a magnetic field. Currently, there is a MEMS switch design with a flexible ferromagnetic electrode in the form of a fixed-terminal beam, with an electrode fastened on a straight or cranked anchor. The basic performance characteristics of magnetically controlled MEMS switches (service life, sensitivity, contact resistance, fast response) are largely determined by the flexible electrode design. To ensure the stable and controlled motion of the flexible electrode, it is necessary to provide the optimal design of a flexible electrode.Keywords: flexible electrode, magnetically controlled MEMS, mathematical modeling, mechanical stress
Procedia PDF Downloads 18125287 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features
Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova
Abstract:
The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.Keywords: emotion recognition, facial recognition, signal processing, machine learning
Procedia PDF Downloads 31725286 Cryptosystems in Asymmetric Cryptography for Securing Data on Cloud at Various Critical Levels
Authors: Sartaj Singh, Amar Singh, Ashok Sharma, Sandeep Kaur
Abstract:
With upcoming threats in a digital world, we need to work continuously in the area of security in all aspects, from hardware to software as well as data modelling. The rise in social media activities and hunger for data by various entities leads to cybercrime and more attack on the privacy and security of persons. Cryptography has always been employed to avoid access to important data by using many processes. Symmetric key and asymmetric key cryptography have been used for keeping data secrets at rest as well in transmission mode. Various cryptosystems have evolved from time to time to make the data more secure. In this research article, we are studying various cryptosystems in asymmetric cryptography and their application with usefulness, and much emphasis is given to Elliptic curve cryptography involving algebraic mathematics.Keywords: cryptography, symmetric key cryptography, asymmetric key cryptography
Procedia PDF Downloads 12425285 Virtual Reality Application for Neurorehabilitation
Authors: Daniel Vargas-Herrera, Ivette Caldelas, Fernando Brambila-Paz, Rodrigo Montufar-Chaveznava
Abstract:
In this paper, we present a virtual reality application for neurorehabilitation. This application was developed using the Unity SDK integrating the Oculus Rift and Leap Motion devices. Essentially, it consists of three stages according to the kind of rehabilitation to carry on: ocular rehabilitation, head/neck rehabilitation, and eye-hand coordination. We build three scenes for each task; for ocular and head/neck rehabilitation, there are different objects moving in the field of view and extended field of view of the user according to some patterns relative to the therapy. In the third stage the user must try to touch with the hand some objects guided by its view. We report the primer results of the use of the application with healthy people.Keywords: virtual reality, interactive technologies, video games, neurorehabilitation
Procedia PDF Downloads 41325284 Data Recording for Remote Monitoring of Autonomous Vehicles
Authors: Rong-Terng Juang
Abstract:
Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.Keywords: autonomous vehicle, data compression, remote monitoring, controller area networks (CAN), Lidar
Procedia PDF Downloads 16425283 Chief Financial Officer Compensation in Mergers and Acquisitions Activities
Authors: Martin Bugeja, Helen Spiropolos
Abstract:
Using a sample of U.S. firms during the period 1993-2015, this study examines whether mergers and acquisitions (M&A) impact the compensation of the Chief Financial Officer (CFO) in the bidding and integration phases of M&As. The study finds that after controlling for CEO power, CFOs’ total compensation is higher during M&A years and is driven by higher equity incentives. These results are robust to controlling for self-selection. Furthermore, CFOs receive a greater bonus during the year of acquisition and the year prior. The study also investigates if CFO compensation during M&A years is driven by M&A characteristics and finds that deal size and diversification are positively related to total compensation while completion time is negatively related. The results are robust to a number of sensitivity tests and additional analyses.Keywords: chief financial officer, compensation, mergers, acquisitions
Procedia PDF Downloads 5925282 Fragility Assessment for Torsionally Asymmetric Buildings in Plan
Authors: S. Feli, S. Tavousi Tafreshi, A. Ghasemi
Abstract:
The present paper aims at evaluating the response of three-dimensional buildings with in-plan stiffness irregularities that have been subjected to two-way excitation ground motion records simultaneously. This study is broadly-based fragility assessment with greater emphasis on structural response at in-plan flexible and stiff sides. To this end, three type of three-dimensional 5-story steel building structures with stiffness eccentricities, were subjected to extensive nonlinear incremental dynamic analyses (IDA) utilizing Ibarra-Krawinkler deterioration models. Fragility assessment was implemented for different configurations of braces to investigate the losses in buildings with center of resisting (CR) eccentricities.Keywords: Ibarra-Krawinkler, fragility assessment, flexible and stiff side, center of resisting
Procedia PDF Downloads 20525281 Portable Environmental Parameter Monitor Based on STM32
Authors: Liang Zhao, Chongquan Zhong
Abstract:
Introduction: According to statistics, people spend 80% to 90% of time indoor, so indoor air quality, either at home or in the office, greatly impacts the quality of life, health and work efficiency. Therefore, indoor air quality is very important to human activities. With the acceleration of urbanization, people are spending more time in indoor activity. The time in indoor environment, the living space, and the frequency interior decoration are all increasingly increased. However, housing decoration materials contain formaldehyde and other harmful substances, causing environmental and air quality problems, which have brought serious damage to countless families and attracted growing attention. According to World Health Organization statistics, the indoor environments in more than 30% of buildings in China are polluted by poisonous and harmful gases. Indoor pollution has caused various health problems, and these widespread public health problems can lead to respiratory diseases. Long-term inhalation of low-concentration formaldehyde would cause persistent headache, insomnia, weakness, palpitation, weight loss and vomiting, which are serious impacts on human health and safety. On the other hand, as for offices, some surveys show that good indoor air quality helps to enthuse the staff and improve the work efficiency by 2%-16%. Therefore, people need to further understand the living and working environments. There is a need for easy-to-use indoor environment monitoring instruments, with which users only have to power up and monitor the environmental parameters. The corresponding real-time data can be displayed on the screen for analysis. Environment monitoring should have the sensitive signal alarm function and send alarm when harmful gases such as formaldehyde, CO, SO2, are excessive to human body. System design: According to the monitoring requirements of various gases, temperature and humidity, we designed a portable, light, real-time and accurate monitor for various environmental parameters, including temperature, humidity, formaldehyde, methane, and CO. This monitor will generate an alarm signal when a target is beyond the standard. It can conveniently measure a variety of harmful gases and provide the alarm function. It also has the advantages of small volume, convenience to carry and use. It has a real-time display function, outputting the parameters on the LCD screen, and a real-time alarm function. Conclusions: This study is focused on the research and development of a portable parameter monitoring instrument for indoor environment. On the platform of an STM32 development board, the monitored data are collected through an external sensor. The STM32 platform is for data acquisition and processing procedures, and successfully monitors the real-time temperature, humidity, formaldehyde, CO, methane and other environmental parameters. Real-time data are displayed on the LCD screen. The system is stable and can be used in different indoor places such as family, hospital, and office. Meanwhile, the system adopts the idea of modular design and is superior in transplanting. The scheme is slightly modified and can be used similarly as the function of a monitoring system. This monitor has very high research and application values.Keywords: indoor air quality, gas concentration detection, embedded system, sensor
Procedia PDF Downloads 25725280 Low Cost Surface Electromyographic Signal Amplifier Based on Arduino Microcontroller
Authors: Igor Luiz Bernardes de Moura, Luan Carlos de Sena Monteiro Ozelim, Fabiano Araujo Soares
Abstract:
The development of a low cost acquisition system of S-EMG signals which are reliable, comfortable for the user and with high mobility shows to be a relevant proposition in modern biomedical engineering scenario. In the study, the sampling capacity of the Arduino microcontroller Atmel Atmega328 with an A/D converter with 10-bit resolution and its reconstructing capability of a signal of surface electromyography are analyzed. An electronic circuit to capture the signal through two differential channels was designed, signals from Biceps Brachialis of a healthy man of 21 years was acquired to test the system prototype. ARV, MDF, MNF and RMS estimators were used to compare de acquired signals with physiological values. The Arduino was configured with a sampling frequency of 1.5 kHz for each channel, and the tests with the circuit designed offered a SNR of 20.57dB.Keywords: electromyography, Arduino, low-cost, atmel atmega328 microcontroller
Procedia PDF Downloads 36825279 Value for Money in Investment Projects
Authors: Jan Ceselsky
Abstract:
Construction and reconstruction of settlements and individual municipalities, environmental management and the creation, deployment of the forces of production and building transport and technical equipment requires a large expenditure of material and human resources. That is why the economic aspects of the majority decision in these planes built in the foreground and are often decisive. Thereby but more serious is that the economic aspects of the settlement, the creation and function remain in their whole, unprocessed, and can not speak of a set of individual techniques and methods traditional indicators and experiments with new approaches. This is true both at the level of the national economy, and in their own urban designs. Still a few remain identified specific economic shaping patterns of settlement and the less it is possible to speak of their control. Also practical assessing economics of specific solutions are often used non-apt indicators in addition to economics usually identifies with the lowest acquisition cost or high-intensity land use with little regard for functional efficiency and little studied much higher operating and maintenance costs.Keywords: investment, municipal engineering, value for money, construction
Procedia PDF Downloads 29425278 Multimedia Data Fusion for Event Detection in Twitter by Using Dempster-Shafer Evidence Theory
Authors: Samar M. Alqhtani, Suhuai Luo, Brian Regan
Abstract:
Data fusion technology can be the best way to extract useful information from multiple sources of data. It has been widely applied in various applications. This paper presents a data fusion approach in multimedia data for event detection in twitter by using Dempster-Shafer evidence theory. The methodology applies a mining algorithm to detect the event. There are two types of data in the fusion. The first is features extracted from text by using the bag-ofwords method which is calculated using the term frequency-inverse document frequency (TF-IDF). The second is the visual features extracted by applying scale-invariant feature transform (SIFT). The Dempster - Shafer theory of evidence is applied in order to fuse the information from these two sources. Our experiments have indicated that comparing to the approaches using individual data source, the proposed data fusion approach can increase the prediction accuracy for event detection. The experimental result showed that the proposed method achieved a high accuracy of 0.97, comparing with 0.93 with texts only, and 0.86 with images only.Keywords: data fusion, Dempster-Shafer theory, data mining, event detection
Procedia PDF Downloads 41125277 Legal Issues of Collecting and Processing Big Health Data in the Light of European Regulation 679/2016
Authors: Ioannis Iglezakis, Theodoros D. Trokanas, Panagiota Kiortsi
Abstract:
This paper aims to explore major legal issues arising from the collection and processing of Health Big Data in the light of the new European secondary legislation for the protection of personal data of natural persons, placing emphasis on the General Data Protection Regulation 679/2016. Whether Big Health Data can be characterised as ‘personal data’ or not is really the crux of the matter. The legal ambiguity is compounded by the fact that, even though the processing of Big Health Data is premised on the de-identification of the data subject, the possibility of a combination of Big Health Data with other data circulating freely on the web or from other data files cannot be excluded. Another key point is that the application of some provisions of GPDR to Big Health Data may both absolve the data controller of his legal obligations and deprive the data subject of his rights (e.g., the right to be informed), ultimately undermining the fundamental right to the protection of personal data of natural persons. Moreover, data subject’s rights (e.g., the right not to be subject to a decision based solely on automated processing) are heavily impacted by the use of AI, algorithms, and technologies that reclaim health data for further use, resulting in sometimes ambiguous results that have a substantial impact on individuals. On the other hand, as the COVID-19 pandemic has revealed, Big Data analytics can offer crucial sources of information. In this respect, this paper identifies and systematises the legal provisions concerned, offering interpretative solutions that tackle dangers concerning data subject’s rights while embracing the opportunities that Big Health Data has to offer. In addition, particular attention is attached to the scope of ‘consent’ as a legal basis in the collection and processing of Big Health Data, as the application of data analytics in Big Health Data signals the construction of new data and subject’s profiles. Finally, the paper addresses the knotty problem of role assignment (i.e., distinguishing between controller and processor/joint controllers and joint processors) in an era of extensive Big Health data sharing. The findings are the fruit of a current research project conducted by a three-member research team at the Faculty of Law of the Aristotle University of Thessaloniki and funded by the Greek Ministry of Education and Religious Affairs.Keywords: big health data, data subject rights, GDPR, pandemic
Procedia PDF Downloads 12925276 Adaptive Data Approximations Codec (ADAC) for AI/ML-based Cyber-Physical Systems
Authors: Yong-Kyu Jung
Abstract:
The fast growth in information technology has led to de-mands to access/process data. CPSs heavily depend on the time of hardware/software operations and communication over the network (i.e., real-time/parallel operations in CPSs (e.g., autonomous vehicles). Since data processing is an im-portant means to overcome the issue confronting data management, reducing the gap between the technological-growth and the data-complexity and channel-bandwidth. An adaptive perpetual data approximation method is intro-duced to manage the actual entropy of the digital spectrum. An ADAC implemented as an accelerator and/or apps for servers/smart-connected devices adaptively rescales digital contents (avg.62.8%), data processing/access time/energy, encryption/decryption overheads in AI/ML applications (facial ID/recognition).Keywords: adaptive codec, AI, ML, HPC, cyber-physical, cybersecurity
Procedia PDF Downloads 8025275 Particle Separation Using Individually-Controlled Magnetic Soft Artificial Cilia
Authors: Yau-Luen Ng, Nathan Banka, Santosh Devasia
Abstract:
In this paper, a method based on soft artificial cilia is introduced to separate particles based on size and mass. In nature, cilia are used for fluid propulsion in the mammalian circulatory system, as well as for swimming and size-selective particle entrainment for feeding in microorganisms. Inspired by biological cilia, an array of artificial cilia was fabricated using Polydimethylsiloxane (PDMS) to simulate the actual motion. A row of four individually-controlled magnetic artificial cilia in a semi-circular channel are actuated by the magnetic fields from four permanent magnets. Each cilium is a slender rectangular cantilever approximately 13mm long made from a composite of PDMS and carbonyl iron particles. A time-varying magnetic force is achieved by periodically varying the out-of-plane distance from the permanent magnets to the cilia, resulting in large-amplitude deflections of the cilia that can be used to drive fluid motion. Previous results have shown that this system of individually-controlled magnetic cilia can generate effective mixing flows; the purpose of the present work is to apply the individual cilia control to a particle separation task. Based on the observed beating patterns of cilia arrays in nature, the experimental beating patterns were selected as a metachronal wave, in which a fixed phase lead or lag is imposed between adjacent cilia. Additionally, the beating frequency was varied. For each set of experimental parameters, the channel was filled with water and polyethylene microspheres introduced at the center of the cilia array. Two types of particles were used: large red microspheres with density 0.9971 g/cm³ and 850-1000 μm avg. diameter, and small blue microspheres with density 1.06 g/cm³ and diameter 30 μm. At low beating frequencies, all particles were propelled in the mean flow direction. However, the large particles were observed to reverse directions above about 4.8 Hz, whereas reversal of the small particle transport direction did not occur until 6 Hz. Between these two transition frequencies, the large and small particles can be separated as they move in opposite directions. The experimental results show that selecting an appropriate cilia beating pattern can lead to selective transport of neutrally-buoyant particles based on their size. Importantly, the separation threshold can be chosen dynamically by adjusting the actuation frequency. However, further study is required to determine the range of particle sizes that can be effectively separated for a given system geometry.Keywords: magnetic cilia, particle separation, tunable separation, soft actutors
Procedia PDF Downloads 20125274 Real-Time Visualization Using GPU-Accelerated Filtering of LiDAR Data
Authors: Sašo Pečnik, Borut Žalik
Abstract:
This paper presents a real-time visualization technique and filtering of classified LiDAR point clouds. The visualization is capable of displaying filtered information organized in layers by the classification attribute saved within LiDAR data sets. We explain the used data structure and data management, which enables real-time presentation of layered LiDAR data. Real-time visualization is achieved with LOD optimization based on the distance from the observer without loss of quality. The filtering process is done in two steps and is entirely executed on the GPU and implemented using programmable shaders.Keywords: filtering, graphics, level-of-details, LiDAR, real-time visualization
Procedia PDF Downloads 31225273 Effect of Energy Management Practices on Sustaining Competitive Advantage among Manufacturing Firms: A Case of Selected Manufacturers in Nairobi, Kenya
Authors: Henry Kiptum Yatich, Ronald Chepkilot, Aquilars Mutuku Kalio
Abstract:
Studies on energy management have focused on environmental conservation, reduction in production and operation expenses. However, transferring gains of energy management practices to competitive advantage is importance to manufacturers in Kenya. Success in managing competitive advantage arises out of a firm’s ability in identifying and implementing actions that can give the company an edge over its rivals. Manufacturing firms in Kenya are the highest consumers of both electricity and petroleum products. In this regard, the study posits that transfer of the gains of energy management practices to competitive advantage is imperative. The study was carried in Nairobi and its environs, which hosts the largest number of manufacturers. The study objectives were; to determine the level of implementing energy management regulations on sustaining competitive advantage, to determine the level of implementing company energy management policy on competitive advantage, to examine the level of implementing energy efficient technology on sustaining competitive advantage, and to assess the percentage energy expenditure on sustaining competitive advantage among manufacturing firms. The study adopted a survey research design, with a study population of 145,987. A sample of 384 respondents was selected randomly from 21 proportionately selected firms. Structured questionnaires were used to collect data. Data analysis was done using descriptive statistics (mean and standard deviations) and inferential statistics (correlation, regression, and T-test). Data is presented using tables and diagrams. The study found that Energy Management Regulations, Company Energy Management Policies, and Energy Expenses are significant predictors of Competitive Advantage (CA). However, Energy Efficient Technology as a component of Energy Management Practices did not have a significant relationship with Competitive Advantage. The study revealed that the level of awareness in the sector stood at 49.3%. Energy Expenses in the sector stood at an average of 10.53% of the firm’s total revenue. The study showed that gains from energy efficiency practices can be transferred to competitive strategies so as to improve firm competitiveness. The study recommends that manufacturing firms should consider energy management practices as part of its strategic agenda in assessing and reviewing their energy management practices as possible strategies for sustaining competitiveness. The government agencies such as Energy Regulatory Commission, the Ministry of Energy and Petroleum, and Kenya Association of Manufacturers should enforce the energy management regulations 2012, and with enhanced stakeholder involvement and sensitization so as promote sustenance of firm competitiveness. Government support in providing incentives and rebates for acquisition of energy efficient technologies should be pursued. From the study limitation, future experimental and longitudinal studies need to be carried out. It should be noted that energy management practices yield enormous benefits to all stakeholders and that the practice should not be considered a competitive tool but rather as a universal practice.Keywords: energy, efficiency, management, guidelines, policy, technology, competitive advantage
Procedia PDF Downloads 38425272 Joint Path and Push Planning among Moveable Obstacles
Authors: Victor Emeli, Akansel Cosgun
Abstract:
This paper explores the navigation among movable obstacles (NAMO) problem and proposes joint path and push planning: which path to take and in what direction the obstacles should be pushed at, given a start and goal position. We present a planning algorithm for selecting a path and the obstacles to be pushed, where a rapidly-exploring random tree (RRT)-based heuristic is employed to calculate a minimal collision path. When it is necessary to apply a pushing force to slide an obstacle out of the way, the planners leverage means-end analysis through a dynamic physics simulation to determine the sequence of linear pushes to clear the necessary space. Simulation experiments show that our approach finds solutions in higher clutter percentages (up to 49%) compared to the straight-line push planner (37%) and RRT without pushing (18%).Keywords: motion planning, path planning, push planning, robot navigation
Procedia PDF Downloads 16625271 Estimating Destinations of Bus Passengers Using Smart Card Data
Authors: Hasik Lee, Seung-Young Kho
Abstract:
Nowadays, automatic fare collection (AFC) system is widely used in many countries. However, smart card data from many of cities does not contain alighting information which is necessary to build OD matrices. Therefore, in order to utilize smart card data, destinations of passengers should be estimated. In this paper, kernel density estimation was used to forecast probabilities of alighting stations of bus passengers and applied to smart card data in Seoul, Korea which contains boarding and alighting information. This method was also validated with actual data. In some cases, stochastic method was more accurate than deterministic method. Therefore, it is sufficiently accurate to be used to build OD matrices.Keywords: destination estimation, Kernel density estimation, smart card data, validation
Procedia PDF Downloads 35225270 Temporal Axis in Japanese: The Paradox of a Metaphorical Orientation in Time
Authors: Tomoko Usui
Abstract:
In the field of linguistics, it has been said that concepts associated with space and motion systematically contribute structure to the temporal concept. This is the conceptual metaphor theory. conceptual metaphors typically employ a more abstract concept (time) as their target and a more concrete or physical concept as their source (space). This paper will examine two major temporal conceptual metaphors: Ego-centered Moving Time Metaphor and Time-RP Metaphor. Moving time generally receives a front-back orientation, however, Japanese shows a different orientation given to time. By means of Ego perspective, this paper will illustrate the paradox of a metaphorical orientation in time.Keywords: Ego-centered Moving Time Metaphor, Japanese saki, temporal metaphors, Time RP Metaphor
Procedia PDF Downloads 49825269 Asymmetric of the Segregation-Enhanced Brazil Nut Effect
Authors: Panupat Chaiworn, Soraya lama
Abstract:
We study the motion of particles in cylinders which are subjected to a sinusoidal vertical vibration. We measure the rising time of a large intruder from the bottom of the container to free surface of the bed particles and find that the rising time as a function of intruder density increases to a maximum and then decreases monotonically. The result is qualitatively accord to the previous findings in experiments using relative humidity of the bed particles and found speed convection of the bed particles containers it moving slowly, and the rising time of the intruder where a minimal instead of maximal rising time in the small density region was found. Our experimental results suggest that the topology of the container plays an important role in the Brazil nut effect.Keywords: granular particles, Brazil nut effect, cylinder container, vertical vibration, convection
Procedia PDF Downloads 53025268 Evaluated Nuclear Data Based Photon Induced Nuclear Reaction Model of GEANT4
Authors: Jae Won Shin
Abstract:
We develop an evaluated nuclear data based photonuclear reaction model of GEANT4 for a more accurate simulation of photon-induced neutron production. The evaluated photonuclear data libraries from the ENDF/B-VII.1 are taken as input. Incident photon energies up to 140 MeV which is the threshold energy for the pion production are considered. For checking the validity of the use of the data-based model, we calculate the photoneutron production cross-sections and yields and compared them with experimental data. The results obtained from the developed model are found to be in good agreement with the experimental data for (γ,xn) reactions.Keywords: ENDF/B-VII.1, GEANT4, photoneutron, photonuclear reaction
Procedia PDF Downloads 27525267 Optimizing Communications Overhead in Heterogeneous Distributed Data Streams
Authors: Rashi Bhalla, Russel Pears, M. Asif Naeem
Abstract:
In this 'Information Explosion Era' analyzing data 'a critical commodity' and mining knowledge from vertically distributed data stream incurs huge communication cost. However, an effort to decrease the communication in the distributed environment has an adverse influence on the classification accuracy; therefore, a research challenge lies in maintaining a balance between transmission cost and accuracy. This paper proposes a method based on Bayesian inference to reduce the communication volume in a heterogeneous distributed environment while retaining prediction accuracy. Our experimental evaluation reveals that a significant reduction in communication can be achieved across a diverse range of dataset types.Keywords: big data, bayesian inference, distributed data stream mining, heterogeneous-distributed data
Procedia PDF Downloads 16125266 Data Privacy: Stakeholders’ Conflicts in Medical Internet of Things
Authors: Benny Sand, Yotam Lurie, Shlomo Mark
Abstract:
Medical Internet of Things (MIoT), AI, and data privacy are linked forever in a gordian knot. This paper explores the conflicts of interests between the stakeholders regarding data privacy in the MIoT arena. While patients are at home during healthcare hospitalization, MIoT can play a significant role in improving the health of large parts of the population by providing medical teams with tools for collecting data, monitoring patients’ health parameters, and even enabling remote treatment. While the amount of data handled by MIoT devices grows exponentially, different stakeholders have conflicting understandings and concerns regarding this data. The findings of the research indicate that medical teams are not concerned by the violation of data privacy rights of the patients' in-home healthcare, while patients are more troubled and, in many cases, are unaware that their data is being used without their consent. MIoT technology is in its early phases, and hence a mixed qualitative and quantitative research approach will be used, which will include case studies and questionnaires in order to explore this issue and provide alternative solutions.Keywords: MIoT, data privacy, stakeholders, home healthcare, information privacy, AI
Procedia PDF Downloads 10225265 Vision Based People Tracking System
Authors: Boukerch Haroun, Luo Qing Sheng, Li Hua Shi, Boukraa Sebti
Abstract:
In this paper we present the design and the implementation of a target tracking system where the target is set to be a moving person in a video sequence. The system can be applied easily as a vision system for mobile robot. The system is composed of two major parts the first is the detection of the person in the video frame using the SVM learning machine based on the “HOG” descriptors. The second part is the tracking of a moving person it’s done by using a combination of the Kalman filter and a modified version of the Camshift tracking algorithm by adding the target motion feature to the color feature, the experimental results had shown that the new algorithm had overcame the traditional Camshift algorithm in robustness and in case of occlusion.Keywords: camshift algorithm, computer vision, Kalman filter, object tracking
Procedia PDF Downloads 44825264 The Effectiveness of Extracorporeal Shockwave Therapy on Pain and Motor Function in Subjects with Knee Osteoarthritis A Systematic Review and Meta-Analysis of Randomized Clinical Trial
Authors: Vu Hoang Thu Huong
Abstract:
Background and Purpose: The effects of Extracorporeal Shockwave Therapy (ESWT) in the participants with knee osteoarthritis (KOA) were unclear on physical performance although its effects on pain had been investiagted. This study aims to explore the effects of ESWT on pain relief and physical performance on KOA. Methods: The studies with the randomized controlled design to investigate the effects of ESWT on KOA were systematically searched using inclusion and exclusion criteria through seven electronic databases including Pubmed etc. between 1990 and Dec 2022. To summarize those data, visual analog scale (VAS) or pain scores were determined for measure of pain intensity. Range of knee motion, or the scores of physical activities including Lequesne index (LI), Knee Injury and Osteoarthritis Outcome Score (KOOS), and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) were determined for measure of physical performances. The first evaluate after treatment period was define as the effect of post-treatment period or immediately effect; and the last evaluate was defined as the effect of following period or the end effect in our study. Data analysis was performed using RevMan 5.4.1 software. A significant level was set at p<0.05. Results: Eight studies (number of participant= 499) reporting the ESWT effects on mild-to-moderate severity (Grades I to III Kellgren–Lawrence) of KOA were qualified for meta-analysis. Compared with sham or placebo group, the ESWT group had a significant decrease of VAS rest score (0.90[0.12~1.67] as mean difference [95% confidence interval]) and pain score WOMAC (2.49[1.22~3.76]), and a significant improvement of physical performance with a decrease of the scores of WOMAC activities (8.18[3.97~12.39]), LI (3.47[1.68~5.26]), and KOOS (5.87[1.73~ 10.00]) in the post-treatment period. There were also a significant decrease of WOMAC pain score (2.83[2.12~3.53]) and a significant decrease of the scores of WOMAC activities (9.47[7.65~11.28]) and LI (4.12[2.34 to 5.89]) in the following period. Besides, compared with other treatment groups, ESWT also displayed the improvement in pain and physical performance, but it is not significant. Conclusions: The ESWT was effective and valuable method in pain relief as well as in improving physical activities in the participants with mild-to-moderate KOA. Clinical Relevance: There are the effects of ESWT on pain relief and the improvement of physical performance in the with KOA.Keywords: knee osteoarthritis, extracorporeal shockwave therapy, pain relief, physical performance, shockwave
Procedia PDF Downloads 8825263 Optimizing Data Integration and Management Strategies for Upstream Oil and Gas Operations
Authors: Deepak Singh, Rail Kuliev
Abstract:
The abstract highlights the critical importance of optimizing data integration and management strategies in the upstream oil and gas industry. With its complex and dynamic nature generating vast volumes of data, efficient data integration and management are essential for informed decision-making, cost reduction, and maximizing operational performance. Challenges such as data silos, heterogeneity, real-time data management, and data quality issues are addressed, prompting the proposal of several strategies. These strategies include implementing a centralized data repository, adopting industry-wide data standards, employing master data management (MDM), utilizing real-time data integration technologies, and ensuring data quality assurance. Training and developing the workforce, “reskilling and upskilling” the employees and establishing robust Data Management training programs play an essential role and integral part in this strategy. The article also emphasizes the significance of data governance and best practices, as well as the role of technological advancements such as big data analytics, cloud computing, Internet of Things (IoT), and artificial intelligence (AI) and machine learning (ML). To illustrate the practicality of these strategies, real-world case studies are presented, showcasing successful implementations that improve operational efficiency and decision-making. In present study, by embracing the proposed optimization strategies, leveraging technological advancements, and adhering to best practices, upstream oil and gas companies can harness the full potential of data-driven decision-making, ultimately achieving increased profitability and a competitive edge in the ever-evolving industry.Keywords: master data management, IoT, AI&ML, cloud Computing, data optimization
Procedia PDF Downloads 7125262 Influence of Parameters of Modeling and Data Distribution for Optimal Condition on Locally Weighted Projection Regression Method
Authors: Farhad Asadi, Mohammad Javad Mollakazemi, Aref Ghafouri
Abstract:
Recent research in neural networks science and neuroscience for modeling complex time series data and statistical learning has focused mostly on learning from high input space and signals. Local linear models are a strong choice for modeling local nonlinearity in data series. Locally weighted projection regression is a flexible and powerful algorithm for nonlinear approximation in high dimensional signal spaces. In this paper, different learning scenario of one and two dimensional data series with different distributions are investigated for simulation and further noise is inputted to data distribution for making different disordered distribution in time series data and for evaluation of algorithm in locality prediction of nonlinearity. Then, the performance of this algorithm is simulated and also when the distribution of data is high or when the number of data is less the sensitivity of this approach to data distribution and influence of important parameter of local validity in this algorithm with different data distribution is explained.Keywords: local nonlinear estimation, LWPR algorithm, online training method, locally weighted projection regression method
Procedia PDF Downloads 50325261 Profit Comparative of Fisheries in East Aceh Regency Aceh Province
Authors: Mawardati Mawardati
Abstract:
This research was carried out on the traditional milkfish and shrimp culture cultivation from March to May 2018 in East Aceh District. This study aims to to analyze the differences between traditional milkfish cultivation and shrimp farming in East Aceh District, Aceh Province. The analytical method used is acquisition analysis and Independent Sample T test analysis. The results showed a significant difference between milkfish farming and shrimp farming in East Aceh District, Aceh Province. Based on the results of the analysis, the average profit from shrimp farming is higher than that of milkfish farming. This demand exceeds market demand for exports. Thus the price of shrimp is still far higher than the price of milk fish.Keywords: comparative, profit, shrimp, milkfish
Procedia PDF Downloads 154