Search results for: cavern design
11080 Predicting the Effect of Vibro Stone Column Installation on Performance of Reinforced Foundations
Authors: K. Al Ammari, B. G. Clarke
Abstract:
Soil improvement using vibro stone column techniques consists of two main parts: (1) the installed load bearing columns of well-compacted, coarse-grained material and (2) the improvements to the surrounding soil due to vibro compaction. Extensive research work has been carried out over the last 20 years to understand the improvement in the composite foundation performance due to the second part mentioned above. Nevertheless, few of these studies have tried to quantify some of the key design parameters, namely the changes in the stiffness and stress state of the treated soil, or have consider these parameters in the design and calculation process. Consequently, empirical and conservative design methods are still being used by ground improvement companies with a significant variety of results in engineering practice. Two-dimensional finite element study to develop an axisymmetric model of a single stone column reinforced foundation was performed using PLAXIS 2D AE to quantify the effect of the vibro installation of this column in soft saturated clay. Settlement and bearing performance were studied as an essential part of the design and calculation of the stone column foundation. Particular attention was paid to the large deformation in the soft clay around the installed column caused by the lateral expansion. So updated mesh advanced option was taken in the analysis. In this analysis, different degrees of stone column lateral expansions were simulated and numerically analyzed, and then the changes in the stress state, stiffness, settlement performance and bearing capacity were quantified. It was found that application of radial expansion will produce a horizontal stress in the soft clay mass that gradually decrease as the distance from the stone column axis increases. The excess pore pressure due to the undrained conditions starts to dissipate immediately after finishing the column installation, allowing the horizontal stress to relax. Changes in the coefficient of the lateral earth pressure K ٭, which is very important in representing the stress state, and the new stiffness distribution in the reinforced clay mass, were estimated. More encouraging results showed that increasing the expansion during column installation has a noticeable effect on improving the bearing capacity and reducing the settlement of reinforced ground, So, a design method should include this significant effect of the applied lateral displacement during the stone column instillation in simulation and numerical analysis design.Keywords: bearing capacity, design, installation, numerical analysis, settlement, stone column
Procedia PDF Downloads 37511079 A Generalized Space-Efficient Algorithm for Quantum Bit String Comparators
Authors: Khuram Shahzad, Omar Usman Khan
Abstract:
Quantum bit string comparators (QBSC) operate on two sequences of n-qubits, enabling the determination of their relationships, such as equality, greater than, or less than. This is analogous to the way conditional statements are used in programming languages. Consequently, QBSCs play a crucial role in various algorithms that can be executed or adapted for quantum computers. The development of efficient and generalized comparators for any n-qubit length has long posed a challenge, as they have a high-cost footprint and lead to quantum delays. Comparators that are efficient are associated with inputs of fixed length. As a result, comparators without a generalized circuit cannot be employed at a higher level, though they are well-suited for problems with limited size requirements. In this paper, we introduce a generalized design for the comparison of two n-qubit logic states using just two ancillary bits. The design is examined on the basis of qubit requirements, ancillary bit usage, quantum cost, quantum delay, gate operations, and circuit complexity and is tested comprehensively on various input lengths. The work allows for sufficient flexibility in the design of quantum algorithms, which can accelerate quantum algorithm development.Keywords: quantum comparator, quantum algorithm, space-efficient comparator, comparator
Procedia PDF Downloads 1711078 Direct Strength Method Approach for Indian Cold Formed Steel Sections with and Without Perforation for Compression Member
Authors: K. Raghu, Altafhusen P. Pinjar
Abstract:
Cold-formed steel section are extensively used in industry and many other non-industry constructions worldwide, it is relatively a new concept in India. Cold-formed steel sections have been developed as more economical building solutions to the alternative heavier hot-rolled sections in the commercial and residential markets. Cold‐formed steel (CFS) structural members are commonly manufactured with perforations to accommodate plumbing, electrical, and heating conduits in the walls and ceilings of buildings. Current design methods available to engineers for predicting the strength of CFS members with perforations are prescriptive and limited to specific perforation locations, spacing, and sizes. The Direct Strength Method (DSM), a relatively new design method for CFS members validated for members with and without perforations, predicts the ultimate strength of general CFS members with the elastic buckling properties of the member cross section. The design compression strength and flexural strength of Indian (IS 811-1987) standard sections is calculated as per North American Specification (AISI-S100 2007) and software CUFSM 4.05.Keywords: direct strength, cold formed, perforations, CUFSM
Procedia PDF Downloads 38011077 Optimum Design of Helical Gear System on Basis of Maximum Power Transmission Capability
Authors: Yasaman Esfandiari
Abstract:
Mechanical engineering has always dealt with amplification of the input power in power trains. One of the ways to achieve this goal is to use gears to change the amplitude and direction of the torque and the speed. However, the gears should be optimally designed to best achieve these objectives. In this study, helical gear systems are optimized to achieve maximum power. Material selection, space restriction, available facilities for manufacturing, the probability of tooth breakage, and tooth wear are taken into account and governing equations are derived. Finally, a Matlab code was generated to solve the optimization problem and the results are verified.Keywords: design, gears, Matlab, optimization
Procedia PDF Downloads 24111076 Brief Review of the Self-Tightening, Left-Handed Thread
Authors: Robert S. Giachetti, Emanuele Grossi
Abstract:
Loosening of bolted joints in rotating machines can adversely affect their performance, cause mechanical damage, and lead to injuries. In this paper, two potential loosening phenomena in rotating applications are discussed. First, ‘precession,’ is governed by thread/nut contact forces, while the second is based on inertial effects of the fastened assembly. These mechanisms are reviewed within the context of historical usage of left-handed fasteners in rotating machines which appears absent in the literature and common machine design texts. Historically, to prevent loosening of wheel nuts, vehicle manufacturers have used right-handed and left-handed threads on different sides of the vehicle, but most modern vehicles have abandoned this custom and only use right-handed, tapered lug nuts on all sides of the vehicle. Other classical machines such as the bicycle continue to use different handed threads on each side while other machines such as, bench grinders, circular saws and brush cutters still use left-handed threads to fasten rotating components. Despite the continued use of left-handed fasteners, the rationale and analysis of left-handed threads to mitigate self-loosening of fasteners in rotating applications is not commonly, if at all, discussed in the literature or design textbooks. Without scientific literature to support these design selections, these implementations may be the result of experimental findings or aged institutional knowledge. Based on a review of rotating applications, historical documents and mechanical design references, a formal study of the paradoxical nature of left-handed threads in various applications is merited.Keywords: rotating machinery, self-loosening fasteners, wheel fastening, vibration loosening
Procedia PDF Downloads 13611075 Development of Web Application for Warehouse Management System: A Case Study of Ceramics Factory
Authors: Thanaphat Suwanaklang, Supaporn Suwannarongsri
Abstract:
Presently, there are many industries in Thailand producing various products for both domestic distribution and export to foreign countries. Warehouse is one of the most important areas of business needing to store their products. Such businesses need to have a suitable warehouse management system for reducing the storage time and using the space as much as possible. This paper proposes the development of a web application for a warehouse management system. One of the ceramics factories in Thailand is conducted as a case study. By applying the ABC analysis, fixed location, commodity system, ECRS, and 7-waste theories and principles, the web application for the warehouse management system of the selected ceramics factory is developed to design the optimal storage area for groups of products and design the optimal routes of forklifts. From experimental results, it was found that the warehouse management system developed via the web application can reduce the travel distance of forklifts and the time of searching for storage area by 100% once compared with the conventional method. In addition, the entire storage area can be on-line and real-time monitored.Keywords: warehouse management system, warehouse design method, logistics system, web application
Procedia PDF Downloads 13611074 Liquid Crystal Elastomers as Light-Driven Star-Shaped Microgripper
Authors: Indraj Singh, Xuan Lee, Yu-Chieh Cheng
Abstract:
Scientists are very keen on biomimetic research that mimics biological species to micro-robotic devices with the novel functionalities and accessibility. The source of inspiration is the complexity, sophistication, and intelligence of the biological systems. In this work, we design a light-driven star-shaped microgripper, an autonomous soft device which can change the shape under the external stimulus such as light. The design is based on light-responsive Liquid Crystal Elastomers which fabricated onto the polymer coated aligned substrate. The change in shape, controlled by the anisotropicity and the molecular orientation of the Liquid Crystal Elastomer, based on the external stimulus. This artificial star-shaped microgripper is capable of autonomous closure and capable to grab the objects in response to an external stimulus. This external stimulus-responsive materials design, based on soft active smart materials, provides a new approach to autonomous, self-regulating optical systems.Keywords: liquid crystal elastomers, microgripper, smart materials, robotics
Procedia PDF Downloads 14111073 Seismic Considerations in Case Study of Kindergartens Building Design: Ensuring Safety and Structural Integrity
Authors: Al-Naqdi Ibtehal Abdulmonem
Abstract:
Kindergarten buildings are essential for early childhood education, providing a secure environment for children's development. However, they are susceptible to seismic forces, which can endanger occupants during earthquakes. This article emphasizes the importance of conducting thorough seismic analysis and implementing proper structural design to protect the well-being of children, staff, and visitors. By prioritizing structural integrity and considering functional requirements, engineers can mitigate risks associated with seismic events. The use of specialized software like ETABS is crucial for designing earthquake-resistant kindergartens. An analysis using ETABS software compared the structural performance of two single-story kindergartens in Iraq's Ministry of Education, designed with and without seismic considerations. The analysis aimed to assess the impact of seismic design on structural integrity and safety. The kindergarten was designed with seismic considerations, including moment frames. In contrast, the same kindergarten was analyzed without seismic effects, revealing a lack of structural elements to resist lateral forces, rendering it vulnerable to structural failure during an earthquake. Maximum major shear increased over 4 times and over 5 times for bending moment in both kindergartens designed with seismic considerations induced by lateral loads and seismic forces. This component of shear force is vital for designing elements to resist lateral loads and ensure structural stability.Keywords: seismic analysis, structural design, lateral loads, earthquake resistance, major shear, ETABS
Procedia PDF Downloads 7211072 Optimum Design of Hybrid (Metal-Composite) Mechanical Power Transmission System under Uncertainty by Convex Modelling
Authors: Sfiso Radebe
Abstract:
The design models dealing with flawless composite structures are in abundance, where the mechanical properties of composite structures are assumed to be known a priori. However, if the worst case scenario is assumed, where material defects combined with processing anomalies in composite structures are expected, a different solution is attained. Furthermore, if the system being designed combines in series hybrid elements, individually affected by material constant variations, it implies that a different approach needs to be taken. In the body of literature, there is a compendium of research that investigates different modes of failure affecting hybrid metal-composite structures. It covers areas pertaining to the failure of the hybrid joints, structural deformation, transverse displacement, the suppression of vibration and noise. In the present study a system employing a combination of two or more hybrid power transmitting elements will be explored for the least favourable dynamic loads as well as weight minimization, subject to uncertain material properties. Elastic constants are assumed to be uncertain-but-bounded quantities varying slightly around their nominal values where the solution is determined using convex models of uncertainty. Convex analysis of the problem leads to the computation of the least favourable solution and ultimately to a robust design. This approach contrasts with a deterministic analysis where the average values of elastic constants are employed in the calculations, neglecting the variations in the material properties.Keywords: convex modelling, hybrid, metal-composite, robust design
Procedia PDF Downloads 21111071 Implications of Humanizing Pedagogy on Learning Design in a Technology-Enhanced Language Learning Environment: Critical Reflections on Student Identity and Agency
Authors: Mukhtar Raban
Abstract:
Nelson Mandela University subscribes to a humanizing pedagogy (HP), as housed under broader critical pedagogy, that underpins and informs learning and teaching activities at the institution. The investigation sought to explore the implications of humanizing and critical pedagogical considerations for a technology-enhanced language learning (TELL) environment in a university course. The paper inquires into the design of a learning resource in an online learning environment of an English communication module, that applied HP principles. With an objective of creating agentive spaces for foregrounding identity, student voice, critical self-reflection, and recognition of others’ humanity; a flexible and open 'My Presence' feature was added to the TELL environment that allowed students and lecturers to share elements of their backgrounds in a ‘mutually vulnerable’ manner as a way of establishing digital identity and a more ‘human’ presence in the online language learning encounter, serving as a catalyst for the recognition of the ‘other’. Following a qualitative research design, the study adopted an auto-ethnographic approach, complementing the critical inquiry nature embedded into the activity’s practices. The study’s findings provide critical reflections and deductions on the possibilities of leveraging digital human expression within a humanizing pedagogical framework to advance the realization of HP-adoption in language learning and teaching encounters. It was found that the consideration of humanizing pedagogical principles in the design of online learning was more effective when the critical outcomes were explicated to students and lecturers prior to the completion of the activities. The integration of humanizing pedagogy also led to a contextual advancement of ‘affective’ language learning. Upon critical reflection and analysis, student identity and agency can flourish in a technology-enhanced learning environment when humanizing, and critical pedagogy influences the learning design.Keywords: critical reflection, humanizing pedagogy, student identity, technology-enhanced language learning
Procedia PDF Downloads 13611070 Women Perception of Spatial Safety Relating to Working in Historic Cairo’s Retail Street Markets
Authors: Toka M. Abufarag
Abstract:
This research primarily studies the correlation between the existence of different spatial factors in relation to the perception of females towards safely participating in the labor force within selected areas of economic bustle in Historic Cairo. This research measures the following independent variables: (1) perception regarding spatial safety on the street as controlled by street network, (2) vegetation as a facilitator and inhibitor of feeling safe in public places, and (3) outdoor lighting; in relation to the following dependent variable: the perception of females towards safely participating in the labor force in Historic Cairo. The objective of this research lies within adding to the design guidelines of urban design and planning in terms of design recommendations, making them more inclusive, especially those dealing with conserving and enhancing the built environment of old and historic cities. It is hypothesized that a balanced male-to-female ratio in terms of street activity, increased visibility of street in terms of its volume, a decrease in street obstacles, creation of open sighted vegetation, and increased visibility due to proper lighting will show up as positive response relating to the female perception of safety. The site chosen as an area to host this exercise of data collection is Al-Ataba. The site is within the borders of Historic Cairo and was chosen for two reasons: firstly, it provides a major source of economic bustle in Historic Cairo; and secondly, it hosts retail economic activities. This is a cross-sectional study. The data collected will consist of three parts: (1) observations by the researcher regarding the percentage of female participation, as well as perception of females on site, (2) interviews with women working on-site regarding the percentage of female participation, as well as their perception on participating, and (3) an anonymous online survey that studies the perception of a random sample of women towards the site as a place to exist in. The survey will aid in producing design recommendations on how to design an open 'souk' that suits women’s perception of a safe space.Keywords: urban design, women empowerment, safety perception, street markets, historic Cairo
Procedia PDF Downloads 12811069 A Study of Seismic Design Approaches for Steel Sheet Piles: Hydrodynamic Pressures and Reduction Factors Using CFD and Dynamic Calculations
Authors: Helena Pera, Arcadi Sanmartin, Albert Falques, Rafael Rebolo, Xavier Ametller, Heiko Zillgen, Cecile Prum, Boris Even, Eric Kapornyai
Abstract:
Sheet piles system can be an interesting solution when dealing with harbors or quays designs. However, current design methods lead to conservative approaches due to the lack of specific basis of design. For instance, some design features still deal with pseudo-static approaches, although being a dynamic problem. Under this concern, the study particularly focuses on hydrodynamic water pressure definition and stability analysis of sheet pile system under seismic loads. During a seismic event, seawater produces hydrodynamic pressures on structures. Currently, design methods introduce hydrodynamic forces by means of Westergaard formulation and Eurocodes recommendations. They apply constant hydrodynamic pressure on the front sheet pile during the entire earthquake. As a result, the hydrodynamic load may represent 20% of the total forces produced on the sheet pile. Nonetheless, some studies question that approach. Hence, this study assesses the soil-structure-fluid interaction of sheet piles under seismic action in order to evaluate if current design strategies overestimate hydrodynamic pressures. For that purpose, this study performs various simulations by Plaxis 2D, a well-known geotechnical software, and CFD models, which treat fluid dynamic behaviours. Knowing that neither Plaxis nor CFD can resolve a soil-fluid coupled problem, the investigation imposes sheet pile displacements from Plaxis as input data for the CFD model. Then, it provides hydrodynamic pressures under seismic action, which fit theoretical Westergaard pressures if calculated using the acceleration at each moment of the earthquake. Thus, hydrodynamic pressures fluctuate during seismic action instead of remaining constant, as design recommendations propose. Additionally, these findings detect that hydrodynamic pressure contributes a 5% to the total load applied on sheet pile due to its instantaneous nature. These results are in line with other studies that use added masses methods for hydrodynamic pressures. Another important feature in sheet pile design is the assessment of the geotechnical overall stability. It uses pseudo-static analysis since the dynamic analysis cannot provide a safety calculation. Consequently, it estimates the seismic action. One of its relevant factors is the selection of the seismic reduction factor. A huge amount of studies discusses the importance of it but also about all its uncertainties. Moreover, current European standards do not propose a clear statement on that, and they recommend using a reduction factor equal to 1. This leads to conservative requirements when compared with more advanced methods. Under this situation, the study calibrates seismic reduction factor by fitting results from pseudo-static to dynamic analysis. The investigation concludes that pseudo-static analyses could reduce seismic action by 40-50%. These results are in line with some studies from Japanese and European working groups. In addition, it seems suitable to account for the flexibility of the sheet pile-soil system. Nevertheless, the calibrated reduction factor is subjected to particular conditions of each design case. Further research would contribute to specifying recommendations for selecting reduction factor values in the early stages of the design. In conclusion, sheet pile design still has chances for improving its design methodologies and approaches. Consequently, design could propose better seismic solutions thanks to advanced methods such as findings of this study.Keywords: computational fluid dynamics, hydrodynamic pressures, pseudo-static analysis, quays, seismic design, steel sheet pile
Procedia PDF Downloads 14311068 Effective Slab Width for Beam-End Flexural Strength of Composite Frames with Circular-Section Columns
Authors: Jizhi Zhao, Qiliang Zhou, Muxuan Tao
Abstract:
The calculation of the ultimate loading capacity of composite frame beams is an important step in the design of composite frame structural systems. Currently, the plastic limit theory is mainly used for this calculation in the codes adopted by many countries; however, the effective slab width recommended in most codes is based on the elastic theory, which does not accurately reflect the complex stress mechanism at the beam-column joints in the ultimate loading state. Therefore, the authors’ research group put forward the Compression-on-Column-Face mechanism and Tension-on-Transverse-Beam mechanism to explain the mechanism in the ultimate loading state. Formulae are derived for calculating the effective slab width in composite frames with rectangular/square-section columns under ultimate lateral loading. Moreover, this paper discusses the calculation method of the effective slab width for the beam-end flexural strength of composite frames with circular-section columns. The proposed design formula is suitable for exterior and interior joints. Finally, this paper compares the proposed formulae with available formulae in other literature, current design codes, and experimental results, providing the most accurate results to predict the effective slab width and ultimate loading capacity.Keywords: composite frame structure, effective slab width, circular-section column, design formulae, ultimate loading capacity
Procedia PDF Downloads 12811067 Performance of Bored Pile on Alluvial Deposit
Authors: K. Raja Rajan, D. Nagarajan
Abstract:
Bored cast in-situ pile is a popular choice amongst consultant and contractor due to the ability to adjust the pile length suitably in case if any variation found in the actual geological strata. Bangladesh geological strata are dominated by silt content. Design is normally based on field test such as Standard Penetration test N-values. Initially, pile capacity estimated through static formula with co-relation of N-value and angle of internal friction. Initial pile load test was conducted in order to validate the geotechnical parameters assumed in design. Initial pile load test was conducted on 1.5m diameter bored cast in-situ pile. Kentledge method is used to load the pile for 2.5 times of its working load. Initially, safe working load of pile has been estimated as 570T, so test load is fixed to 1425T. Max load applied is 777T for which the settlement reached around 155mm which is more than 10% of diameter of piles. Pile load test results was not satisfactory and compelled to increase the pile length approximately 20% of its total length. Due to unpredictable geotechnical parameters, length of each pile has been increased which is having a major impact on the project cost and as well as in project schedule. Extra bore holes have been planned along with lab test results in order to redefine the assumed geotechnical parameters. This article presents detailed design assumptions of geotechnical parameters in the design stage and the results of pile load test which made to redefine the assumed geotechnical properties.Keywords: end bearing, pile load test, settlement, shaft friction
Procedia PDF Downloads 26711066 Model-Free Distributed Control of Dynamical Systems
Authors: Javad Khazaei, Rick Blum
Abstract:
Distributed control is an efficient and flexible approach for coordination of multi-agent systems. One of the main challenges in designing a distributed controller is identifying the governing dynamics of the dynamical systems. Data-driven system identification is currently undergoing a revolution. With the availability of high-fidelity measurements and historical data, model-free identification of dynamical systems can facilitate the control design without tedious modeling of high-dimensional and/or nonlinear systems. This paper develops a distributed control design using consensus theory for linear and nonlinear dynamical systems using sparse identification of system dynamics. Compared with existing consensus designs that heavily rely on knowing the detailed system dynamics, the proposed model-free design can accurately capture the dynamics of the system with available measurements and input data and provide guaranteed performance in consensus and tracking problems. Heterogeneous damped oscillators are chosen as examples of dynamical system for validation purposes.Keywords: consensus tracking, distributed control, model-free control, sparse identification of dynamical systems
Procedia PDF Downloads 26711065 Ubiquitous Collaborative Learning Activities with Virtual Teams Using CPS Processes to Develop Creative Thinking and Collaboration Skills
Authors: Sitthichai Laisema, Panita Wannapiroon
Abstract:
This study is a research and development which is intended to: 1) design ubiquitous collaborative learning activities with virtual teams using CPS processes to develop creative thinking and collaboration skills, and 2) assess the suitability of the ubiquitous collaborative learning activities. Its methods are divided into 2 phases. Phase 1 is the design of ubiquitous collaborative learning activities with virtual teams using CPS processes, phase 2 is the assessment of the suitability of the learning activities. The samples used in this study are 5 professionals in the field of learning activity design, ubiquitous learning, information technology, creative thinking, and collaboration skills. The results showed that ubiquitous collaborative learning activities with virtual teams using CPS processes to develop creative thinking and collaboration skills consist of 3 main steps which are: 1) preparation before learning, 2) learning activities processing and 3) performance appraisal. The result of the learning activities suitability assessment from the professionals is in the highest level.Keywords: ubiquitous learning, collaborative learning, virtual team, creative problem solving
Procedia PDF Downloads 51611064 Compact Low Loss Design of SOI 1x2 Y-Branch Optical Power Splitter with S-Bend Waveguide and Study on the Variation of Transmitted Power with Various Waveguide Parameters
Authors: Nagaraju Pendam, C. P. Vardhani
Abstract:
A simple technology–compatible design of silicon-on-insulator based 1×2 optical power splitter is proposed. For developing large area Opto-electronic Silicon-on-Insulator (SOI) devices, the power splitter is a key passive device. The SOI rib- waveguide dimensions (height, width, and etching depth, refractive indices, length of waveguide) leading simultaneously to single mode propagation. In this paper a low loss optical power splitter is designed by using R Soft cad tool and simulated by Beam propagation method, here s-bend waveguides proposed. We concentrate changing the refractive index difference, branching angle, width of the waveguide, free space wavelength of the waveguide and observing transmitted power, effective refractive index in the designed waveguide, and choosing the best simulated results to be fabricated on silicon-on insulator platform. In this design 1550 nm free spacing are used.Keywords: beam propagation method, insertion loss, optical power splitter, rib waveguide, transmitted power
Procedia PDF Downloads 66411063 Mechanical Testing of Composite Materials for Monocoque Design in Formula Student Car
Authors: Erik Vassøy Olsen, Hirpa G. Lemu
Abstract:
Inspired by the Formula-1 competition, IMechE (Institute of Mechanical Engineers) and Formula SAE (Society of Mechanical Engineers) organize annual competitions for University and College students worldwide to compete with a single-seat race car they have designed and built. The design of the chassis or the frame is a key component of the competition because the weight and stiffness properties are directly related with the performance of the car and the safety of the driver. In addition, a reduced weight of the chassis has a direct influence on the design of other components in the car. Among others, it improves the power to weight ratio and the aerodynamic performance. As the power output of the engine or the battery installed in the car is limited to 80 kW, increasing the power to weight ratio demands reduction of the weight of the chassis, which represents the major part of the weight of the car. In order to reduce the weight of the car, ION Racing team from the University of Stavanger, Norway, opted for a monocoque design. To ensure fulfilment of the above-mentioned requirements of the chassis, the monocoque design should provide sufficient torsional stiffness and absorb the impact energy in case of a possible collision. The study reported in this article is based on the requirements for Formula Student competition. As part of this study, diverse mechanical tests were conducted to determine the mechanical properties and performances of the monocoque design. Upon a comprehensive theoretical study of the mechanical properties of sandwich composite materials and the requirements of monocoque design in the competition rules, diverse tests were conducted including 3-point bending test, perimeter shear test and test for absorbed energy. The test panels were homemade and prepared with an equivalent size of the side impact zone of the monocoque, i.e. 275 mm x 500 mm so that the obtained results from the tests can be representative. Different layups of the test panels with identical core material and the same number of layers of carbon fibre were tested and compared. Influence of the core material thickness was also studied. Furthermore, analytical calculations and numerical analysis were conducted to check compliance to the stated rules for Structural Equivalency with steel grade SAE/AISI 1010. The test results were also compared with calculated results with respect to bending and torsional stiffness, energy absorption, buckling, etc. The obtained results demonstrate that the material composition and strength of the composite material selected for the monocoque design has equivalent structural properties as a welded frame and thus comply with the competition requirements. The developed analytical calculation algorithms and relations will be useful for future monocoque designs with different lay-ups and compositions.Keywords: composite material, Formula student, ION racing, monocoque design, structural equivalence
Procedia PDF Downloads 50411062 The Performance Evaluation of the Modular Design of Hybrid Wall with Surface Heating and Cooling System
Authors: Selcen Nur Eri̇kci̇ Çeli̇k, Burcu İbaş Parlakyildiz, Gülay Zorer Gedi̇k
Abstract:
Reducing the use of mechanical heating and cooling systems in buildings, which accounts for approximately 30-40% of total energy consumption in the world has a major impact in terms of energy conservation. Formations of buildings that have sustainable and low energy utilization, structural elements with mechanical systems should be evaluated with a holistic approach. In point of reduction of building energy consumption ratio, wall elements that are vertical building elements and have an area broadly (m2) have proposed as a regulation with a different system. In the study, designing surface heating and cooling energy with a hybrid type of modular wall system and the integration of building elements will be evaluated. The design of wall element; - Identification of certain standards in terms of architectural design and size, -Elaboration according to the area where the wall elements (interior walls, exterior walls) -Solution of the joints, -Obtaining the surface in terms of building compatible with both conceptual structural put emphasis on upper stages, these elements will be formed. The durability of the product to the various forces, stability and resistance are so much substantial that are used the establishment of ready-wall element section and the planning of structural design. All created ready-wall alternatives will be paid attention at some parameters; such as adapting to performance-cost by optimum level and size that can be easily processed and reached. The restrictions such as the size of the zoning regulations, building function, structural system, wheelbase that are imposed by building laws, should be evaluated. The building aims to intend to function according to a certain standardization system and construction of wall elements will be used. The scope of performance criteria determined on the wall elements, utilization (operation, maintenance) and renovation phase, alternative material options will be evaluated with interim materials located in the contents. Design, implementation and technical combination of modular wall elements in the use phase and installation details together with the integration of energy saving, heat-saving and useful effects on the environmental aspects will be discussed in detail. As a result, the ready-wall product with surface heating and cooling modules will be created and defined as hybrid wall and will be compared with the conventional system in terms of thermal comfort. After preliminary architectural evaluations, certain decisions for all architectural design processes (pre and post design) such as the implementation and performance in use, maintenance, renewal will be evaluated in the results.Keywords: modular ready-wall element, hybrid, architectural design, thermal comfort, energy saving
Procedia PDF Downloads 25611061 Using Bamboo Structures for Protecting Mangrove Ecosystems: A Nature-Based Approach
Authors: Sourabh Harihar, Henk Jan Verhagen
Abstract:
The nurturing of a mangrove ecosystem requires a protected coastal environment with adequate drainage of the soil substratum. In a conceptual design undertaken for a mangrove rejuvenation project along the eastern coast of Mumbai (India), various engineering alternatives have been thought of as a protective coastal structure and drainage system. One such design uses bamboo-pile walls in creating shielded compartments in the form of various layouts, coupled with bamboo drains. The bamboo-based design is found to be environmentally and economically advantageous over other designs like sand-dikes which are multiple times more expensive. Moreover, employing a natural material such as bamboo helps the structure naturally blend with the developing mangrove habitat, allaying concerns about dismantling the structure post mangrove growth. A cost-minimising and eco-friendly bamboo structure, therefore, promises to pave the way for large rehabilitation projects in future. As mangrove ecosystems in many parts of the world increasingly face the threat of destruction due to urban development and climate change, protective nature-based designs that can be built in a short duration are the need of the hour.Keywords: bamboo, environment, mangrove, rehabilitation
Procedia PDF Downloads 28311060 Unlocking the Puzzle of Borrowing Adult Data for Designing Hybrid Pediatric Clinical Trials
Authors: Rajesh Kumar G
Abstract:
A challenging aspect of any clinical trial is to carefully plan the study design to meet the study objective in optimum way and to validate the assumptions made during protocol designing. And when it is a pediatric study, there is the added challenge of stringent guidelines and difficulty in recruiting the necessary subjects. Unlike adult trials, there is not much historical data available for pediatrics, which is required to validate assumptions for planning pediatric trials. Typically, pediatric studies are initiated as soon as approval is obtained for a drug to be marketed for adults, so with the adult study historical information and with the available pediatric pilot study data or simulated pediatric data, the pediatric study can be well planned. Generalizing the historical adult study for new pediatric study is a tedious task; however, it is possible by integrating various statistical techniques and utilizing the advantage of hybrid study design, which will help to achieve the study objective in a smoother way even with the presence of many constraints. This research paper will explain how well the hybrid study design can be planned along with integrated technique (SEV) to plan the pediatric study; In brief the SEV technique (Simulation, Estimation (using borrowed adult data and applying Bayesian methods)) incorporates the use of simulating the planned study data and getting the desired estimates to Validate the assumptions.This method of validation can be used to improve the accuracy of data analysis, ensuring that results are as valid and reliable as possible, which allow us to make informed decisions well ahead of study initiation. With professional precision, this technique based on the collected data allows to gain insight into best practices when using data from historical study and simulated data alike.Keywords: adaptive design, simulation, borrowing data, bayesian model
Procedia PDF Downloads 7711059 Modeling and Optimization of Algae Oil Extraction Using Response Surface Methodology
Authors: I. F. Ejim, F. L. Kamen
Abstract:
Aims: In this experiment, algae oil extraction with a combination of n-hexane and ethanol was investigated. The effects of extraction solvent concentration, extraction time and temperature on the yield and quality of oil were studied using Response Surface Methodology (RSM). Experimental Design: Optimization of algae oil extraction using Box-Behnken design was used to generate 17 experimental runs in a three-factor-three-level design where oil yield, specific gravity, acid value and saponification value were evaluated as the response. Result: In this result, a minimum oil yield of 17% and maximum of 44% was realized. The optimum values for yield, specific gravity, acid value and saponification value from the overlay plot were 40.79%, 0.8788, 0.5056 mg KOH/g and 180.78 mg KOH/g respectively with desirability of 0.801. The maximum point prediction was yield 40.79% at solvent concentration 66.68 n-hexane, temperature of 40.0°C and extraction time of 4 hrs. Analysis of Variance (ANOVA) results showed that the linear and quadratic coefficient were all significant at p<0.05. The experiment was validated and results obtained were with the predicted values. Conclusion: Algae oil extraction was successfully optimized using RSM and its quality indicated it is suitable for many industrial uses.Keywords: algae oil, response surface methodology, optimization, Box-Bohnken, extraction
Procedia PDF Downloads 33911058 Design of the Intelligent Virtual Learning Coach. A Contextual Learning Approach to Digital Literacy of Senior Learners in the Context of Electronic Health Record (EHR)
Authors: Ilona Buchem, Carolin Gellner
Abstract:
The call for the support of senior learners in the development of digital literacy has become prevalent in recent years, especially in view of the aging societies paired with advances in digitalization in all spheres of life, including e-health. The goal has been to create opportunities for learning that incorporate the use of context in a reflective and dialogical way. Contextual learning has focused on developing skills through the application of authentic problems. While major research efforts in supporting senior learners in developing digital literacy have been invested so far in e-learning, focusing on knowledge acquisition and cognitive tasks, little research exists in reflective mentoring and coaching with the help of pedagogical agents and addressing the contextual dimensions of learning. This paper describes an approach to creating opportunities for senior learners to improve their digital literacy in the authentic context of the electronic health record (EHR) with the support of an intelligent virtual learning coach. The paper focuses on the design of the virtual coach as part of an e-learning system, which was developed in the EPA-Coach project founded by the German Ministry of Education and Research. The paper starts with the theoretical underpinnings of contextual learning and the related design considerations for a virtual learning coach based on previous studies. Since previous research in the area was mostly designed to cater to the needs of younger audiences, the results had to be adapted to the specific needs of senior learners. Next, the paper outlines the stages in the design of the virtual coach, which included the adaptation of the design requirements, the iterative development of the prototypes, the results of the two evaluation studies and how these results were used to improve the design of the virtual coach. The paper then presents the four prototypes of a senior-friendly virtual learning coach, which were designed to represent different preferences related to the visual appearance, the communication and social interaction styles, and the pedagogical roles. The first evaluation of the virtual coach design was an exploratory, qualitative study, which was carried out in October 2020 with eight seniors aged 64 to 78 and included a range of questions about the preferences of senior learners related to the visual design, gender, age, communication and role. Based on the results of the first evaluation, the design was adapted to the preferences of the senior learners and the new versions of prototypes were created to represent two male and two female options of the virtual coach. The second evaluation followed a quantitative approach with an online questionnaire and was conducted in May 2021 with 41 seniors aged 66 to 93 years. Following three research questions, the survey asked about (1) the intention to use, (2) the perceived characteristics, and (3) the preferred communication/interaction style of the virtual coach, i. e. task-oriented, relationship-oriented, or a mix. This paper follows with the discussion of the results of the design process and ends with conclusions and next steps in the development of the virtual coach including recommendations for further research.Keywords: virtual learning coach, virtual mentor, pedagogical agent, senior learners, digital literacy, electronic health records
Procedia PDF Downloads 18011057 Layouting Phase II of New Priok Using Adaptive Port Planning Frameworks
Authors: Mustarakh Gelfi, Tiedo Vellinga, Poonam Taneja, Delon Hamonangan
Abstract:
The development of New Priok/Kalibaru as an expansion terminal of the old port has been being done by IPC (Indonesia Port Cooperation) together with the subsidiary company, Port Developer (PT Pengembangan Pelabuhan Indonesia). As stated in the master plan, from 2 phases that had been proposed, phase I has shown its form and even Container Terminal I has been operated in 2016. It was planned principally, the development will be divided into Phase I (2013-2018) consist of 3 container terminals and 2 product terminals and Phase II (2018-2023) consist of 4 container terminals. In fact, the master plan has to be changed due to some major uncertainties which were escaped in prediction. This study is focused on the design scenario of phase II (2035- onwards) to deal with future uncertainty. The outcome is the robust design of phase II of the Kalibaru Terminal taking into account the future changes. Flexibility has to be a major goal in such a large infrastructure project like New Priok in order to deal and manage future uncertainty. The phasing of project needs to be adapted and re-look frequently before being irrelevant to future challenges. One of the frameworks that have been developed by an expert in port planning is Adaptive Port Planning (APP) with scenario-based planning. The idea behind APP framework is the adaptation that might be needed at any moment as an answer to a challenge. It is a continuous procedure that basically aims to increase the lifespan of waterborne transport infrastructure by increasing flexibility in the planning, contracting and design phases. Other methods used in this study are brainstorming with the port authority, desk study, interview and site visit to the real project. The result of the study is expected to be the insight for the port authority of Tanjung Priok over the future look and how it will impact the design of the port. There will be guidelines to do the design in an uncertain environment as well. Solutions of flexibility can be divided into: 1 - Physical solutions, all the items related hard infrastructure in the projects. The common things in this type of solution are using modularity, standardization, multi-functional, shorter and longer design lifetime, reusability, etc. 2 - Non-physical solutions, usually related to the planning processes, decision making and management of the projects. To conclude, APP framework seems quite robust to deal with the problem of designing phase II of New Priok Project for such a long period.Keywords: Indonesia port, port's design, port planning, scenario-based planning
Procedia PDF Downloads 24011056 Appraisal of the Impact Strength on Mild Steel Cladding Weld Metal Geometry
Authors: Chukwuemeka Daniel Ezeliora, Chukwuebuka Lawrence Ezeliora
Abstract:
The research focused on the appraisal of impact strength on mild steel cladding weld metal geometry. Over the years, poor welding has resulted in failures in engineering components, poor material quality, the collapse of welded materials, and failures in material strength. This is as a result of poor selection and combination of welding input process parameters. The application of the Tungsten Inert Gas (TIG) welding method with weld specimen of length 60; width 40, and thickness of 10 was used for the experiment. A butt joint method was prepared for the welding, and tungsten inert gas welding process was used to perform the twenty (20) experimental runs. A response surface methodology was used to model and to analyze the system. For an adequate polynomial approximation, the experimental design was used to collect the data. The key parameters considered in this work are welding current, gas flow rate, welding speed, and voltage. The range of the input process parameters was selected from the literature and the design. The steps followed to achieve the experimental design and results is the use of response surface method (RSM) implemented in central composite design (CCD) to generate the design matrix, to obtain quadratic model, and evaluate the interactions in the factors as well as optimizing the factors and the response. The result expresses that the best impact strength of the mild steel cladding weld metal geometry is 115.419 Joules. However, it was observed that the result of the input factors is; current 180.4 amp, voltage 23.99 volt, welding speed 142.7 mm.s and gas flow rate 10.8 lit/min as the optimum of the input process parameters. The optimal solution gives a guide for optimal impact strength of the weldment when welding with tungsten inert gas (TIG) under study.Keywords: mild steel, impact strength, response surface, bead geometry, welding
Procedia PDF Downloads 12011055 Optimal Load Factors for Seismic Design of Buildings
Authors: Juan Bojórquez, Sonia E. Ruiz, Edén Bojórquez, David de León Escobedo
Abstract:
A life-cycle optimization procedure to establish the best load factors combinations for seismic design of buildings, is proposed. The expected cost of damage from future earthquakes within the life of the structure is estimated, and realistic cost functions are assumed. The functions include: Repair cost, cost of contents damage, cost associated with loss of life, cost of injuries and economic loss. The loads considered are dead, live and earthquake load. The study is performed for reinforced concrete buildings located in Mexico City. The buildings are modeled as multiple-degree-of-freedom frame structures. The parameter selected to measure the structural damage is the maximum inter-story drift. The structural models are subjected to 31 soft-soil ground motions recorded in the Lake Zone of Mexico City. In order to obtain the annual structural failure rates, a numerical integration method is applied.Keywords: load factors, life-cycle analysis, seismic design, reinforced concrete buildings
Procedia PDF Downloads 61811054 Effect of Different Ground Motion Scaling Methods on Behavior of 40 Story RC Core Wall Building
Authors: Muhammad Usman, Munir Ahmed
Abstract:
The demand of high-rise buildings has grown fast during the past decades. The design of these buildings by using RC core wall have been widespread nowadays in many countries. The RC core wall (RCCW) buildings encompasses central core wall and boundary columns joined through post tension slab at different floor levels. The core wall often provides greater stiffness as compared to the collective stiffness of the boundary columns. Hence, the core wall dominantly resists lateral loading i.e. wind or earthquake load. Non-linear response history analysis (NLRHA) procedure is the finest seismic design procedure of the times for designing high-rise buildings. The modern design tools for nonlinear response history analysis and performance based design has provided more confidence to design these structures for high-rise buildings. NLRHA requires selection and scaling of ground motions to match design spectrum for site specific conditions. Designers use several techniques for scaling ground motion records (time series). Time domain and frequency domain scaling are most commonly used which comprises their own benefits and drawbacks. Due to lengthy process of NLRHA, application of only one technique is conceivable. To the best of author’s knowledge, no consensus on the best procedures for the selection and scaling of the ground motions is available in literature. This research aims to provide the finest ground motion scaling technique specifically for designing 40 story high-rise RCCW buildings. Seismic response of 40 story RCCW building is checked by applying both the frequency domain and time domain scaling. Variable sites are selected in three critical seismic zones of Pakistan. The results indicates that there is extensive variation in seismic response of building for these scaling. There is still a need to build a consensus on the subjected research by investigating variable sites and buildings heights.Keywords: 40-storied RC core wall building, nonlinear response history analysis, ground motions, time domain scaling, frequency domain scaling
Procedia PDF Downloads 13211053 Using Analytical Hierarchy Process and TOPSIS Approaches in Designing a Finite Element Analysis Automation Program
Authors: Ming Wen, Nasim Nezamoddini
Abstract:
Sophisticated numerical simulations like finite element analysis (FEA) involve a complicated process from model setup to post-processing tasks that require replication of time-consuming steps. Utilizing FEA automation program simplifies the complexity of the involved steps while minimizing human errors in analysis set up, calculations, and results processing. One of the main challenges in designing FEA automation programs is to identify user requirements and link them to possible design alternatives. This paper presents a decision-making framework to design a Python based FEA automation program for modal analysis, frequency response analysis, and random vibration fatigue (RVF) analysis procedures. Analytical hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) are applied to evaluate design alternatives considering the feedback received from experts and program users.Keywords: finite element analysis, FEA, random vibration fatigue, process automation, analytical hierarchy process, AHP, TOPSIS, multiple-criteria decision-making, MCDM
Procedia PDF Downloads 11311052 Creating a Rehabilitation Product as an Example of Design Management
Authors: K. Caban-Piaskowska
Abstract:
The aim of the article is to show how the role of a designer has changed, from the point of view of human resources management and thanks to the increased importance of design management, and is to present how a rehabilitation product, through technology approach to designing, becomes a universal product. Designing for the disabled is a very undiscovered area on the pattern-designing market, most often because it is associated with devices which support rehabilitation. In consequence, it means that the realizations have a limited group of receivers and are not that attractive for designers. The relation between using modern design in building rehabilitation devices and increasing the efficiency of treatment and physiotherapy. Using modern technology can have marketing significance. Rehabilitation products designed and produced in a modern way makes an impression that experts and professionals are involved in the lives of the user – patient. In order to illustrate the problem presented above i.e. Creating a rehabilitation product as an example of design management, the case study method was used in the research. The analysis of the case was created on the basis of an interview conducted by the author with a designer who took part in meetings with people who use rehabilitation and their physiotherapists, and created universal products in Poland in the years of 2012 to 2017. Usually, engineers and constructors deal with creating products which remind us of old torture devices, however, they are indestructible in construction. Such image of those products for the disabled clearly indicates that it is a wonderful niche for designers and emphasizes the need to make those products more attractive and innovative. Products for the disabled cannot be limited to rehabilitation equipment only e.g. wheelchairs or standing frames. Introducing the idea of universal designing can significantly broaden the circle of pattern-designing receivers – everyday-use items – with the disabled people. Fulfilling these criteria will decide about the advantage on the competitive market. It is possible due to the usage of the design management concept in the functioning of an organization. Using modern technology and materials in the production of equipment, and changing the role of a designer broadening the circle of receivers by designing a wide use process which makes it possible to use the product by people with various needs. What is more, introducing rehabilitation functions in everyday-use items can also become an innovative accent in designing. In the reality of the market, each group of users can and should be treated as a problem and a realization task.Keywords: design management, innovation, rehabilitation product, universal product
Procedia PDF Downloads 19911051 Multisignature Schemes for Reinforcing Trust in Cloud Software-As-A-Service Services
Authors: Mustapha Hedabou, Ali Azougaghe, Ahmed Bentajer, Hicham Boukhris, Mourad Eddiwani, Zakaria Igarramen
Abstract:
Software-as-a-service (SaaS) is emerging as a dominant approach to delivering software. It encompasses a range of business, technical opportunities, issue, and challenges. Trustiness in the cloud services regarding the security and the privacy of the delivered data is the most critical issue with the SaaS model. In this paper, we survey the security concerns related to the SaaS model, and we propose the design of a trusted SaaS model that gives users more confidence into SaaS services by leveraging a trust in a neutral source code certifying authority. The proposed design is based on the use of the multisignature mechanism for signing the source code of the application service. In our model, the cloud provider acts as a root of trust by ensuring the integrity of the application service when it was running on its platform. The proposed design prevents insider attacks from tampering with application service before and after it was launched in a cloud provider platform.Keywords: cloud computing, SaaS Platform, TPM, trustiness, code source certification, multi-signature schemes
Procedia PDF Downloads 276