Search results for: equivalent circuit models
6721 Knowledge Co-Production on Future Climate-Change-Induced Mass-Movement Risks in Alpine Regions
Authors: Elisabeth Maidl
Abstract:
The interdependence of climate change and natural hazard goes along with large uncertainties regarding future risks. Regional stakeholders, experts in natural hazards management and scientists have specific knowledge, resp. mental models on such risks. This diversity of views makes it difficult to find common and broadly accepted prevention measures. If the specific knowledge of these types of actors is shared in an interactive knowledge production process, this enables a broader and common understanding of complex risks and allows to agree on long-term solution strategies. Previous studies on mental models confirm that actors with specific vulnerabilities perceive different aspects of a topic and accordingly prefer different measures. In bringing these perspectives together, there is the potential to reduce uncertainty and to close blind spots in solution finding. However, studies that examine the mental models of regional actors on future concrete mass movement risks are lacking so far. The project tests and evaluates the feasibility of knowledge co-creation for the anticipatory prevention of climate change-induced mass movement risks in the Alps. As a key element, mental models of the three included groups of actors are compared. Being integrated into the research program Climate Change Impacts on Alpine Mass Movements (CCAMM2), this project is carried out in two Swiss mountain regions. The project is structured in four phases: 1) the preparatory phase, in which the participants are identified, 2) the baseline phase, in which qualitative interviews and a quantitative pre-survey are conducted with actors 3) the knowledge-co-creation phase, in which actors have a moderated exchange meeting, and a participatory modelling workshop on specific risks in the region, and 4) finally a public information event. Results show that participants' mental models are based on the place of origin, profession, believes, values, which results in narratives on climate change and hazard risks. Further, the more intensively participants interact with each other, the more likely is that they change their views. This provides empirical evidence on how changes in opinions and mindsets can be induced and fostered.Keywords: climate change, knowledge-co-creation, participatory process, natural hazard risks
Procedia PDF Downloads 696720 The Impact of Hybrid Working Models on Employee Engagement
Authors: Sibylle Tellenbach, Julie Haddock-Millar, Francis Bidault
Abstract:
The aim of this research is to understand the extent to which hybrid working models have influenced employee engagement in the Swiss financial sector. The context for this research is the transition out of the pandemic and the changes that have occurred between 2020 and 2023. Since the pandemic, many financial services companies have had to rethink their working model for office-based employees, as this group of employees has been able to experience a new way of working and, thus, greater freedom and flexibility. For a large number of companies, it was a huge change to shift from the traditional office-based to a new hybrid working model. A heightened focus on employee engagement has become a necessity in order to understand and respond to the challenges presented by the shift in a working model. This new way of working, partly office-based and partly virtual, has led to ambiguities about the impact on the engagement of hybrid teams. Therefore, the research question is: How hybrid working models have influenced employee engagement to what extent? The methodological approach is a narrative inquiry with four similar functional teams within four Swiss financial companies. Semi-structured interviews will be conducted with managers from middle management and their individual team members. The findings will demonstrate whether this shift in the working model influenced individual team members’ engagement and to what extent. The contribution of this research is two-fold. First, the research makes a theoretical contribution, presenting evidence of the impact of hybrid working on individual team members’ engagement in a specific sector and context, enhancing current knowledge on the challenges in working model transition. Second, this research will make a practice-based contribution, recommending ways to enhance the engagement of hybrid teams in a specific context. These recommendations may be applied in wider sectors and teams.Keywords: employee engagement, hybrid teams, hybrid working models, Swiss financial sector, team engagement
Procedia PDF Downloads 966719 The Impact of Model Specification Decisions on the Teacher ValuE-added Effectiveness: Choosing the Correct Predictors
Authors: Ismail Aslantas
Abstract:
Value-Added Models (VAMs), the statistical methods for evaluating the effectiveness of teachers and schools based on student achievement growth, has attracted decision-makers’ and researchers’ attention over the last decades. As a result of this attention, many studies have conducted in recent years to discuss these statistical models from different aspects. This research focused on the importance of conceptual variables in VAM estimations; therefor, this research was undertaken to examine the extent to which value-added effectiveness estimates for teachers can be affected by using context predictions. Using longitudinal data over three years from the international school context, value-added teacher effectiveness was estimated by ordinary least-square value-added models, and the effectiveness of the teachers was examined. The longitudinal dataset in this study consisted of three major sources: students’ attainment scores up to three years and their characteristics, teacher background information, and school characteristics. A total of 1,027 teachers and their 35,355 students who were in eighth grade were examined for understanding the impact of model specifications on the value-added teacher effectiveness evaluation. Models were created using selection methods that adding a predictor on each step, then removing it and adding another one on a subsequent step and evaluating changes in model fit was checked by reviewing changes in R² values. Cohen’s effect size statistics were also employed in order to find out the degree of the relationship between teacher characteristics and their effectiveness. Overall, the results indicated that prior attainment score is the most powerful predictor of the current attainment score. 47.1 percent of the variation in grade 8 math score can be explained by the prior attainment score in grade 7. The research findings raise issues to be considered in VAM implementations for teacher evaluations and make suggestions to researchers and practitioners.Keywords: model specification, teacher effectiveness, teacher performance evaluation, value-added model
Procedia PDF Downloads 1336718 Comparison of Spiral Circular Coil and Helical Coil Structures for Wireless Power Transfer System
Authors: Zhang Kehan, Du Luona
Abstract:
Wireless power transfer (WPT) systems have been widely investigated for advantages of convenience and safety compared to traditional plug-in charging systems. The research contents include impedance matching, circuit topology, transfer distance et al. for improving the efficiency of WPT system, which is a decisive factor in the practical application. What is more, coil structures such as spiral circular coil and helical coil with variable distance between two turns also have indispensable effects on the efficiency of WPT systems. This paper compares the efficiency of WPT systems utilizing spiral or helical coil with variable distance between two turns, and experimental results show that efficiency of spiral circular coil with an optimum distance between two turns is the highest. According to efficiency formula of resonant WPT system with series-series topology, we introduce M²/R₋₁ to measure the efficiency of spiral circular coil and helical coil WPT system. If the distance between two turns s is too close, proximity effect theory shows that the induced current in the conductor, caused by a variable flux created by the current flows in the skin of vicinity conductor, is the opposite direction of source current and has assignable impart on coil resistance. Thus in two coil structures, s affects coil resistance. At the same time, when the distance between primary and secondary coils is not variable, s can also make the influence on M to some degrees. The aforementioned study proves that s plays an indispensable role in changing M²/R₋₁ and then can be adjusted to find the optimum value with which WPT system achieves the highest efficiency. In actual application situations of WPT systems especially in underwater vehicles, miniaturization is one vital issue in designing WPT system structures. Limited by system size, the largest external radius of spiral circular coil is 100 mm, and the largest height of helical coil is 40 mm. In other words, the turn of coil N changes with s. In spiral circular and helical structures, the distance between each two turns in secondary coil is set as a constant value 1 mm to guarantee that the R2 is not variable. Based on the analysis above, we set up spiral circular coil and helical coil model using COMSOL to analyze the value of M²/R₋₁ when the distance between each two turns in primary coil sp varies from 0 mm to 10 mm. In the two structure models, the distance between primary and secondary coils is 50 mm and wire diameter is chosen as 1.5 mm. The turn of coil in secondary coil are 27 in helical coil model and 20 in spiral circular coil model. The best value of s in helical coil structure and spiral circular coil structure are 1 mm and 2 mm respectively, in which the value of M²/R₋₁ is the largest. It is obviously to select spiral circular coil as the first choice to design the WPT system for that the value of M²/R₋₁ in spiral circular coil is larger than that in helical coil under the same condition.Keywords: distance between two turns, helical coil, spiral circular coil, wireless power transfer
Procedia PDF Downloads 3456717 Seismic Performance of Slopes Subjected to Earthquake Mainshock Aftershock Sequences
Authors: Alisha Khanal, Gokhan Saygili
Abstract:
It is commonly observed that aftershocks follow the mainshock. Aftershocks continue over a period of time with a decreasing frequency and typically there is not sufficient time for repair and retrofit between a mainshock–aftershock sequence. Usually, aftershocks are smaller in magnitude; however, aftershock ground motion characteristics such as the intensity and duration can be greater than the mainshock due to the changes in the earthquake mechanism and location with respect to the site. The seismic performance of slopes is typically evaluated based on the sliding displacement predicted to occur along a critical sliding surface. Various empirical models are available that predict sliding displacement as a function of seismic loading parameters, ground motion parameters, and site parameters but these models do not include the aftershocks. The seismic risks associated with the post-mainshock slopes ('damaged slopes') subjected to aftershocks is significant. This paper extends the empirical sliding displacement models for flexible slopes subjected to earthquake mainshock-aftershock sequences (a multi hazard approach). A dataset was developed using 144 pairs of as-recorded mainshock-aftershock sequences using the Pacific Earthquake Engineering Research Center (PEER) database. The results reveal that the combination of mainshock and aftershock increases the seismic demand on slopes relative to the mainshock alone; thus, seismic risks are underestimated if aftershocks are neglected.Keywords: seismic slope stability, mainshock, aftershock, landslide, earthquake, flexible slopes
Procedia PDF Downloads 1466716 Diminishing Voices of Children in Mandatory Mediation Schemes
Authors: Yuliya Radanova, Agnė Tvaronavičienė
Abstract:
With the growing trend for mandating parties of family conflicts to out-of-court processes, the adopted statutory regulations often remain silent on the way the voice of the child is integrated into the procedure. Convention on the Rights of the Child (Art. 12) clearly states the obligation to assure to the child who can form his or her own views the right to express those views freely in all matters affecting him. This article seeks to explore the way children participate in the mandatory mediation schemes applicable to family disputes in the European Union. A review of scientific literature and empirical data has been conducted on those EU Member States that coerce parties to family mediation to establish that different models of practice are deployed, and there is a lack of synchronicity on how children’s role in mediation is viewed. Child-inclusive mediation processes are deemed to produce sustainable results over time but necessitate professional qualifications and skills for the purpose of mediators to accommodate that such discussions are aligned with the best interest of the child. However, there is no unanimous guidance, standards or protocols on the peculiar characteristics and manner through which children are involved in mediation. Herewith, it is suggested that the lack of such rigorous approaches and coherence in an ever-changing mediation setting transitioning towards mandatory mediation models jeopardizes the importance of children’s voices in the process. Thus, it is suggested that there is a need to consider the adoption of uniform guidelines on the specific role children have in mediation, particularly in its mandatory models.Keywords: family mediation, child involvement, mandatory mediation, child-inclusive, child-focused
Procedia PDF Downloads 746715 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components
Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea
Abstract:
Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.Keywords: assessment, part of speech, sentiment analysis, student feedback
Procedia PDF Downloads 1426714 Design of Permanent Sensor Fault Tolerance Algorithms by Sliding Mode Observer for Smart Hybrid Powerpack
Authors: Sungsik Jo, Hyeonwoo Kim, Iksu Choi, Hunmo Kim
Abstract:
In the SHP, LVDT sensor is for detecting the length changes of the EHA output, and the thrust of the EHA is controlled by the pressure sensor. Sensor is possible to cause hardware fault by internal problem or external disturbance. The EHA of SHP is able to be uncontrollable due to control by feedback from uncertain information, on this paper; the sliding mode observer algorithm estimates the original sensor output information in permanent sensor fault. The proposed algorithm shows performance to recovery fault of disconnection and short circuit basically, also the algorithm detect various of sensor fault mode.Keywords: smart hybrid powerpack (SHP), electro hydraulic actuator (EHA), permanent sensor fault tolerance, sliding mode observer (SMO), graphic user interface (GUI)
Procedia PDF Downloads 5486713 An Object-Oriented Modelica Model of the Water Level Swell during Depressurization of the Reactor Pressure Vessel of the Boiling Water Reactor
Authors: Rafal Bryk, Holger Schmidt, Thomas Mull, Ingo Ganzmann, Oliver Herbst
Abstract:
Prediction of the two-phase water mixture level during fast depressurization of the Reactor Pressure Vessel (RPV) resulting from an accident scenario is an important issue from the view point of the reactor safety. Since the level swell may influence the behavior of some passive safety systems, it has been recognized that an assumption which at the beginning may be considered as a conservative one, not necessary leads to a conservative result. This paper discusses outcomes obtained during simulations of the water dynamics and heat transfer during sudden depressurization of a vessel filled up to a certain level with liquid water under saturation conditions and with the rest of the vessel occupied by saturated steam. In case of the pressure decrease e.g. due to the main steam line break, the liquid water evaporates abruptly, being a reason thereby, of strong transients in the vessel. These transients and the sudden emergence of void in the region occupied at the beginning by liquid, cause elevation of the two-phase mixture. In this work, several models calculating the water collapse and swell levels are presented and validated against experimental data. Each of the models uses different approach to calculate void fraction. The object-oriented models were developed with the Modelica modelling language and the OpenModelica environment. The models represent the RPV of the Integral Test Facility Karlstein (INKA) – a dedicated test rig for simulation of KERENA – a new Boiling Water Reactor design of Framatome. The models are based on dynamic mass and energy equations. They are divided into several dynamic volumes in each of which, the fluid may be single-phase liquid, steam or a two-phase mixture. The heat transfer between the wall of the vessel and the fluid is taken into account. Additional heat flow rate may be applied to the first volume of the vessel in order to simulate the decay heat of the reactor core in a similar manner as it is simulated at INKA. The comparison of the simulations results against the reference data shows a good agreement.Keywords: boiling water reactor, level swell, Modelica, RPV depressurization, thermal-hydraulics
Procedia PDF Downloads 2106712 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition
Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar
Abstract:
In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers
Procedia PDF Downloads 456711 Using Machine Learning as an Alternative for Predicting Exchange Rates
Authors: Pedro Paulo Galindo Francisco, Eli Dhadad Junior
Abstract:
This study addresses the Meese-Rogoff Puzzle by introducing the latest machine learning techniques as alternatives for predicting the exchange rates. Using RMSE as a comparison metric, Meese and Rogoff discovered that economic models are unable to outperform the random walk model as short-term exchange rate predictors. Decades after this study, no statistical prediction technique has proven effective in overcoming this obstacle; although there were positive results, they did not apply to all currencies and defined periods. Recent advancements in artificial intelligence technologies have paved the way for a new approach to exchange rate prediction. Leveraging this technology, we applied five machine learning techniques to attempt to overcome the Meese-Rogoff puzzle. We considered daily data for the real, yen, British pound, euro, and Chinese yuan against the US dollar over a time horizon from 2010 to 2023. Our results showed that none of the presented techniques were able to produce an RMSE lower than the Random Walk model. However, the performance of some models, particularly LSTM and N-BEATS were able to outperform the ARIMA model. The results also suggest that machine learning models have untapped potential and could represent an effective long-term possibility for overcoming the Meese-Rogoff puzzle.Keywords: exchage rate, prediction, machine learning, deep learning
Procedia PDF Downloads 316710 Statistical Data Analysis of Migration Impact on the Spread of HIV Epidemic Model Using Markov Monte Carlo Method
Authors: Ofosuhene O. Apenteng, Noor Azina Ismail
Abstract:
Over the last several years, concern has developed over how to minimize the spread of HIV/AIDS epidemic in many countries. AIDS epidemic has tremendously stimulated the development of mathematical models of infectious diseases. The transmission dynamics of HIV infection that eventually developed AIDS has taken a pivotal role of much on building mathematical models. From the initial HIV and AIDS models introduced in the 80s, various improvements have been taken into account as how to model HIV/AIDS frameworks. In this paper, we present the impact of migration on the spread of HIV/AIDS. Epidemic model is considered by a system of nonlinear differential equations to supplement the statistical method approach. The model is calibrated using HIV incidence data from Malaysia between 1986 and 2011. Bayesian inference based on Markov Chain Monte Carlo is used to validate the model by fitting it to the data and to estimate the unknown parameters for the model. The results suggest that the migrants stay for a long time contributes to the spread of HIV. The model also indicates that susceptible individual becomes infected and moved to HIV compartment at a rate that is more significant than the removal rate from HIV compartment to AIDS compartment. The disease-free steady state is unstable since the basic reproduction number is 1.627309. This is a big concern and not a good indicator from the public heath point of view since the aim is to stabilize the epidemic at the disease equilibrium.Keywords: epidemic model, HIV, MCMC, parameter estimation
Procedia PDF Downloads 6006709 Sufficient Conditions for Exponential Stability of Stochastic Differential Equations with Non Trivial Solutions
Authors: Fakhreddin Abedi, Wah June Leong
Abstract:
Exponential stability of stochastic differential equations with non trivial solutions is provided in terms of Lyapunov functions. The main result of this paper establishes that, under certain hypotheses for the dynamics f(.) and g(.), practical exponential stability in probability at the small neighborhood of the origin is equivalent to the existence of an appropriate Lyapunov function. Indeed, we establish exponential stability of stochastic differential equation when almost all the state trajectories are bounded and approach a sufficiently small neighborhood of the origin. We derive sufficient conditions for exponential stability of stochastic differential equations. Finally, we give a numerical example illustrating our results.Keywords: exponential stability in probability, stochastic differential equations, Lyapunov technique, Ito's formula
Procedia PDF Downloads 526708 Failure Localization of Bipolar Integrated Circuits by Implementing Active Voltage Contrast
Authors: Yiqiang Ni, Xuanlong Chen, Enliang Li, Linting Zheng, Shizheng Yang
Abstract:
Bipolar ICs are playing an important role in military applications, mainly used in logic gates, such as inverter and NAND gate. The defect of metal break located on the step is one of the main failure mechanisms of bipolar ICs, resulting in open-circuit or functional failure. In this situation, general failure localization methods like optical beam-induced resistance change (OBIRCH) and photon emission microscopy (PEM) might not be fully effective. However, active voltage contrast (AVC) can be used as a voltage probe, which may pinpoint the incorrect potential and thus locate the failure position. Two case studies will be present in this paper on how to implement AVC for failure localization, and the detailed failure mechanism will be discussed.Keywords: bipolar IC, failure localization, metal break, open failure, voltage contrast
Procedia PDF Downloads 2916707 A Comparative Study of the Alternatives to Land Acquisition: India
Authors: Aparna Soni
Abstract:
The much-celebrated foretold story of Indian city engines driving the growth of India has been scrutinized to have serious consequences. A wide spectrum of scholarship has brought to light the un-equalizing effects and the need to adopt a rights-based approach to development planning in India. Notably, these concepts and discourses ubiquitously entail the study of land struggles in the making of Urban. In fact, the very progression of the primitive accumulation theory to accumulation by dispossession, followed by ‘dispossession without development,’ thereafter Development without dispossession and now as Dispossession by financialization noticeably the last three developing in a span of mere three decades, is evidence enough to trace the centrality and evolving role of land in the making of urban India. India, in the last decade, has seen its regional governments actively experimenting with alternative models of land assembly (Amaravati and Delhi land pooling models, the loudly advertised ones). These are publicized as a replacement to the presumably cost and time antagonistic, prone to litigation land acquisition act of 2013. It has been observed that most of the literature treats these models as a generic large bracket of land expropriation and do not, in particular, try to differentially analyse to granularly find a pattern in these alternatives. To cater to this gap, this research comparatively studies these alternative land, assembly models. It categorises them based on their basic architecture, spatial and sectoral application, and governance frameworks. It is found that these alternatives are ad-hoc and fragmented pieces of legislation. These are fit for profit models commodifying land to ease its access by the private sector for real estate led growth. The research augments the literature on the privatization of land use planning in India. Further, it attempts to discuss the increasing role a landowner is expected to play in the future and suggests a way forward to safeguard them from market risks. The study involves a thematic analysis of the policy elements contained in legislative/policy documents, notifications, office orders. The study also derives from the various widely circulated print media information. With the present field-visit limitations, the study relies on documents accessed open-source in the public domain.Keywords: commodification, dispossession, land acquisition, landowner
Procedia PDF Downloads 1666706 Simulation of Carbon Nanotubes/GaAs Hybrid PV Using AMPS-1D
Authors: Nima E. Gorji
Abstract:
The performance and characteristics of a hybrid heterojunction single-walled carbon nanotube and GaAs solar cell is modelled and numerically simulated using AMPS-1D device simulation tool. The device physics and performance parameters with different junction parameters are analysed. The results suggest that the open-circuit voltage changes very slightly by changing the work function, acceptor and donor density while the other electrical parameters reach to an optimum value. Increasing the concentration of a discrete defect density in the absorber layer decreases the electrical parameters. The current-voltage characteristics, quantum efficiency, band gap and thickness variation of the photovoltaic response will be quantitatively considered.Keywords: carbon nanotube, GaAs, hybrid solar cell, AMPS-1D modelling
Procedia PDF Downloads 3306705 Characterising the Dynamic Friction in the Staking of Plain Spherical Bearings
Authors: Jacob Hatherell, Jason Matthews, Arnaud Marmier
Abstract:
Anvil Staking is a cold-forming process that is used in the assembly of plain spherical bearings into a rod-end housing. This process ensures that the bearing outer lip conforms to the chamfer in the matching rod end to produce a lightweight mechanical joint with sufficient strength to meet the pushout load requirement of the assembly. Finite Element (FE) analysis is being used extensively to predict the behaviour of metal flow in cold forming processes to support industrial manufacturing and product development. On-going research aims to validate FE models across a wide range of bearing and rod-end geometries by systematically isolating and understanding the uncertainties caused by variations in, material properties, load-dependent friction coefficients and strain rate sensitivity. The improved confidence in these models aims to eliminate the costly and time-consuming process of experimental trials in the introduction of new bearing designs. Previous literature has shown that friction coefficients do not remain constant during cold forming operations, however, the understanding of this phenomenon varies significantly and is rarely implemented in FE models. In this paper, a new approach to evaluate the normal contact pressure versus friction coefficient relationship is outlined using friction calibration charts generated via iterative FE models and ring compression tests. When compared to previous research, this new approach greatly improves the prediction of forming geometry and the forming load during the staking operation. This paper also aims to standardise the FE approach to modelling ring compression test and determining the friction calibration charts.Keywords: anvil staking, finite element analysis, friction coefficient, spherical plain bearing, ring compression tests
Procedia PDF Downloads 2056704 Speckle Noise Reduction Using Anisotropic Filter Based on Wavelets
Authors: Kritika Bansal, Akwinder Kaur, Shruti Gujral
Abstract:
In this paper, the approach of denoising is solved by using a new hybrid technique which associates the different denoising methods. Wavelet thresholding and anisotropic diffusion filter are the two different filters in our hybrid techniques. The Wavelet thresholding removes the noise by removing the high frequency components with lesser edge preservation, whereas an anisotropic diffusion filters is based on partial differential equation, (PDE) to remove the speckle noise. This PDE approach is used to preserve the edges and provides better smoothing. So our new method proposes a combination of these two filtering methods which performs better results in terms of peak signal to noise ratio (PSNR), coefficient of correlation (COC) and equivalent no of looks (ENL).Keywords: denoising, anisotropic diffusion filter, multiplicative noise, speckle, wavelets
Procedia PDF Downloads 5126703 Static and Dynamic Hand Gesture Recognition Using Convolutional Neural Network Models
Authors: Keyi Wang
Abstract:
Similar to the touchscreen, hand gesture based human-computer interaction (HCI) is a technology that could allow people to perform a variety of tasks faster and more conveniently. This paper proposes a training method of an image-based hand gesture image and video clip recognition system using a CNN (Convolutional Neural Network) with a dataset. A dataset containing 6 hand gesture images is used to train a 2D CNN model. ~98% accuracy is achieved. Furthermore, a 3D CNN model is trained on a dataset containing 4 hand gesture video clips resulting in ~83% accuracy. It is demonstrated that a Cozmo robot loaded with pre-trained models is able to recognize static and dynamic hand gestures.Keywords: deep learning, hand gesture recognition, computer vision, image processing
Procedia PDF Downloads 1396702 Definition of a Computing Independent Model and Rules for Transformation Focused on the Model-View-Controller Architecture
Authors: Vanessa Matias Leite, Jandira Guenka Palma, Flávio Henrique de Oliveira
Abstract:
This paper presents a model-oriented development approach to software development in the Model-View-Controller (MVC) architectural standard. This approach aims to expose a process of extractions of information from the models, in which through rules and syntax defined in this work, assists in the design of the initial model and its future conversions. The proposed paper presents a syntax based on the natural language, according to the rules agreed in the classic grammar of the Portuguese language, added to the rules of conversions generating models that follow the norms of the Object Management Group (OMG) and the Meta-Object Facility MOF.Keywords: BNF Syntax, model driven architecture, model-view-controller, transformation, UML
Procedia PDF Downloads 3956701 Productivity and Structural Design of Manufacturing Systems
Authors: Ryspek Usubamatov, Tan San Chin, Sarken Kapaeva
Abstract:
Productivity of the manufacturing systems depends on technological processes, a technical data of machines and a structure of systems. Technology is presented by the machining mode and data, a technical data presents reliability parameters and auxiliary time for discrete production processes. The term structure of manufacturing systems includes the number of serial and parallel production machines and links between them. Structures of manufacturing systems depend on the complexity of technological processes. Mathematical models of productivity rate for manufacturing systems are important attributes that enable to define best structure by criterion of a productivity rate. These models are important tool in evaluation of the economical efficiency for production systems.Keywords: productivity, structure, manufacturing systems, structural design
Procedia PDF Downloads 5846700 Orange Peel Derived Activated Carbon /Chitosan Composite as Highly Effective and Low-Cost Adsorbent for Adsorption of Methylene Blue
Authors: Onur Karaman, Ceren Karaman
Abstract:
In this study, the adsorption of Methylene Blue (MB), a cationic dye, onto Orange Peel Derived Activated Carbon (OPAC) and chitosan(OPAC/Chitosan composite) composite (a low-cost absorbent) was carried out using a batch system. The composite was characterised using IR spectra, XRD, FESEM and Pore size studies. The effects of initial pH, adsorbent dose rate and initial dye concentration on the initial adsorption rate, capacity and dye removal efficiency were investigated. The Langmuir and Freundlich adsorption models were used to define the adsorption equilibrium of dye-adsorbent system mathematically and it was decided that the Langmuir model was more suitable to describe the adsorption equilibrium for the system. In addition, first order, second order and saturation type kinetic models were applied to kinetic data of adsorption and kinetic constants were calculated. It was concluded that the second order and the saturation type kinetic models defined the adsorption data more accurately. Finally, the evaluated thermodynamic parameters of adsorption show a spontaneous and exothermic behavior. Overall, this study indicates OPAC/Chitosan composite as an effective and low-cost adsorbent for the removal of MB dye from aqueous solutions.Keywords: activated carbon, adsorption, chitosan, methylene blue, orange peel
Procedia PDF Downloads 2976699 ZVZCT PWM Boost DC-DC Converter
Authors: Ismail Aksoy, Haci Bodur, Nihan Altintaş
Abstract:
This paper introduces a boost converter with a new active snubber cell. In this circuit, all of the semiconductor components in the converter softly turns on and turns off with the help of the active snubber cell. Compared to the other converters, the proposed converter has advantages of size, number of components and cost. The main feature of proposed converter is that the extra voltage stresses do not occur on the main switches and main diodes. Also, the current stress on the main switch is acceptable level. Moreover, the proposed converter can operates under light load conditions and wide input line voltage. In this study, the operating principle of the proposed converter is presented and its operation is verified with the Proteus simulation software for a 1 kW and 100 kHz model.Keywords: active snubber cell, boost converter, zero current switching, zero voltage switching
Procedia PDF Downloads 10266698 Proactive Pure Handoff Model with SAW-TOPSIS Selection and Time Series Predict
Authors: Harold Vásquez, Cesar Hernández, Ingrid Páez
Abstract:
This paper approach cognitive radio technic and applied pure proactive handoff Model to decrease interference between PU and SU and comparing it with reactive handoff model. Through the study and analysis of multivariate models SAW and TOPSIS join to 3 dynamic prediction techniques AR, MA ,and ARMA. To evaluate the best model is taken four metrics: number failed handoff, number handoff, number predictions, and number interference. The result presented the advantages using this type of pure proactive models to predict changes in the PU according to the selected channel and reduce interference. The model showed better performance was TOPSIS-MA, although TOPSIS-AR had a higher predictive ability this was not reflected in the interference reduction.Keywords: cognitive radio, spectrum handoff, decision making, time series, wireless networks
Procedia PDF Downloads 4876697 Modelling of Hydric Behaviour of Textiles
Authors: A. Marolleau, F. Salaun, D. Dupont, H. Gidik, S. Ducept.
Abstract:
The goal of this study is to analyze the hydric behaviour of textiles which can impact significantly the comfort of the wearer. Indeed, fabrics can be adapted for different climate if hydric and thermal behaviors are known. In this study, fabrics are only submitted to hydric variations. Sorption and desorption isotherms obtained from the dynamic vapour sorption apparatus (DVS) are fitted with the parallel exponential kinetics (PEK), the Hailwood-Horrobin (HH) and the Brunauer-Emmett-Teller (BET) models. One of the major finding is the relationship existing between PEK and HH models. During slow and fast processes, the sorption of water molecules on the polymer can be in monolayer and multilayer form. According to the BET model, moisture regain, a physical property of textiles, show a linear correlation with the total amount of water taken in monolayer. This study provides potential information of the end uses of these fabrics according to the selected activity level.Keywords: comfort, hydric properties, modelling, underwears
Procedia PDF Downloads 1496696 Topology Optimization of Composite Structures with Material Nonlinearity
Authors: Mengxiao Li, Johnson Zhang
Abstract:
Currently, topology optimization technique is widely used to define the layout design of structures that are presented as truss-like topologies. However, due to the difficulty in combining optimization technique with more realistic material models where their nonlinear properties should be considered, the achieved optimized topologies are commonly unable to apply straight towards the practical design problems. This study presented an optimization procedure of composite structures where different elastic stiffness, yield criteria, and hardening models are assumed for the candidate materials. From the results, it can be concluded that a more explicit modeling has the significant influence on the resulting topologies. Also, the isotropic or kinematic hardening is important for elastoplastic structural optimization design. The capability of the proposed optimization procedure is shown through several cases.Keywords: topology optimization, material composition, nonlinear modeling, hardening rules
Procedia PDF Downloads 4826695 Early Age Behavior of Wind Turbine Gravity Foundations
Authors: Janet Modu, Jean-Francois Georgin, Laurent Briancon, Eric Antoinet
Abstract:
The current practice during the repowering phase of wind turbines is deconstruction of existing foundations and construction of new foundations to accept larger wind loads or once the foundations have reached the end of their service lives. The ongoing research project FUI25 FEDRE (Fondations d’Eoliennes Durables et REpowering) therefore serves to propose scalable wind turbine foundation designs to allow reuse of the existing foundations. To undertake this research, numerical models and laboratory-scale models are currently being utilized and implemented in the GEOMAS laboratory at INSA Lyon following instrumentation of a reference wind turbine situated in the Northern part of France. Sensors placed within both the foundation and the underlying soil monitor the evolution of stresses from the foundation’s early age to stresses during service. The results from the instrumentation form the basis of validation for both the laboratory and numerical works conducted throughout the project duration. The study currently focuses on the effect of coupled mechanisms (Thermal-Hydro-Mechanical-Chemical) that induce stress during the early age of the reinforced concrete foundation, and scale factor considerations in the replication of the reference wind turbine foundation at laboratory-scale. Using THMC 3D models on COMSOL Multi-physics software, the numerical analysis performed on both the laboratory-scale and the full-scale foundations simulate the thermal deformation, hydration, shrinkage (desiccation and autogenous) and creep so as to predict the initial damage caused by internal processes during concrete setting and hardening. Results show a prominent effect of early age properties on the damage potential in full-scale wind turbine foundations. However, a prediction of the damage potential at laboratory scale shows significant differences in early age stresses in comparison to the full-scale model depending on the spatial position in the foundation. In addition to the well-known size effect phenomenon, these differences may contribute to inaccuracies encountered when predicting ultimate deformations of the on-site foundation using laboratory scale models.Keywords: cement hydration, early age behavior, reinforced concrete, shrinkage, THMC 3D models, wind turbines
Procedia PDF Downloads 1756694 Simplified Analysis on Steel Frame Infill with FRP Composite Panel
Authors: HyunSu Seo, HoYoung Son, Sungjin Kim, WooYoung Jung
Abstract:
In order to understand the seismic behavior of steel frame structure with infill FRP composite panel, simple models for simulation on the steel frame with the panel systems were developed in this study. To achieve the simple design method of the steel framed structure with the damping panel system, 2-D finite element analysis with the springs and dashpots models was conducted in ABAQUS. Under various applied spring stiffness and dashpot coefficient, the expected hysteretic energy responses of the steel frame with damping panel systems we re investigated. Using the proposed simple design method which decides the stiffness and the damping, it is possible to decide the FRP and damping materials on a steel frame system.Keywords: numerical analysis, FEM, infill, GFRP, damping
Procedia PDF Downloads 4246693 AC Voltage Regulators Using Single Phase Matrix Converter
Authors: Nagaraju Jarugu, B. R. Narendra
Abstract:
This paper focused on boost rectification by Single Phase Matrix Converter with fewer numbers of switches. The conventional matrix converter consists of 4 bidirectional switches, i.e. 8 set of IGBT/MOSFET with anti-parallel diodes. In this proposed matrix converter, only six switches are used. The switch commutation arrangements are also carried out in this work. The SPMC topology has many advantages as a minimal passive device use. It is very flexible and it can be used as a lot of converters. The gate pulses to the switches are provided by the PWM techniques. The duty ratio of the switches based on Pulse Width Modulation (PWM) technique was used to produce the output waveform of the circuit, simply by turning ON and OFF the switches. The simulation results using MATLAB/Simulink were provided to validate the feasibility of this proposed method.Keywords: single phase matrix converter, reduced switches, AC voltage regulators, boost rectifier operation
Procedia PDF Downloads 11886692 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process
Authors: Jan Stodt, Christoph Reich
Abstract:
The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.Keywords: audit, machine learning, assessment, metrics
Procedia PDF Downloads 271