Search results for: service level JEL classification: C53
17241 Value Creation of My Health Bank of National Health Insurance: Service Dominant Logic Perspective
Authors: Yu Hua Yan
Abstract:
Background: This research attempts to extend and apply the concept of service dominant logic on My Health Bank platform, analyzed to find out are there any significant difference in wills to participate (potential factors for value) on the results of value co-creation? Methods: The questionnaires were delivered from August 2017 to October 2017 in hospitals. 167 valid ones were received, with an effective response rate of 98.2%. Results: This research employed the questionnaire method in collecting research data, with patients that have used My Health Bank as objects, to whom questionnaires were sent. Regarding the factors influencing therapeutic effects, in the statistics of capability and interaction, it reached a significant level (p <0.1). Regarding the factors influencing satisfaction on medical service, in the statistics of capability and interaction, it reached a significant level (p <0.001). Conclusion: Regarding the contributions of this research, it is possible to clarify its contents with the studies on value co-creation to enrich the literature of the studies of service dominant logic and value co-creation in Taiwan. Regarding its contribution in practice, the results of this research allows the value advocator – the government, to have a broader view in the consideration of making the policies on value co-creation.Keywords: My Health Bank, interactive, participation, value creation
Procedia PDF Downloads 16317240 Improving Library Service Quality in Local City of Indonesia
Authors: Prima Fithri, Afri Adnan, Verra Syahmer
Abstract:
Library as a public service should be able to provide excellent and quality service. The criteria that should be available in the library is having the collection which relevant, actual and reliable, qualified and professional employee, delivery system that prompt and appropriate as well as supported by proper infrastructure. The aim of this study is to show the performance as an effort to provide quality of services that appropriate with the needs and desires of user. Then, in this research has been carried out the calculation of the gap between the perceptions and expectations of user about the services of the library. The Sevqual and QFD methods are used in this study. Servqual method for measuring the value of the gap that occurs in the dimensions of service quality and QFD method for determine priority repairment that need to be done to improve the quality of services that occur in the dimensions of service quality. From 97 questionaires, shows that value of the gap that occurs in the dimensions of service quality using by Servqual is 27.7% dimensions of responsiveness. It show how much user expectations are not met by the quality of existing services. Construction of the library and standard library becomes priority improvements that need to be done to improve the quality of service that occurs in the dimensions of service quality using the QFD.Keywords: library, service quality, service quality, QFD
Procedia PDF Downloads 57617239 Satellite Imagery Classification Based on Deep Convolution Network
Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu
Abstract:
Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.Keywords: satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization
Procedia PDF Downloads 29917238 Surface Hole Defect Detection of Rolled Sheets Based on Pixel Classification Approach
Authors: Samira Taleb, Sakina Aoun, Slimane Ziani, Zoheir Mentouri, Adel Boudiaf
Abstract:
Rolling is a pressure treatment technique that modifies the shape of steel ingots or billets between rotating rollers. During this process, defects may form on the surface of the rolled sheets and are likely to affect the performance and quality of the finished product. In our study, we developed a method for detecting surface hole defects using a pixel classification approach. This work includes several steps. First, we performed image preprocessing to delimit areas with and without hole defects on the sheet image. Then, we developed the histograms of each area to generate the gray level membership intervals of the pixels that characterize each area. As we noticed an intersection between the characteristics of the gray level intervals of the images of the two areas, we finally performed a learning step based on a series of detection tests to refine the membership intervals of each area, and to choose the defect detection criterion in order to optimize the recognition of the surface hole.Keywords: classification, defect, surface, detection, hole
Procedia PDF Downloads 1517237 Maximizing Customer Service through Logistics Service Support in the Automobile Industry in Ghana
Authors: John M. Frimpong, Matilda K. Owusu-Bio, Caleb Annan
Abstract:
Business today is highly competitive, and the automobile industry is no exception. Therefore, it is necessary to determine the customer value and service quality measures that lead to customer satisfaction which in turn lead to customer loyalty. However, in the automobile industry, the role of logistics service support in these relationships cannot be undermined. It could be inferred that logistics service supports and its management has a direct correlation with customer service and or service quality. But this is not always the same for all industries. Therefore, this study was to investigate how automobile companies implement the concept of customer service through logistics service supports. In order to ascertain this, two automobile companies in Ghana were selected, and these are Toyota Ghana Limited and Mechanical Lloyd Company Ltd. The study developed a conceptual model to depict the study’s objectives from which questionnaires were developed from for data collection. Respondents were made up of customers and staff of the two companies. The findings of the study revealed that the automobile industry partly attributes their customer satisfaction to the customer value, service quality or customer value. It shows a positive relationship between logistics service supports and service quality and customer value. However, the results indicate that customer satisfaction is not predicted by logistics services. This implies that in the automobile industry, it is not always the case that when customer service is implemented through logistics service supports, it leads to customer satisfaction. Therefore, there is the need for all players and stakeholders in the automobile industry investigate other factors which help to increase customer satisfaction in addition to logistics service supports. It is recommended that logistics service supports should be geared towards meeting customer expectations and not just based on the organization’s standards and procedures. It is necessary to listen to the voice of the customer to tailor the service package to suit the needs and expectations of the customer.Keywords: customer loyalty, customer satisfaction, customer service, customer value, logistics service supports
Procedia PDF Downloads 49317236 Examination of the Relationship between Managerial Competence and Job Satisfacti̇on and Career Satisfacti̇on in Sports Managers'
Authors: Omur F. Karakullukcu, Bilal Okudan, Yusuf Can
Abstract:
The aim of this study is to analyze sports managers’ managerial competence levels and job satisfaction’s correlation with career satisfaction. In the study, it has also been analyzed if there is any significant difference in sports managers’ managerial competence, job and career satisfaction in terms of gender, age, duty status, year of service and level of education. 256 sports managers, who work at department of sports service’s central and field organization at least as a chief in the manager position, have been chosen with random sampling method and they have voluntarily participated in the study. In the study, the managerial competence scale which was developed by Cetinkaya (2009), job satisfaction scale developed by Weiss at al.(1967) and Career Satisfaction Scale developed by Vatansever (2008) have been used as a data collection tool. The questionnaire form used as a data collection tool in the study includes a personal information form consisting of 5 questions; questioning gender, age, duty status, years of service and level of education. In the study, pearson correlation analysis has been used for defining the correlation of managerial competence levels, job satisfaction, and career satisfaction levels of sports managers. T-test analysis for binary grouping and anova analysis for more than binary groups have been used in the level of self-efficacy, collective and managerial competence in terms of the participants’ duty status, year of service and level of education. According to the research results, it has been found that there is a positive correlation between sports managers’ managerial competence levels, job satisfaction, and career satisfaction levels. Also, the results show that there is a significant difference in managerial competence levels, job satisfaction and career satisfaction of sports managers in terms of duty status, year of service and level of education; however, the results reveal that there is no significant difference in terms of age groups and gender.Keywords: sports manager, managerial competence, job satisfaction, career satisfaction
Procedia PDF Downloads 26317235 Priority Analysis for Korean Disaster Mental Health Service Model Using Analytic Hierarchy Process
Authors: Myung-Soo Lee, Sun-Jin Jo, Kyoung-Sae Na, Joo-Eon Park
Abstract:
Early intervention after a disaster is important for recovery of disaster victims and each country has its own professional mental health service system such as Disaster Psychiatric Assistant Team in Japan and Crisis Counseling Program in the USA. The purpose of this study was to determine key prior components of the Korean Disaster Psychiatric Assistant Team (K-DPAT) for building up Korean disaster mental health service system. We conducted an Analytic Hierarchy Process(AHP) with disaster mental health experts using pairwise comparison questionnaire which compares the relative importance of the key components of Korean disaster mental health service system. Forty-one experts answered the first online survey, and among them, 36 responded to the second. Ten experts were participated in panel meeting and discussed the results of the survey and AHP process. Participants decided the relative importance of the Korean disaster mental health service system regarding initial professional intervention as follows. K-DPAT could be organized at a national level (43.0%) or regional level (40.0%). K-DPAT members should be managed (59.0%) and educated (52.1%) by national level than regional or local level. K-DPAT should be organized independent of the preexisting mental health system (70.1%). Funding for K-DPAT should be from the Ministry of Public Safety and the system could be managed by Ministry of Health (65.8%). Experts agreed K-DPAT leader is suitable for key decision maker for most types of disaster except infectious disease. We expect new model for disaster mental health services can improve insufficiency of the system such as fragmentation and decrease the unmet needs of early professional intervention for the disaster victims.Keywords: analytic hierarchy process, decision making, disaster, DPAT, mental health services
Procedia PDF Downloads 27417234 On a Single Server Queue with Arrivals in Batches of Variable Size, Generalized Coxian-2 Service and Compulsory Server Vacations
Authors: Kailash C. Madan
Abstract:
We study the steady state behaviour of a batch arrival single server queue in which the first service with general service times is compulsory and the second service with general service times is optional. We term such a two phase service as generalized Coxian-2 service. Just after completion of a service the server must take a vacation of random length of time with general vacation times. We obtain steady state probability generating functions for the queue size as well as the steady state mean queue size at a random epoch of time in explicit and closed forms. Some particular cases of interest including some known results have been derived.Keywords: batch arrivals, compound Poisson process, generalized Coxian-2 service, steady state
Procedia PDF Downloads 45417233 Performance Analysis of Artificial Neural Network Based Land Cover Classification
Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul
Abstract:
Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.Keywords: landcover classification, artificial neural network, remote sensing, SPOT 5
Procedia PDF Downloads 54517232 Quality Management and Service Organization
Authors: Fatemeh Khalili Varnamkhasti
Abstract:
In recent times, there has been a notable shift in the application of Total Quality Management (TQM) from manufacturing to service organizations, prompting numerous studies on the subject. TQM has firmly established itself across various sectors, emerging as an approach to process improvement, waste reduction, business optimization, and quality performance. Many researchers and academics have recognized the relevance of TQM for sustainable competitive advantage, particularly in service organizations. In light of this, the purpose of this research study is to explore the applicability of TQM within the service framework. The study delves into existing literature on TQM in service organizations and examines the reasons for its occasional shortcomings. Ultimately, the paper provides systematic guidelines for the effective implementation of TQM in service organizations. The findings of this study offer a much-improved understanding of TQM and its practices, shedding light on the evolution of service organizations. Additionally, the study highlights key insights from recent research on TQM in service organizations and proposes a ten-step approach for the successful implementation of TQM in the service sector. This framework aims to provide service managers and professionals with a comprehensive understanding of TQM fundamentals and encourages a deeper exploration of TQM theory.Keywords: quality, control, service, management, teamwork
Procedia PDF Downloads 5117231 Qualitative Study of Pre-Service Teachers' Imagined Professional World vs. Real Experiences of In-Service Teachers
Authors: Masood Monjezi
Abstract:
The English teachers’ pedagogical identity construction is the way teachers go through the process of becoming teachers and how they maintain their teaching selves. The pedagogical identity of teachers is influenced by several factors within the individual and the society. The purpose of this study was to compare the imagined social world of the pre-service teachers with the real experiences the in-service teachers had in the context of Iran to see how prepared the pre-service teachers are with a view to their identity being. This study used a qualitative approach to collection and analysis of the data. Structured and semi-structured interviews, focus groups and process logs were used to collect the data. Then, using open coding, the data were analyzed. The findings showed that the imagined world of the pre-service teachers partly corresponded with the real world experiences of the in-service teachers leaving the pre-service teachers unprepared for their real world teaching profession. The findings suggest that the current approaches to English teacher training are in need of modification to better prepare the pre-service teachers for the future that expects them.Keywords: imagined professional world, in-service teachers, pre-service teachers, real experiences, community of practice, identity
Procedia PDF Downloads 33517230 Earphone Style Wearable Device for Automatic Guidance Service with Position Sensing
Authors: Dawei Cai
Abstract:
This paper describes a design of earphone style wearable device that may provide an automatic guidance service for visitors. With both position information and orientation information obtained from NFC and terrestrial magnetism sensor, a high level automatic guide service may be realized. To realize the service, a algorithm for position detection using the packet from NFC tags, and developed an algorithm to calculate the device orientation based on the data from acceleration and terrestrial magnetism sensors called as MEMS. If visitors want to know some explanation about an exhibit in front of him, what he has to do is only move to the object and stands for a moment. The identification program will automatically recognize the status based on the information from NFC and MEMS, and start playing explanation content about the exhibit. This service should be useful for improving the understanding of the exhibition items and bring more satisfactory visiting experience without less burden.Keywords: wearable device, MEMS sensor, ubiquitous computing, NFC
Procedia PDF Downloads 23817229 HD-WSComp: Hypergraph Decomposition for Web Services Composition Based on QoS
Authors: Samah Benmerbi, Kamal Amroun, Abdelkamel Tari
Abstract:
The increasing number of Web service (WS)providers throughout the globe, have produced numerous Web services providing the same or similar functionality. Therefore, there is a need of tools developing the best answer of queries by selecting and composing services with total transparency. This paper reviews various QoS based Web service selection mechanisms and architectures which facilitate qualitatively optimal selection, in other fact Web service composition is required when a request cannot be fulfilled by a single web service. In such cases, it is preferable to integrate existing web services to satisfy user’s request. We introduce an automatic Web service composition method based on hypergraph decomposition using hypertree decomposition method. The problem of selection and the composition of the web services is transformed into a resolution in a hypertree by exploring the relations of dependency between web services to get composite web service via employing an execution order of WS satisfying global request.Keywords: web service, web service selection, web service composition, QoS, hypergraph decomposition, BE hypergraph decomposition, hypertree resolution
Procedia PDF Downloads 50817228 Scene Classification Using Hierarchy Neural Network, Directed Acyclic Graph Structure, and Label Relations
Authors: Po-Jen Chen, Jian-Jiun Ding, Hung-Wei Hsu, Chien-Yao Wang, Jia-Ching Wang
Abstract:
A more accurate scene classification algorithm using label relations and the hierarchy neural network was developed in this work. In many classification algorithms, it is assumed that the labels are mutually exclusive. This assumption is true in some specific problems, however, for scene classification, the assumption is not reasonable. Because there are a variety of objects with a photo image, it is more practical to assign multiple labels for an image. In this paper, two label relations, which are exclusive relation and hierarchical relation, were adopted in the classification process to achieve more accurate multiple label classification results. Moreover, the hierarchy neural network (hierarchy NN) is applied to classify the image and the directed acyclic graph structure is used for predicting a more reasonable result which obey exclusive and hierarchical relations. Simulations show that, with these techniques, a much more accurate scene classification result can be achieved.Keywords: convolutional neural network, label relation, hierarchy neural network, scene classification
Procedia PDF Downloads 45617227 Towards Real-Time Classification of Finger Movement Direction Using Encephalography Independent Components
Authors: Mohamed Mounir Tellache, Hiroyuki Kambara, Yasuharu Koike, Makoto Miyakoshi, Natsue Yoshimura
Abstract:
This study explores the practicality of using electroencephalographic (EEG) independent components to predict eight-direction finger movements in pseudo-real-time. Six healthy participants with individual-head MRI images performed finger movements in eight directions with two different arm configurations. The analysis was performed in two stages. The first stage consisted of using independent component analysis (ICA) to separate the signals representing brain activity from non-brain activity signals and to obtain the unmixing matrix. The resulting independent components (ICs) were checked, and those reflecting brain-activity were selected. Finally, the time series of the selected ICs were used to predict eight finger-movement directions using Sparse Logistic Regression (SLR). The second stage consisted of using the previously obtained unmixing matrix, the selected ICs, and the model obtained by applying SLR to classify a different EEG dataset. This method was applied to two different settings, namely the single-participant level and the group-level. For the single-participant level, the EEG dataset used in the first stage and the EEG dataset used in the second stage originated from the same participant. For the group-level, the EEG datasets used in the first stage were constructed by temporally concatenating each combination without repetition of the EEG datasets of five participants out of six, whereas the EEG dataset used in the second stage originated from the remaining participants. The average test classification results across datasets (mean ± S.D.) were 38.62 ± 8.36% for the single-participant, which was significantly higher than the chance level (12.50 ± 0.01%), and 27.26 ± 4.39% for the group-level which was also significantly higher than the chance level (12.49% ± 0.01%). The classification accuracy within [–45°, 45°] of the true direction is 70.03 ± 8.14% for single-participant and 62.63 ± 6.07% for group-level which may be promising for some real-life applications. Clustering and contribution analyses further revealed the brain regions involved in finger movement and the temporal aspect of their contribution to the classification. These results showed the possibility of using the ICA-based method in combination with other methods to build a real-time system to control prostheses.Keywords: brain-computer interface, electroencephalography, finger motion decoding, independent component analysis, pseudo real-time motion decoding
Procedia PDF Downloads 13817226 Empirical Investigation of Antecedents of Perceived Recovery Service Quality: Evidence from Retail Banking in United Arab Emirates
Authors: Vimi Jham
Abstract:
The banking sector has undergone tremendous change in all forms of service it provides to its customers. The efforts of the banks is to avoid customer defection and lead to customer satisfaction. The purpose of the study was to examine the linkages among the constructs such as customer perceived service quality, perceived service recovery quality and customer satisfaction in the banking industry. The moderating effect of negative brand perception due to service failure on recovery satisfaction were investigated. Random sampling methods are used to draw the sample from the population. Data was collected from 262 banking customers and were analyzed with the help of structural equation modelling approach using Smart PLS to understand the relationship among variables being studied. The results of the study contribute to the research by proving that customer service recovery satisfaction is dependent on customer perceived service quality and the moderating effect of negative brand perception due to service failure was insignificant.Keywords: service recovery satisfaction, perceived service recovery quality, perceived service quality, structural equation modelling
Procedia PDF Downloads 28217225 Effective Parameter Selection for Audio-Based Music Mood Classification for Christian Kokborok Song: A Regression-Based Approach
Authors: Sanchali Das, Swapan Debbarma
Abstract:
Music mood classification is developing in both the areas of music information retrieval (MIR) and natural language processing (NLP). Some of the Indian languages like Hindi English etc. have considerable exposure in MIR. But research in mood classification in regional language is very less. In this paper, powerful audio based feature for Kokborok Christian song is identified and mood classification task has been performed. Kokborok is an Indo-Burman language especially spoken in the northeastern part of India and also some other countries like Bangladesh, Myanmar etc. For performing audio-based classification task, useful audio features are taken out by jMIR software. There are some standard audio parameters are there for the audio-based task but as known to all that every language has its unique characteristics. So here, the most significant features which are the best fit for the database of Kokborok song is analysed. The regression-based model is used to find out the independent parameters that act as a predictor and predicts the dependencies of parameters and shows how it will impact on overall classification result. For classification WEKA 3.5 is used, and selected parameters create a classification model. And another model is developed by using all the standard audio features that are used by most of the researcher. In this experiment, the essential parameters that are responsible for effective audio based mood classification and parameters that do not significantly change for each of the Christian Kokborok songs are analysed, and a comparison is also shown between the two above model.Keywords: Christian Kokborok song, mood classification, music information retrieval, regression
Procedia PDF Downloads 22017224 Simulation of Pedestrian Service Time at Different Delay Times
Authors: Imran Badshah
Abstract:
Pedestrian service time reflects the performance of the facility, and it’s a key parameter to analyze the capability of facilities provided to serve pedestrians. The level of service of pedestrians (LOS) mainly depends on pedestrian time and safety. The pedestrian time utilized by taking a service is mainly influenced by the number of available services and the time utilized by each pedestrian in receiving a service; that is called a delay time. In this paper, we analyzed the simulated pedestrian service time with different delay times. A simulation is performed in AnyLogic by developing a model that reflects the real scenario of pedestrian services such as ticket machine gates at rail stations, airports, shopping malls, and cinema halls. The simulated pedestrian time is determined for various delay values. The simulated result shows how pedestrian time changes with the delay pattern. The histogram and time plot graph of a model gives the mean, maximum and minimum values of the pedestrian time. This study helps us to check the behavior of pedestrian time at various services such as subway stations, airports, shopping malls, and cinema halls.Keywords: agent-based simulation, anylogic model, pedestrian behavior, time delay
Procedia PDF Downloads 20917223 DOS and DDOS Attacks
Authors: Amin Hamrahi, Niloofar Moghaddam
Abstract:
Denial of Service is for denial-of-service attack, a type of attack on a network that is designed to bring the network to its knees by flooding it with useless traffic. Denial of Service (DoS) attacks have become a major threat to current computer networks. Many recent DoS attacks were launched via a large number of distributed attacking hosts in the Internet. These attacks are called distributed denial of service (DDoS) attacks. To have a better understanding on DoS attacks, this article provides an overview on existing DoS and DDoS attacks and major defense technologies in the Internet.Keywords: denial of service, distributed denial of service, traffic, flooding
Procedia PDF Downloads 39017222 Internet Usage Behavior on Mobile Phones of the Faculty of Management Science Students at Suan Sunandha Rajabhat University
Authors: Arpapron Phokajang
Abstract:
The objectives of this research were to study the internet usage, including; date, time, description of using service, network service, telephone charge, and to study the internet usage behavior on mobile phones of the Faculty of Management Science students at Suan Sunandha Rajabhat University. The samples consisted of 395 students from the Faculty of Management Science. Questionnaires were used for collecting the data. Descriptive statistics used in this research including percentage, mean, and standard deviation. The findings of this research found that most respondents were female, aged between 21 and 25 years old, used the monthly AIS network service calls on Monday to Friday around 6.01-12.00 p.m., the internet usage behavior on mobile phones for entertainment was found in the highest level in all aspects, and education, business and commerce, and communication were found in the moderate level and using the internet to watch YouTube in the highest level also.Keywords: faculty of management science, internet usage behavior, mobile phones, Suan Sunandha Rajabhat University
Procedia PDF Downloads 23817221 A Review: Detection and Classification Defects on Banana and Apples by Computer Vision
Authors: Zahow Muoftah
Abstract:
Traditional manual visual grading of fruits has been one of the agricultural industry’s major challenges due to its laborious nature as well as inconsistency in the inspection and classification process. The main requirements for computer vision and visual processing are some effective techniques for identifying defects and estimating defect areas. Automated defect detection using computer vision and machine learning has emerged as a promising area of research with a high and direct impact on the visual inspection domain. Grading, sorting, and disease detection are important factors in determining the quality of fruits after harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have used computer vision to evaluate the quality level of fruits during post-harvest. Many studies have been conducted to identify diseases and pests that affect the fruits of agricultural crops. However, most previous studies concentrated solely on the diagnosis of a lesion or disease. This study focused on a comprehensive study to identify pests and diseases of apple and banana fruits using detection and classification defects on Banana and Apples by Computer Vision. As a result, the current article includes research from these domains as well. Finally, various pattern recognition techniques for detecting apple and banana defects are discussed.Keywords: computer vision, banana, apple, detection, classification
Procedia PDF Downloads 10517220 COVID-19 Detection from Computed Tomography Images Using UNet Segmentation, Region Extraction, and Classification Pipeline
Authors: Kenan Morani, Esra Kaya Ayana
Abstract:
This study aimed to develop a novel pipeline for COVID-19 detection using a large and rigorously annotated database of computed tomography (CT) images. The pipeline consists of UNet-based segmentation, lung extraction, and a classification part, with the addition of optional slice removal techniques following the segmentation part. In this work, a batch normalization was added to the original UNet model to produce lighter and better localization, which is then utilized to build a full pipeline for COVID-19 diagnosis. To evaluate the effectiveness of the proposed pipeline, various segmentation methods were compared in terms of their performance and complexity. The proposed segmentation method with batch normalization outperformed traditional methods and other alternatives, resulting in a higher dice score on a publicly available dataset. Moreover, at the slice level, the proposed pipeline demonstrated high validation accuracy, indicating the efficiency of predicting 2D slices. At the patient level, the full approach exhibited higher validation accuracy and macro F1 score compared to other alternatives, surpassing the baseline. The classification component of the proposed pipeline utilizes a convolutional neural network (CNN) to make final diagnosis decisions. The COV19-CT-DB dataset, which contains a large number of CT scans with various types of slices and rigorously annotated for COVID-19 detection, was utilized for classification. The proposed pipeline outperformed many other alternatives on the dataset.Keywords: classification, computed tomography, lung extraction, macro F1 score, UNet segmentation
Procedia PDF Downloads 13017219 The Use of Layered Neural Networks for Classifying Hierarchical Scientific Fields of Study
Authors: Colin Smith, Linsey S Passarella
Abstract:
Due to the proliferation and decentralized nature of academic publication, no widely accepted scheme exists for organizing papers by their scientific field of study (FoS) to the author’s best knowledge. While many academic journals require author provided keywords for papers, these keywords range wildly in scope and are not consistent across papers, journals, or field domains, necessitating alternative approaches to paper classification. Past attempts to perform field-of-study (FoS) classification on scientific texts have largely used a-hierarchical FoS schemas or ignored the schema’s inherently hierarchical structure, e.g. by compressing the structure into a single layer for multi-label classification. In this paper, we introduce an application of a Layered Neural Network (LNN) to the problem of performing supervised hierarchical classification of scientific fields of study (FoS) on research papers. In this approach, paper embeddings from a pretrained language model are fed into a top-down LNN. Beginning with a single neural network (NN) for the highest layer of the class hierarchy, each node uses a separate local NN to classify the subsequent subfield child node(s) for an input embedding of concatenated paper titles and abstracts. We compare our LNN-FOS method to other recent machine learning methods using the Microsoft Academic Graph (MAG) FoS hierarchy and find that the LNN-FOS offers increased classification accuracy at each FoS hierarchical level.Keywords: hierarchical classification, layer neural network, scientific field of study, scientific taxonomy
Procedia PDF Downloads 13217218 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering
Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel
Abstract:
Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.Keywords: classification, data mining, spam filtering, naive bayes, decision tree
Procedia PDF Downloads 40917217 An Investigation into Fraud Detection in Financial Reporting Using Sugeno Fuzzy Classification
Authors: Mohammad Sarchami, Mohsen Zeinalkhani
Abstract:
Always, financial reporting system faces some problems to win public ear. The increase in the number of fraud and representation, often combined with the bankruptcy of large companies, has raised concerns about the quality of financial statements. So, investors, legislators, managers, and auditors have focused on significant fraud detection or prevention in financial statements. This article aims to investigate the Sugeno fuzzy classification to consider fraud detection in financial reporting of accepted firms by Tehran stock exchange. The hypothesis is: Sugeno fuzzy classification may detect fraud in financial reporting by financial ratio. Hypothesis was tested using Matlab software. Accuracy average was 81/80 in Sugeno fuzzy classification; so the hypothesis was confirmed.Keywords: fraud, financial reporting, Sugeno fuzzy classification, firm
Procedia PDF Downloads 24717216 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases
Authors: Hao-Hsiang Ku, Ching-Ho Chi
Abstract:
Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.Keywords: Hadoop, NoSQL, ontology, back propagation neural network, high distributed file system
Procedia PDF Downloads 26117215 The Investigation on Pre-Service Teachers' Critical Thinking Dispositions in Terms of Several Variables
Authors: Cüneyit Akar, Mustafa Başaran, Ufuk Uluçınar
Abstract:
The purpose of this research is to examine the critical thinking dispositions of pre-service teachers in terms of several variables. In the line of this aim, we have investigated what their levels of critical thinking dispositions and whether there is any significant different in their critical thinking dispositions. Also, we have examined the relations between their critical thinking dispositions and their parents’ education statues, the number of their siblings, family income levels, and their religiosity level. 202 pre-service teachers who are studying at different departments at faculty of education at Uşak University participated in this research. In study, critical thinking dispositions scale by one of researchers was utilized and its validity and reliability was performed. The findings indicate that the level of their critical thinking dispositions was found to be .376 (arithmetic mean). On the other hand, we found that there is no significant difference in terms of their gender and the department at which they are studying. Furthermore, although there aren’t significant relationships between critical thinking dispositions and their mother education statues, their income levels, their religiosity levels and the number of their siblings; there is any significant positively at low level the relation between thinking dispositions and father educational statues. The findings obtained will be discussed together with literature and other research’ results.Keywords: preservice teachers, critical thinking dispositions, pedagogy, education
Procedia PDF Downloads 49417214 Effect of Personality Traits on Classification of Political Orientation
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
Today as in the other domains, there are an enormous number of political transcripts available in the Web which is waiting to be mined and used for various purposes such as statistics and recommendations. Therefore, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do the automatic classification are based on different features such as Linguistic. Considering the ideology differences between Liberals and Conservatives, in this paper, the effect of Personality Traits on political orientation classification is studied. This is done by considering the correlation between LIWC features and the BIG Five Personality Traits. Several experiments are conducted on Convote U.S. Congressional-Speech dataset with seven benchmark classification algorithms. The different methodologies are applied on selecting different feature sets that constituted by 8 to 64 varying number of features. While Neuroticism is obtained to be the most differentiating personality trait on classification of political polarity, when its top 10 representative features are combined with several classification algorithms, it outperformed the results presented in previous research.Keywords: politics, personality traits, LIWC, machine learning
Procedia PDF Downloads 49417213 Improving Human Resources Management in Indian Civil Service
Authors: Anant Deogaonkar, Archana Nanoty
Abstract:
The term civil service plays a vital role in functioning of any government. In today’s modern era of globalization civil services essentially contribute for the success of the good governance system. The civil service in India refers to the body of government officials employed in civil occupations that are neither political nor judicial. The Indian Civil Services were created to foster the idea of unity in diversity with the expectation of giving continuity and change in administration independent of the political scenario and turmoil affecting the country. The civil service is an integral part of administration and the structures of administration to determine the way civil service functions. The concept of good governance necessarily precludes the effective human resource management ensuring the root level reach of the good governance. The serious matter of concern is the element of change. The civil service in general has maintained status quo instead of sweeping changes in social and economic scenario. One may disagree for this but it is a fact on the street that the Indian civil service was not able to deliver up to the expectations of the people and was lacking on the service front. The effective management of human resources at civil service needs to be prioritized and will form a key factor in successful delivery of the desired results may be in minimum duration. This paper focuses on the various ways of effective management of human resources in civil services. It also highlights the importance of improvement in human resource management in civil services with the detailed discussion of positives and negatives if any of the human resource management in civil services.Keywords: civil services, human resources management, India, governance
Procedia PDF Downloads 31617212 Delivering User Context-Sensitive Service in M-Commerce: An Empirical Assessment of the Impact of Urgency on Mobile Service Design for Transactional Apps
Authors: Daniela Stephanie Kuenstle
Abstract:
Complex industries such as banking or insurance experience slow growth in mobile sales. While today’s mobile applications are sophisticated and enable location based and personalized services, consumers prefer online or even face-to-face services to complete complex transactions. A possible reason for this reluctance is that the provided service within transactional mobile applications (apps) does not adequately correspond to users’ needs. Therefore, this paper examines the impact of the user context on mobile service (m-service) in m-commerce. Motivated by the potential which context-sensitive m-services hold for the future, the impact of temporal variations as a dimension of user context, on m-service design is examined. In particular, the research question asks: Does consumer urgency function as a determinant of m-service composition in transactional apps by moderating the relation between m-service type and m-service success? Thus, the aim is to explore the moderating influence of urgency on m-service types, which includes Technology Mediated Service and Technology Generated Service. While mobile applications generally comprise features of both service types, this thesis discusses whether unexpected urgency changes customer preferences for m-service types and how this consequently impacts the overall m-service success, represented by purchase intention, loyalty intention and service quality. An online experiment with a random sample of N=1311 participants was conducted. Participants were divided into four treatment groups varying in m-service types and urgency level. They were exposed to two different urgency scenarios (high/ low) and two different app versions conveying either technology mediated or technology generated service. Subsequently, participants completed a questionnaire to measure the effectiveness of the manipulation as well as the dependent variables. The research model was tested for direct and moderating effects of m-service type and urgency on m-service success. Three two-way analyses of variance confirmed the significance of main effects, but demonstrated no significant moderation of urgency on m-service types. The analysis of the gathered data did not confirm a moderating effect of urgency between m-service type and service success. Yet, the findings propose an additive effects model with the highest purchase and loyalty intention for Technology Generated Service and high urgency, while Technology Mediated Service and low urgency demonstrate the strongest effect for service quality. The results also indicate an antagonistic relation between service quality and purchase intention depending on the level of urgency. Although a confirmation of the significance of this finding is required, it suggests that only service convenience, as one dimension of mobile service quality, delivers conditional value under high urgency. This suggests a curvilinear pattern of service quality in e-commerce. Overall, the paper illustrates the complex interplay of technology, user variables, and service design. With this, it contributes to a finer-grained understanding of the relation between m-service design and situation dependency. Moreover, the importance of delivering situational value with apps depending on user context is emphasized. Finally, the present study raises the demand to continue researching the impact of situational variables on m-service design in order to develop more sophisticated m-services.Keywords: mobile consumer behavior, mobile service design, mobile service success, self-service technology, situation dependency, user-context sensitivity
Procedia PDF Downloads 267