Search results for: weather factors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11403

Search results for: weather factors

11283 Factor Influencing the Certification to ISO 9000:2008 among SME in Malaysia

Authors: Dolhadi Bin Zainudin

Abstract:

The study attempts to predict the relationship between influencing factors in the adoption of ISO 9000:2008 and to identify which how these factors play the main role in achieving ISO 9000 standard. A survey using structured questionnaire was employed. A total of 255 respondents from 255 small and medium enterprises participated in this study. With regards to influencing factors, a discriminant analysis was conducted and the results showed that three out of nine critical success factors is statistically significant between ISO 9000:2008 and non-ISO 9000 certified companies which are communication for quality, information and analysis and organizational culture.

Keywords: ISO 9000, quality management, factors, small and medium enterprise, Malaysia, influencing factors

Procedia PDF Downloads 339
11282 Analysis of the Impact of Refractivity on Ultra High Frequency Signal Strength over Gusau, North West, Nigeria

Authors: B. G. Ayantunji, B. Musa, H. Mai-Unguwa, L. A. Sunmonu, A. S. Adewumi, L. Sa'ad, A. Kado

Abstract:

For achieving reliable and efficient communication system, both terrestrial and satellite communication, surface refractivity is critical in planning and design of radio links. This study analyzed the impact of atmospheric parameters on Ultra High Frequency (UHF) signal strength over Gusau, North West, Nigeria. The analysis exploited meteorological data measured simultaneously with UHF signal strength for the month of June 2017 using a Davis Vantage Pro2 automatic weather station and UHF signal strength measuring devices respectively. The instruments were situated at the premise of Federal University, Gusau (6° 78' N, 12° 13' E). The refractivity values were computed using ITU-R model. The result shows that the refractivity value attained the highest value of 366.28 at 2200hr and a minimum value of 350.66 at 2100hr local time. The correlation between signal strength and refractivity is 0.350; Humidity is 0.532 and a negative correlation of -0.515 for temperature.

Keywords: refractivity, UHF (ultra high frequency) signal strength, free space, automatic weather station

Procedia PDF Downloads 200
11281 Listening Anxiety in Iranian EFL learners

Authors: Samaneh serraj

Abstract:

Listening anxiety has a detrimental effect on language learners. Through a qualitative study on Iranian EFL learners several factors were identified as having influence on their listening anxiety. These factors were divided into three categories, i.e. individual factors (nerves and emotionality, using inappropriate strategies and lack of practice), input factors (lack of time to process, lack of visual support, nature of speech and level of difficulty) and environmental factors (instructors, peers and class environment).

Keywords: listening Comprehension, Listening Anxiety, Foreign language learners

Procedia PDF Downloads 472
11280 Evaluation of Simulated Noise Levels through the Analysis of Temperature and Rainfall: A Case Study of Nairobi Central Business District

Authors: Emmanuel Yussuf, John Muthama, John Ng'ang'A

Abstract:

There has been increasing noise levels all over the world in the last decade. Many factors contribute to this increase, which is causing health related effects to humans. Developing countries are not left out of the whole picture as they are still growing and advancing their development. Motor vehicles are increasing on urban roads; there is an increase in infrastructure due to the rising population, increasing number of industries to provide goods and so many other activities. All this activities lead to the high noise levels in cities. This study was conducted in Nairobi’s Central Business District (CBD) with the main objective of simulating noise levels in order to understand the noise exposed to the people within the urban area, in relation to weather parameters namely temperature, rainfall and wind field. The study was achieved using the Neighbourhood Proximity Model and Time Series Analysis, with data obtained from proxies/remotely-sensed from satellites, in order to establish the levels of noise exposed to which people of Nairobi CBD are exposed to. The findings showed that there is an increase in temperature (0.1°C per year) and a decrease in precipitation (40 mm per year), which in comparison to the noise levels in the area, are increasing. The study also found out that noise levels exposed to people in Nairobi CBD were roughly between 61 and 63 decibels and has been increasing, a level which is high and likely to cause adverse physical and psychological effects on the human body in which air temperature, precipitation and wind contribute so much in the spread of noise. As a noise reduction measure, the use of sound proof materials in buildings close to busy roads, implementation of strict laws to most emitting sources as well as further research on the study was recommended. The data used for this study ranged from the year 2000 to 2015, rainfall being in millimeters (mm), temperature in degrees Celsius (°C) and the urban form characteristics being in meters (m).

Keywords: simulation, noise exposure, weather, proxy

Procedia PDF Downloads 380
11279 Analysis and Identification of Trends in Electric Vehicle Crash Data

Authors: Cody Stolle, Mojdeh Asadollahipajouh, Khaleb Pafford, Jada Iwuoha, Samantha White, Becky Mueller

Abstract:

Battery-electric vehicles (BEVs) are growing in sales and popularity in the United States as an alternative to traditional internal combustion engine vehicles (ICEVs). BEVs are generally heavier than corresponding models of ICEVs, with large battery packs located beneath the vehicle floorpan, a “skateboard” chassis, and have front and rear crush space available in the trunk and “frunk” or front trunk. The geometrical and frame differences between the vehicles may lead to incompatibilities with gasoline vehicles during vehicle-to-vehicle crashes as well as run-off-road crashes with roadside barriers, which were designed to handle lighter ICEVs with higher centers-of-mass and with dedicated structural chasses. Crash data were collected from 10 states spanning a five-year period between 2017 and 2021. Vehicle Identification Number (VIN) codes were processed with the National Highway Traffic Safety Administration (NHTSA) VIN decoder to extract BEV models from ICEV models. Crashes were filtered to isolate only vehicles produced between 2010 and 2021, and the crash circumstances (weather, time of day, maximum injury) were compared between BEVs and ICEVs. In Washington, 436,613 crashes were identified, which satisfied the selection criteria, and 3,371 of these crashes (0.77%) involved a BEV. The number of crashes which noted a fire were comparable between BEVs and ICEVs of similar model years (0.3% and 0.33%, respectively), and no differences were discernable for the time of day, weather conditions, road geometry, or other prevailing factors (e.g., run-off-road). However, crashes involving BEVs rose rapidly; 31% of all BEV crashes occurred in just 2021. Results indicate that BEVs are performing comparably to ICEVs, and events surrounding BEV crashes are statistically indistinguishable from ICEV crashes.

Keywords: battery-electric vehicles, transportation safety, infrastructure crashworthiness, run-off-road crashes, ev crash data analysis

Procedia PDF Downloads 89
11278 Prevention and Treatment of Hay Fever Prevalence by Natural Products: A Phytochemistry Study on India and Iran

Authors: Tina Naser Torabi

Abstract:

Prevalence of allergy is affected by different factors according to its base and seasonal weather changes, and it also needs various treatments.Although reasons of allergy existence are not clear but generally, allergens cause reaction between antigen and antibody because of their antigenic traits. In this state, allergens cause immune system to make mistake and identify safe material as threat, therefore function of immune system impaired because of histamine secretion. There are different reasons for allergy, but herbal reasons are on top of the list, although animal causes cannot be ignored. Important point is that allergenic compounds, cause making dedicated antibody, so in general every kind of allergy is different from the other one. Therefore, most of the plants in herbal allergenic category can cause various allergies for human beings, such as respiratory allergies, nutritional allergies, injection allergies, infection allergies, touch allergies, that each of them show different symptoms based on the reason of allergy and also each of them requires different prevention and treatment. Geographical condition is another effective factor in allergy. Seasonal changes, weather condition, herbal coverage variety play important roles in different allergies. It goes without saying that humid climate and herbal coverage variety in different seasons especially spring cause most allergies in human beings in Iran and India that are discussed in this article. These two countries are good choices for allergy prevalence because of their condition, various herbal coverage, human and animal factors. Hay fever is one of the allergies, although the reasons of its prevalence are unknown yet. It is one of the most popular allergies in Iran and India because of geographical, human, animal and herbal factors. Hay fever is on top of the list in these two countries. Significant point about these two countries is that herbal factor is the most important factor in prevalence of hay fever. Variety of herbal coverage especially in spring during herbal pollination is the main reason of hay fever prevalence in these two countries. Based on the research result of Pharmacognosy and Phytochemistry, pollination of some plants in spring is major reason of hay fever prevalence in these countries. If airborne pollens in pollination season enter the human body through air, they will cause allergic reactions in eyes, nasal mucosa, lungs, and respiratory system, and if these particles enter the body of potential person through food, they will cause allergic reactions in mouth, stomach, and other digestive systems. Occasionally, chemical materials produced by human body such as Histamine cause problems like: developing of nasal polyps, nasal blockage, sleep disturbance, risk of asthma developing, blood vasodilation, sneezing, eye tears, itching and swelling of eyes and nasal mucosa, Urticaria, decrease in blood pressure, and rarely trauma, anesthesia, anaphylaxis and finally death. This article is going to study the reasons of hay fever prevalence in Iran and India and presents prevention and treatment Method from Phytochemistry and Pharmocognocy point of view by using local natural products in these two countries.

Keywords: hay fever, India, Iran, natural treatment, phytochemistry

Procedia PDF Downloads 166
11277 Thermal Performance of the Extensive Wetland Green Roofs in Winter in Humid Subtropical Climate

Authors: Yi-Yu Huang, Chien-Kuo Wang, Sreerag Chota Veettil, Hang Zhang, Hu Yike

Abstract:

Regarding the pressing issue of reducing energy consumption and carbon footprint of buildings, past research has focused more on analyzing the thermal performance of the extensive terrestrial green roofs with sedum plants in summer. However, the disadvantages of this type of green roof are relatively limited thermal performance, low extreme weather adaptability, relatively higher demands in maintenance, and lower added value in healing landscape. In view of this, this research aims to develop the extensive wetland green roofs with higher thermal performance, high extreme weather adaptability, low demands in maintenance, and high added value in healing landscape, and to measure its thermal performance for buildings in winter. The following factors are considered including the type and mixing formula of growth medium (light weight soil, akadama, creek gravel, pure water) and the type of aquatic plants. The research adopts a four-stage field experiment conducting on the rooftop of a building in a humid subtropical climate. The results found that emergent (Roundleaf rotala), submerged (Ribbon weed), floating-leaved (Water lily) wetland green roofs had similar thermal performance, and superior over wetland green roof without plant, traditional terrestrial green roof (without plant), and pure water green roof (without plant, nighttime only) in terms of overall passive cooling (8.00C) and thermal insulation (4.50C) effects as well as a reduction in heat amplitude (77-85%) in winter in a humid subtropical climate. The thermal performance of the free-floating (Water hyacinth) wetland green roof is inferior to that of the other three types of wetland green roofs, whether in daytime or nighttime.

Keywords: thermal performance, extensive wetland green roof, Aquatic plant, Winter , Humid subtropical climate

Procedia PDF Downloads 182
11276 Proposal of Innovative Risk Assessment of Ergonomic Factors in the Production of Jet Engines Using AHP (Analytic Hierarchy Process)

Authors: Jose Cristiano Pereira, Gilson Brito Alves Lima

Abstract:

Ergonomics is a key factor affecting the operational safety and quality in the aircraft engine manufacturing industry and evidence shows that the lack of attention to it can increase the risk of accidents. In order to emphasize the importance of ergonomics, this paper systematically reviews the critical processes used in the aircraft engine production industry with focus on the ergonomic factors. about the subject to identify key ergonomic factors. Experts validated the factors and used AHP to rank the factors in order of significance. From the six key risk factors identified, the ones with the highest weight are psychological demand followed by understanding of operational side. These factors suggest that measures must be taken to improve ergonomic factors, quality and safety in the manufacturing of aircraft engines.

Keywords: ergonomics, safety, aviation, aircraft engine production

Procedia PDF Downloads 317
11275 Contribution of Traditional Beliefs, Poverty and Bad Weather Conditions to Social Economic Status and Welfare of Rural Setting: A Case Study for Zingwangwa, Blantyre

Authors: Bright Msukwa

Abstract:

Background: Malawi suffered economic instability, bad weather and massive flooding in the year 2015. A massive flood in the country, mainly in the southern region lead to damage of agriculture products. As a result, one of the heavily affected was Zingwangwa, Blantyre. Methods: We interviewed a selected number of houses residing in donor constructed temporal shelters and those still residing close to the floods prone areas in Zingwangwa, Blantyre. Results: About 67% of the population insisted that they resided on the land, which was prone to the floods as it belonged to their ancestors and their staying was part of preserving ancestral values. The remaining 23% of the population demonstrated economic challenges due to floods that contributed to the damage of their food crops, property and houses. Conclusion: Beliefs can negatively affect economic life improvement if mindsets are not changed among people in the rural area. Recommendation: Improving natural resource management, climate and disaster resilience.

Keywords: economic, belief, walfare, poverty

Procedia PDF Downloads 200
11274 Towards an Effective Approach for Modelling near Surface Air Temperature Combining Weather and Satellite Data

Authors: Nicola Colaninno, Eugenio Morello

Abstract:

The urban environment affects local-to-global climate and, in turn, suffers global warming phenomena, with worrying impacts on human well-being, health, social and economic activities. Physic-morphological features of the built-up space affect urban air temperature, locally, causing the urban environment to be warmer compared to surrounding rural. This occurrence, typically known as the Urban Heat Island (UHI), is normally assessed by means of air temperature from fixed weather stations and/or traverse observations or based on remotely sensed Land Surface Temperatures (LST). The information provided by ground weather stations is key for assessing local air temperature. However, the spatial coverage is normally limited due to low density and uneven distribution of the stations. Although different interpolation techniques such as Inverse Distance Weighting (IDW), Ordinary Kriging (OK), or Multiple Linear Regression (MLR) are used to estimate air temperature from observed points, such an approach may not effectively reflect the real climatic conditions of an interpolated point. Quantifying local UHI for extensive areas based on weather stations’ observations only is not practicable. Alternatively, the use of thermal remote sensing has been widely investigated based on LST. Data from Landsat, ASTER, or MODIS have been extensively used. Indeed, LST has an indirect but significant influence on air temperatures. However, high-resolution near-surface air temperature (NSAT) is currently difficult to retrieve. Here we have experimented Geographically Weighted Regression (GWR) as an effective approach to enable NSAT estimation by accounting for spatial non-stationarity of the phenomenon. The model combines on-site measurements of air temperature, from fixed weather stations and satellite-derived LST. The approach is structured upon two main steps. First, a GWR model has been set to estimate NSAT at low resolution, by combining air temperature from discrete observations retrieved by weather stations (dependent variable) and the LST from satellite observations (predictor). At this step, MODIS data, from Terra satellite, at 1 kilometer of spatial resolution have been employed. Two time periods are considered according to satellite revisit period, i.e. 10:30 am and 9:30 pm. Afterward, the results have been downscaled at 30 meters of spatial resolution by setting a GWR model between the previously retrieved near-surface air temperature (dependent variable), the multispectral information as provided by the Landsat mission, in particular the albedo, and Digital Elevation Model (DEM) from the Shuttle Radar Topography Mission (SRTM), both at 30 meters. Albedo and DEM are now the predictors. The area under investigation is the Metropolitan City of Milan, which covers an area of approximately 1,575 km2 and encompasses a population of over 3 million inhabitants. Both models, low- (1 km) and high-resolution (30 meters), have been validated according to a cross-validation that relies on indicators such as R2, Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). All the employed indicators give evidence of highly efficient models. In addition, an alternative network of weather stations, available for the City of Milano only, has been employed for testing the accuracy of the predicted temperatures, giving and RMSE of 0.6 and 0.7 for daytime and night-time, respectively.

Keywords: urban climate, urban heat island, geographically weighted regression, remote sensing

Procedia PDF Downloads 196
11273 Optimizing Pavement Construction Procedures in the Southern Desert of Libya

Authors: Khlifa El Atrash, Gabriel Assaf

Abstract:

Libya uses a volumetric analysis in designing asphalt mixtures, which can also be upgraded in hot, arid weather. However, in order to be effective, it should include many important aspects which are materials, environment, and method of construction. However, the quality of some roads was below a satisfactory level. This paper examines the factors that contribute to low quality of road performance in Libya. To evaluate these factors, a questionnaire survey and a laboratory comparative study were performed for a few mixes under-represented of temperature and traffic load. In laboratory, rutting test conducted on two different asphalt mixture, these mixes included, an asphalt concrete mix using local aggregate and asphalt binder B(60/70) at the optimum Marshall asphalt content, another mixes designed using Superpave design procedure with the same materials and performance asphalt binder grade PG (70-10). In the survey, the questionnaire was distributed to 55 engineers and specialists in this field. The interview was conducted to a few others, and the factors that were leading to poor performance of asphalt roads were listed as; 1) Owner Experience and technical staff 2) Asphalt characteristics 3) Updating and development of Asphalt Mix Design methods 4) Lack of data collection by authorization Agency 5) Construction and compaction process 6) Mentoring and controlling mixing procedure. Considering and improving these factors will play an important role to improve the pavement performances, longer service life, and lower maintenance costs. This research summarized some recommendations for making asphalt mixtures used in hot, dry areas. Such asphalt mixtures should use asphalt binder which is less affected by pavement temperature change and traffic load. The properties of the mixture, such as durability, deformation, air voids, and performance, largely depend on the type of materials, environment, and mixing method. These properties, in turn, affect the pavement performance.

Keywords: volumetric analysis, pavement performances, hot climate, traffic load, pavement temperature, asphalt mixture, environment, design and construction

Procedia PDF Downloads 274
11272 Factors Impacting Entrepreneurial Intention: A Literature Review

Authors: Abir S. AL-Harrasi, Eyad B. AL-Zadjali, Zahran S. AL-Salti

Abstract:

Entrepreneurship has captured the attention of policy-makers, educators and researchers in the last few decades. It has been regarded as a main driver for economic growth, development and employment generation in many countries worldwide. However, scholars have not agreed on the key factors that impact entrepreneurial intention. This study attempts, through an extensive literature review, to provide a holistic view and a more comprehensive understanding of the key factors that lead university undergraduate students to become entrepreneurs. A systematic literature review is conducted and several scientific articles and reports have been examined. The results of this study indicate that there are four main sets of factors: the personality-traits factors, contextual factors, motivational factors, and personal background factors. This research will serve as a base for future studies and will have valuable implications for policy makers and educators.

Keywords: entrepreneurship, entrepreneurial intention, literature review, economic growth

Procedia PDF Downloads 300
11271 Associated Factors to Depression of the Elderly in Ladboakao Sub-District, Banpong District, Ratchaburi Province, Thailand

Authors: Yadchol Tawetanawanich

Abstract:

Depression of elderly is a mental health problem that impacts tremendously on the elderly themselves, their family, and society. the purposes of this descriptive research were to examine prevalence rate of elderly depression and to study factors related to depression in elderly including 1) individual factors: sex, education, marital status, 2) economic factors: occupation, adequate income 3) health factors: chronic illnesses , disability, 4) social factors: family relationship, community relationship, 5) knowledge of depression, and 6) self-care behavior. The subject in this study included 273 elderly in Ladboakao sub-district, Banpong district, Ratchaburi province, Thailand. Data were collected through questionnaires and were analyzed using percentage, mean, standard deviation, chi-square, and one-way ANOVA. The results of the study revealed that: The prevalence rate of elderly depression were 21.61%, factors included economic factors, health factors, knowledge about depression, and self-care behavior were statistically significant positively related to depression of elderly (p<0.05), but individual factors and social factors were not significantly related to depression. It is also important for nurses to assess factors related to depression of the elderly in order to develop the model of care and use self-care strategies to contribute the positive outcomes.

Keywords: associated factors, depression, elderly, self-care

Procedia PDF Downloads 394
11270 Impact of Geomagnetic Variation over Sub-Auroral Ionospheric Region during High Solar Activity Year 2014

Authors: Arun Kumar Singh, Rupesh M. Das, Shailendra Saini

Abstract:

The present work is an attempt to evaluate the sub-auroral ionospheric behavior under changing space weather conditions especially during high solar activity year 2014. In view of this, the GPS TEC along with Ionosonde data over Indian permanent scientific base 'Maitri', Antarctica (70°46′00″ S, 11°43′56″ E) has been utilized. The results suggested that the nature of ionospheric responses to the geomagnetic disturbances mainly depended upon the status of high latitudinal electro-dynamic processes along with the season of occurrence. Fortunately, in this study, both negative and positive ionospheric impact to the geomagnetic disturbances has been observed in a single year but in different seasons. The study reveals that the combination of equator-ward plasma transportation along with ionospheric compositional changes causes a negative ionospheric impact during summer and equinox seasons. However, the combination of pole-ward contraction of the oval region along with particle precipitation may lead to exhibiting positive ionospheric response during the winter season. Other than this, some Ionosonde based new experimental evidence also provided clear evidence of particle precipitation deep up to the low altitudinal ionospheric heights, i.e., up to E-layer by the sudden and strong appearance of E-layer at 100 km altitudes. The sudden appearance of E-layer along with a decrease in F-layer electron density suggested the dominance of NO⁺ over O⁺ at a considered region under geomagnetic disturbed condition. The strengthening of E-layer is responsible for modification of auroral electrojet and field-aligned current system. The present study provided a good scientific insight on sub-auroral ionospheric to the changing space weather condition.

Keywords: high latitude ionosphere, space weather, geomagnetic storms, sub-storm

Procedia PDF Downloads 171
11269 Biodiversity of Pathogenic and Toxigenic Fungi Associated with Maize Grains Sampled across Egypt

Authors: Yasser Shabana, Khaled Ghoneem, Nehal Arafat, Younes Rashad, Dalia Aseel, Bruce Fitt, Aiming Qi, Benjamine Richard

Abstract:

Providing food for more than 100 million people is one of Egypt's main challenges facing development. The overall goal is to formulate strategies to enhance food security in light of population growth. Two hundred samples of maize grains from 25 governates were collected. For the detection of seed-borne fungi, the deep-freezing blotter method (DFB) and washing method (ISTA 1999) were used. A total of 41 fungal species was recovered from maize seed samples. Weather data from 30 stations scattered all over Egypt and covering the major maize growing areas were obtained. Canonical correspondence analysis of data for the obtained fungal genera with temperature, relative humidity, precipitation, wind speed, or solar radiation revealed that relative humidity, temperature and wind speed were the most influential weather variables.

Keywords: biodiversity, climate change, maize, seed-borne fungi

Procedia PDF Downloads 163
11268 Evaluation of the Factors Affecting Violence Against Women (Case Study: Couples Referring to Family Counseling Centers in Tehran)

Authors: Hassan Manouchehri

Abstract:

The present study aimed to identify and evaluate the factors affecting violence against women. The statistical population included all couples referring to family counseling centers in Tehran due to domestic violence during the past year. A number of 305 people were selected as a statistical sample using simple random sampling and Cochran's formula in unlimited conditions. A researcher-made questionnaire including 110 items was used for data collection. The face validity and content validity of the questionnaire were confirmed by 30 experts and its reliability was obtained above 0.7 for all studied variables in a preliminary test with 30 subjects and it was acceptable. In order to analyze the data, descriptive statistical methods were used with SPSS software version 22 and inferential statistics were used for modeling structural equations in Smart PLS software version 2. Evaluating the theoretical framework and domestic and foreign studies indicated that, in general, four main factors, including cultural and social factors, economic factors, legal factors, as well as medical factors, underlie violence against women. In addition, structural equation modeling findings indicated that cultural and social factors, economic factors, legal factors, and medical factors affect violence against women.

Keywords: violence against women, cultural and social factors, economic factors, legal factors, medical factors

Procedia PDF Downloads 142
11267 A Flexible Bayesian State-Space Modelling for Population Dynamics of Wildlife and Livestock Populations

Authors: Sabyasachi Mukhopadhyay, Joseph Ogutu, Hans-Peter Piepho

Abstract:

We aim to model dynamics of wildlife or pastoral livestock population for understanding of their population change and hence for wildlife conservation and promoting human welfare. The study is motivated by an age-sex structured population counts in different regions of Serengeti-Mara during the period 1989-2003. Developing reliable and realistic models for population dynamics of large herbivore population can be a very complex and challenging exercise. However, the Bayesian statistical domain offers some flexible computational methods that enable the development and efficient implementation of complex population dynamics models. In this work, we have used a novel Bayesian state-space model to analyse the dynamics of topi and hartebeest populations in the Serengeti-Mara Ecosystem of East Africa. The state-space model involves survival probabilities of the animals which further depend on various factors like monthly rainfall, size of habitat, etc. that cause recent declines in numbers of the herbivore populations and potentially threaten their future population viability in the ecosystem. Our study shows that seasonal rainfall is the most important factors shaping the population size of animals and indicates the age-class which most severely affected by any change in weather conditions.

Keywords: bayesian state-space model, Markov Chain Monte Carlo, population dynamics, conservation

Procedia PDF Downloads 211
11266 Preliminary WRF SFIRE Simulations over Croatia during the Split Wildfire in July 2017

Authors: Ivana Čavlina Tomašević, Višnjica Vučetić, Maja Telišman Prtenjak, Barbara Malečić

Abstract:

The Split wildfire on the mid-Adriatic Coast in July 2017 is one of the most severe wildfires in Croatian history, given the size and unexpected fire behavior, and it is used in this research as a case study to run the Weather Research and Forecasting Spread Fire (WRF SFIRE) model. This coupled fire-atmosphere model was successfully run for the first time ever for one Croatian wildfire case. Verification of coupled simulations was possible by using the detailed reconstruction of the Split wildfire. Specifically, precise information on ignition time and location, together with mapped fire progressions and spotting within the first 30 hours of the wildfire, was used for both – to initialize simulations and to evaluate the model’s ability to simulate fire’s propagation and final fire scar. The preliminary simulations were obtained using high-resolution vegetation and topography data for the fire area, additionally interpolated to fire grid spacing at 33.3 m. The results demonstrated that the WRF SFIRE model has the ability to work with real data from Croatia and produce adequate results for forecasting fire spread. As the model in its setup has the ability to include and exclude the energy fluxes between the fire and the atmosphere, this was used to investigate possible fire-atmosphere interactions during the Split wildfire. Finally, successfully coupled simulations provided the first numerical evidence that a wildfire from the Adriatic coast region can modify the dynamical structure of the surrounding atmosphere, which agrees with observations from fire grounds. This study has demonstrated that the WRF SFIRE model has the potential for operational application in Croatia with more accurate fire predictions in the future, which could be accomplished by inserting the higher-resolution input data into the model without interpolation. Possible uses for fire management in Croatia include prediction of fire spread and intensity that may vary under changing weather conditions, available fuels and topography, planning effective and safe deployment of ground and aerial firefighting forces, preventing wildland-urban interface fires, effective planning of evacuation routes etc. In addition, the WRF SFIRE model results from this research demonstrated that the model is important for fire weather research and education purposes in order to better understand this hazardous phenomenon that occurs in Croatia.

Keywords: meteorology, agrometeorology, fire weather, wildfires, couple fire-atmosphere model

Procedia PDF Downloads 92
11265 A Nonlinear Dynamical System with Application

Authors: Abdullah Eqal Al Mazrooei

Abstract:

In this paper, a nonlinear dynamical system is presented. This system is a bilinear class. The bilinear systems are very important kind of nonlinear systems because they have many applications in real life. They are used in biology, chemistry, manufacturing, engineering, and economics where linear models are ineffective or inadequate. They have also been recently used to analyze and forecast weather conditions. Bilinear systems have three advantages: First, they define many problems which have a great applied importance. Second, they give us approximations to nonlinear systems. Thirdly, they have a rich geometric and algebraic structures, which promises to be a fruitful field of research for scientists and applications. The type of nonlinearity that is treated and analyzed consists of bilinear interaction between the states vectors and the system input. By using some properties of the tensor product, these systems can be transformed to linear systems. But, here we discuss the nonlinearity when the state vector is multiplied by itself. So, this model will be able to handle evolutions according to the Lotka-Volterra models or the Lorenz weather models, thus enabling a wider and more flexible application of such models. Here we apply by using an estimator to estimate temperatures. The results prove the efficiency of the proposed system.

Keywords: Lorenz models, nonlinear systems, nonlinear estimator, state-space model

Procedia PDF Downloads 254
11264 Factors Influencing the Decision of International Tourists to Revisit Bangkok,Thailand

Authors: Taksina Bunbut, Kevin Wongleedee

Abstract:

The purposes of this research were to study factors influencing the decision of international tourists to revisit Bangkok, Thailand. A random 200 samples was collected. Half the sample group was male and the other half was female. A questionnaire was used to collect data and small in-depth interviews were also used to get their opinions about importance of tourist decision making factors. The findings revealed that the majority of respondents rated these factors at medium level of importance. The ranking showed that the first three important factors were a safe place to stay, friendly people, and clean food. The three least important factors were a convenience transportation, clean country, and child friendly. In addition there was no significance difference between male and female in their ratings of the factors of influencing the decision of international tourists to revisit Bangkok, Thailand.

Keywords: factors, international tourists, revisit, Thailand

Procedia PDF Downloads 327
11263 Comparative Analysis of Physical Natural Parameters Influencing Baltic Sea Coastal Tourism in the Context of Climate Change

Authors: Akvelina Čuladytė, Inga Dailidienė

Abstract:

Climate change and sustainable development are among the most significant global challenges, directly impacting various economic sectors, including coastal tourism. The United Nations (UN) and its specialized agencies, such as the World Tourism Organization (UNWTO) and the United Nations Convention on the Law of the Sea (UNCLOS), examine coastal tourism from multiple perspectives, emphasizing its economic, social, and environmental importance, as well as the challenges related to sustainability. Sustainability, linked to climate change, is an integral concept requiring a holistic approach to managing natural resources, reducing emissions, protecting ecosystems, and implementing adaptation strategies. Only by integrating these principles can we adapt to the impacts of climate change, reduce the carbon footprint of the tourism sector, and manage tourist flows to prevent excessive strain on marine and coastal ecosystems. Climate change is having an increasing impact on the Baltic Sea region, causing rising temperatures, sea level rise, more frequent extreme weather events, and coastal erosion. These changes can significantly affect the tourism sector, which is important not only economically but also socially. The primary aim of this study is to analyze changes in physical natural parameters (temperature, precipitation, water quality, sea level rise, and coastal erosion) that influence Baltic Sea coastal tourism in order to identify and assess how climate change impacts coastal tourism. The Baltic States, with its long and diverse coastlines, are particularly sensitive to the impacts of climate change, which can influence the geography of coastal tourism. Therefore, the aim is to assess how these factors determine the attractiveness and opportunities for tourism. In studying the effects of climate change on the geography of coastal tourism, methods used in climatology, as well as historical meteorological and hydrological data, are applied. Analyzing historical data on extreme events, such as storms, heatwaves, and floods, helps determine their impact on tourism infrastructure and visitor numbers. Based on the North Atlantic Oscillation (NAO) index, both limiting and enhancing factors for tourism are identified, including the benefits of a longer warm season and the increasing frequency of extreme weather conditions. The expected research results provide insights into how climate change and sustainable development strategies can shape and transform the structure and trends of coastal tourism in the region. The findings indicate that meteorological conditions and climate change play a significant role in regulating tourism flows.

Keywords: coastal tourism, climate change impacts, physical natural parameters, NAO index

Procedia PDF Downloads 10
11262 Comfort in Green: Thermal Performance and Comfort Analysis of Sky Garden, SM City, North EDSA, Philippines

Authors: Raul Chavez Jr.

Abstract:

Green roof's body of knowledge appears to be in its infancy stage in the Philippines. To contribute to its development, this study intends to answer the question: Does the existing green roof in Metro Manila perform well in providing thermal comfort and satisfaction to users? Relatively, this study focuses on thermal sensation and satisfaction of users, surface temperature comparison, weather data comparison of the site (Sky Garden) and local weather station (PAG-ASA), and its thermal resistance capacity. Initially, the researcher conducted a point-in-time survey in parallel with weather data gathering from PAG-ASA and Sky Garden. In line with these, ambient and surface temperature are conducted through the use of a digital anemometer, with humidity and temperature, and non-contact infrared thermometer respectively. Furthermore, to determine the Sky Garden's overall thermal resistance, materials found on site were identified and tabulated based on specified locations. It revealed that the Sky Garden can be considered comfortable based from PMV-PPD Model of ASHRAE Standard 55 having similar results from thermal comfort and thermal satisfaction survey, which is contrary to the actual condition of the Sky Garden by means of a psychrometric chart which falls beyond the contextualized comfort zone. In addition, ground floor benefited the most in terms of lower average ambient temperature and humidity compared to the Sky Garden. Lastly, surface temperature data indicates that the green roof portion obtained the highest average temperature yet performed well in terms of heat resistance compared to other locations. These results provided the researcher valuable baseline information of the actual performance of a certain green roof in Metro Manila that could be vital in locally enhancing the system even further and for future studies.

Keywords: Green Roof, Thermal Analysis, Thermal Comfort, Thermal Performance

Procedia PDF Downloads 170
11261 Heat Accumulation in Soils of Belarus

Authors: Maryna Barushka, Aleh Meshyk

Abstract:

The research analyzes absolute maximum soil temperatures registered at 36 gauge stations in Belarus from 1950 to 2013. The main method applied in the research is cartographic, in particular, trend surface analysis. Warming that had never been so long and intensive before started in 1988. The average temperature in January and February of that year exceeded the norm by 7-7.5 С, in March and April by 3-5С. In general, that year, as well as the year of 2008, happened to be the hottest ones in the whole period of instrumental observation. Yearly average air temperature in Belarus in those years was +8.0-8.2 С, which exceeded the norm by 2.0 – 2.2 С. The warming has been observed so far. The only exception was in 1996 when the yearly average air temperature in Belarus was below normal by 0.5 С. In Belarus the value of trend line of standard temperature deviation in the warmest months (July-August) has been positive for the past 25 years. In 2010 absolute maximum air and soil temperature exceeded the norm at 15 gauge stations in Belarus. The structure of natural processes includes global, regional, and local constituents. Trend surface analysis of the investigated characteristics makes it possible to determine global, regional, and local components. Linear trend surface shows the occurrence of weather deviations on a global scale, outside Belarus. Maximum soil temperature appears to be growing in the south-west direction with the gradient of 5.0 С. It is explained by the latitude factor. Polynomial trend surfaces show regional peculiarities of Belarus. Extreme temperature regime is formed due to some factors. The prevailing one is advection of turbulent flow of the ground layer of the atmosphere. In summer influence of the Azores High producing anticyclones is great. The Gulf Stream current forms the values of temperature trends in a year period. The most intensive flow of the Gulf Stream in the second half of winter and the second half of summer coincides with the periods of maximum temperature trends in Belarus. It is possible to estimate a local component of weather deviations in the analysis of the difference in values of the investigated characteristics and their trend surfaces. Maximum positive deviation (up to +4 С) of averaged soil temperature corresponds to the flat terrain in Pripyat Polesie, Brest Polesie, and Belarusian Poozerie Area. Negative differences correspond to the higher relief which partially compensates extreme heat regime of soils. Another important factor for maximum soil temperature in these areas is peat-bog soils with the least albedo of 8-15%. As yearly maximum soil temperature reaches 40-60 С, this could be both negative and positive factors for Belarus’s environment and economy. High temperature causes droughts resulting in crops dying and soil blowing. On the other hand, vegetation period has lengthened thanks to bigger heat resources, which allows planting such heat-loving crops as melons and grapes with appropriate irrigation. Thus, trend surface analysis allows determining global, regional, and local factors in accumulating heat in the soils of Belarus.

Keywords: soil, temperature, trend surface analysis, warming

Procedia PDF Downloads 134
11260 Bedouin Tents: Sources of Textile Innovation

Authors: Omaymah AlAzhari

Abstract:

Nomadic tribes have always had the need to relocate and build shelters, moving from one site to another in search of food, water, and natural resources. They are affected by weather and seasonal changes and consequently started innovating textiles to build better shelters. Their solutions came from the observation of their natural environment, material, and surroundings. The textile innovation of nomadic tribes has led designers to create environmentally responsive products, such as Ceginskas Lindström’s new self-shading tent membrane developed by her ‘smocking’ technique. ‘AlRahala’ Nomadic Bedouin tribes from the Middle East and North African region have used textiles as a fundamental architectural element in their tent structure, ‘Bayt AlShar’ (House of Hair). The nomadic tribe has innovated their textile to create a fabric that is more suited to change in climatic and weather conditions. Based on the research of existing literature and documents, as well as analysis of photographs and videos, to conclude that the traditional textiles and innovations done by nomadic tribes may be a rich source of information for designers, which can provide innovative solutions for manufacturing modern-day textiles.

Keywords: ‘AlRahala’ nomadic tribes, ‘Bayt AlShar’, tent structure, textile innovation

Procedia PDF Downloads 202
11259 Road Accident Blackspot Analysis: Development of Decision Criteria for Accident Blackspot Safety Strategies

Authors: Tania Viju, Bimal P., Naseer M. A.

Abstract:

This study aims to develop a conceptual framework for the decision support system (DSS), that helps the decision-makers to dynamically choose appropriate safety measures for each identified accident blackspot. An accident blackspot is a segment of road where the frequency of accident occurrence is disproportionately greater than other sections on roadways. According to a report by the World Bank, India accounts for the highest, that is, eleven percent of the global death in road accidents with just one percent of the world’s vehicles. Hence in 2015, the Ministry of Road Transport and Highways of India gave prime importance to the rectification of accident blackspots. To enhance road traffic safety and reduce the traffic accident rate, effectively identifying and rectifying accident blackspots is of great importance. This study helps to understand and evaluate the existing methods in accident blackspot identification and prediction that are used around the world and their application in Indian roadways. The decision support system, with the help of IoT, ICT and smart systems, acts as a management and planning tool for the government for employing efficient and cost-effective rectification strategies. In order to develop a decision criterion, several factors in terms of quantitative as well as qualitative data that influence the safety conditions of the road are analyzed. Factors include past accident severity data, occurrence time, light, weather and road conditions, visibility, driver conditions, junction type, land use, road markings and signs, road geometry, etc. The framework conceptualizes decision-making by classifying blackspot stretches based on factors like accident occurrence time, different climatic and road conditions and suggesting mitigation measures based on these identified factors. The decision support system will help the public administration dynamically manage and plan the necessary safety interventions required to enhance the safety of the road network.

Keywords: decision support system, dynamic management, road accident blackspots, road safety

Procedia PDF Downloads 145
11258 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study

Authors: Kasim Görenekli, Ali Gülbağ

Abstract:

This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.

Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management

Procedia PDF Downloads 19
11257 Technological Developments to Reduce Wind Blade Turbine Levelized Cost of Energy

Authors: Pedro Miguel Cardoso Carneiro, Ricardo André Nunes Borges, João Pedro Soares Loureiro, Hermínio Maio Graça Fernandes

Abstract:

Wind energy has been exponentially growing over the last years and will allow countries to progress regarding the decarbonization objective. In parallel, the maintenance activities have also been increasing in consequence of ageing and deterioration of the wind farms. The time available for wind blade maintenance is given by the weather window that is based upon weather conditions. Most of the wind blade repair and maintenance activities require a narrow window of temperature and humidity. Due to this limitation, the current weather windows result only on approximately 35% days/year are used for maintenance, that takes place mostly during summertime. This limitation creates large economic losses in the energy production of the wind towers, since they can be inoperative or with the energy production output reduced for days or weeks due to existing damages. Another important aspect is that the maintenance costs are higher due to the high standby time and seasonality imposed on the technicians. To reduce the relevant maintenance costs of blades and energy loses some technological developments were carried out to significantly improve this reality. The focus of this activity was to develop a series of key developments to have in the near future a suspended access equipment that can operate in harsh conditions, wind rain, cold/hot environment. To this end we have identified key areas that need to be revised and require new solutions to be found; a habitat system, multi-configurable roof and floor, roof and floor interface to blade, secondary attachment solutions to the blade and to the tower. On this paper we will describe the advances produced during a national R&D project made in partnership with an end-user (Onrope) and a test center (ISQ).

Keywords: wind turbine maintenance, cost reduction, technological innovations, wind turbine blade

Procedia PDF Downloads 95
11256 Air Quality Forecast Based on Principal Component Analysis-Genetic Algorithm and Back Propagation Model

Authors: Bin Mu, Site Li, Shijin Yuan

Abstract:

Under the circumstance of environment deterioration, people are increasingly concerned about the quality of the environment, especially air quality. As a result, it is of great value to give accurate and timely forecast of AQI (air quality index). In order to simplify influencing factors of air quality in a city, and forecast the city’s AQI tomorrow, this study used MATLAB software and adopted the method of constructing a mathematic model of PCA-GABP to provide a solution. To be specific, this study firstly made principal component analysis (PCA) of influencing factors of AQI tomorrow including aspects of weather, industry waste gas and IAQI data today. Then, we used the back propagation neural network model (BP), which is optimized by genetic algorithm (GA), to give forecast of AQI tomorrow. In order to verify validity and accuracy of PCA-GABP model’s forecast capability. The study uses two statistical indices to evaluate AQI forecast results (normalized mean square error and fractional bias). Eventually, this study reduces mean square error by optimizing individual gene structure in genetic algorithm and adjusting the parameters of back propagation model. To conclude, the performance of the model to forecast AQI is comparatively convincing and the model is expected to take positive effect in AQI forecast in the future.

Keywords: AQI forecast, principal component analysis, genetic algorithm, back propagation neural network model

Procedia PDF Downloads 231
11255 The Extent to Which Social Factors Affect Urban Functional Mutations and Transformations

Authors: Skirmante Mozuriunaite

Abstract:

Contemporary metropolitan areas and large cities are dynamic, rapidly growing and continuously changing. Thus, urban transformations and mutations are not a new phenomenon, but rather a continuous process. Basic factors of urban transformation are related to development of technologies, globalisation, lifestyle, etc., which, in combination with local factors, have generated an extremely great variety of urban development conditions. This article discusses the main urbanisation processes in Lithuania during last 50 year period and social factors affecting urban functional mutations.

Keywords: dispersion, functional mutations, urbanization, urban mutations, social factors

Procedia PDF Downloads 528
11254 Personalized Infectious Disease Risk Prediction System: A Knowledge Model

Authors: Retno A. Vinarti, Lucy M. Hederman

Abstract:

This research describes a knowledge model for a system which give personalized alert to users about infectious disease risks in the context of weather, location and time. The knowledge model is based on established epidemiological concepts augmented by information gleaned from infection-related data repositories. The existing disease risk prediction research has more focuses on utilizing raw historical data and yield seasonal patterns of infectious disease risk emergence. This research incorporates both data and epidemiological concepts gathered from Atlas of Human Infectious Disease (AHID) and Centre of Disease Control (CDC) as basic reasoning of infectious disease risk prediction. Using CommonKADS methodology, the disease risk prediction task is an assignment synthetic task, starting from knowledge identification through specification, refinement to implementation. First, knowledge is gathered from AHID primarily from the epidemiology and risk group chapters for each infectious disease. The result of this stage is five major elements (Person, Infectious Disease, Weather, Location and Time) and their properties. At the knowledge specification stage, the initial tree model of each element and detailed relationships are produced. This research also includes a validation step as part of knowledge refinement: on the basis that the best model is formed using the most common features, Frequency-based Selection (FBS) is applied. The portion of the Infectious Disease risk model relating to Person comes out strongest, with Location next, and Weather weaker. For Person attribute, Age is the strongest, Activity and Habits are moderate, and Blood type is weakest. At the Location attribute, General category (e.g. continents, region, country, and island) results much stronger than Specific category (i.e. terrain feature). For Weather attribute, Less Precise category (i.e. season) comes out stronger than Precise category (i.e. exact temperature or humidity interval). However, given that some infectious diseases are significantly more serious than others, a frequency based metric may not be appropriate. Future work will incorporate epidemiological measurements of disease seriousness (e.g. odds ratio, hazard ratio and fatality rate) into the validation metrics. This research is limited to modelling existing knowledge about epidemiology and chain of infection concepts. Further step, verification in knowledge refinement stage, might cause some minor changes on the shape of tree.

Keywords: epidemiology, knowledge modelling, infectious disease, prediction, risk

Procedia PDF Downloads 242