Search results for: random parameters
10541 Bayesian Meta-Analysis to Account for Heterogeneity in Studies Relating Life Events to Disease
Authors: Elizabeth Stojanovski
Abstract:
Associations between life events and various forms of cancers have been identified. The purpose of a recent random-effects meta-analysis was to identify studies that examined the association between adverse events associated with changes to financial status including decreased income and breast cancer risk. The same association was studied in four separate studies which displayed traits that were not consistent between studies such as the study design, location and time frame. It was of interest to pool information from various studies to help identify characteristics that differentiated study results. Two random-effects Bayesian meta-analysis models are proposed to combine the reported estimates of the described studies. The proposed models allow major sources of variation to be taken into account, including study level characteristics, between study variance, and within study variance and illustrate the ease with which uncertainty can be incorporated using a hierarchical Bayesian modelling approach.Keywords: random-effects, meta-analysis, Bayesian, variation
Procedia PDF Downloads 16010540 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest
Procedia PDF Downloads 23210539 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder
Authors: Dua Hişam, Serhat İkizoğlu
Abstract:
Identifying the problem behind balance disorder is one of the most interesting topics in the medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three machine learning (ML) models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest Classifier (RF) was the most accurate model.Keywords: vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting
Procedia PDF Downloads 7010538 Influence of the Line Parameters in Transmission Line Fault Location
Authors: Marian Dragomir, Alin Dragomir
Abstract:
In the paper, two fault location algorithms are presented for transmission lines which use the line parameters to estimate the distance to the fault. The first algorithm uses only the measurements from one end of the line and the positive and zero sequence parameters of the line, while the second one uses the measurements from both ends of the line and only the positive sequence parameters of the line. The algorithms were tested using a transmission grid transposed in MATLAB. In a first stage it was established a fault location base line, where the algorithms mentioned above estimate the fault locations using the exact line parameters. After that, the positive and zero sequence resistance and reactance of the line were calculated again for different ground resistivity values and then the fault locations were estimated again in order to compare the results with the base line results. The results show that the algorithm which uses the zero sequence impedance of the line is the most sensitive to the line parameters modifications. The other algorithm is less sensitive to the line parameters modification.Keywords: estimation algorithms, fault location, line parameters, simulation tool
Procedia PDF Downloads 35710537 Thermodynamics of Random Copolymers in Solution
Authors: Maria Bercea, Bernhard A. Wolf
Abstract:
The thermodynamic behavior for solutions of poly (methyl methacrylate-ran-t-butyl methacrylate) of variable composition as compared with the corresponding homopolymers was investigated by light scattering measurements carried out for dilute solutions and vapor pressure measurements of concentrated solutions. The complex dependencies of the Flory Huggins interaction parameter on concentration and copolymer composition in solvents of different polarity (toluene and chloroform) can be understood by taking into account the ability of the polymers to rearrange in a response to changes in their molecular surrounding. A recent unified thermodynamic approach was used for modeling the experimental data, being able to describe the behavior of the different solutions by means of two adjustable parameters, one representing the effective number of solvent segments and another one accounting for the interactions between the components. Thus, it was investigated how the solvent quality changes with the composition of the copolymers through the Gibbs energy of mixing as a function of polymer concentration. The largest reduction of the Gibbs energy at a given composition of the system was observed for the best solvent. The present investigation proves that the new unified thermodynamic approach is a general concept applicable to homo- and copolymers, independent of the chain conformation or shape, molecular and chemical architecture of the components and of other dissimilarities, such as electrical charges.Keywords: random copolymers, Flory Huggins interaction parameter, Gibbs energy of mixing, chemical architecture
Procedia PDF Downloads 28110536 Number of Parameters of Anantharam's Model with Single-Input Single-Output Case
Authors: Kazuyoshi Mori
Abstract:
In this paper, we consider the parametrization of Anantharam’s model within the framework of the factorization approach. In the parametrization, we investigate the number of required parameters of Anantharam’s model. We consider single-input single-output systems in this paper. By the investigation, we find three cases that are (1) there exist plants which require only one parameter and (2) two parameters, and (3) the number of parameters is at most three.Keywords: linear systems, parametrization, coprime factorization, number of parameters
Procedia PDF Downloads 21410535 Fast Bayesian Inference of Multivariate Block-Nearest Neighbor Gaussian Process (NNGP) Models for Large Data
Authors: Carlos Gonzales, Zaida Quiroz, Marcos Prates
Abstract:
Several spatial variables collected at the same location that share a common spatial distribution can be modeled simultaneously through a multivariate geostatistical model that takes into account the correlation between these variables and the spatial autocorrelation. The main goal of this model is to perform spatial prediction of these variables in the region of study. Here we focus on a geostatistical multivariate formulation that relies on sharing common spatial random effect terms. In particular, the first response variable can be modeled by a mean that incorporates a shared random spatial effect, while the other response variables depend on this shared spatial term, in addition to specific random spatial effects. Each spatial random effect is defined through a Gaussian process with a valid covariance function, but in order to improve the computational efficiency when the data are large, each Gaussian process is approximated to a Gaussian random Markov field (GRMF), specifically to the block nearest neighbor Gaussian process (Block-NNGP). This approach involves dividing the spatial domain into several dependent blocks under certain constraints, where the cross blocks allow capturing the spatial dependence on a large scale, while each individual block captures the spatial dependence on a smaller scale. The multivariate geostatistical model belongs to the class of Latent Gaussian Models; thus, to achieve fast Bayesian inference, it is used the integrated nested Laplace approximation (INLA) method. The good performance of the proposed model is shown through simulations and applications for massive data.Keywords: Block-NNGP, geostatistics, gaussian process, GRMF, INLA, multivariate models.
Procedia PDF Downloads 9810534 Analytical and Statistical Study of the Parameters of Expansive Soil
Authors: A. Medjnoun, R. Bahar
Abstract:
The disorders caused by the shrinking-swelling phenomenon are prevalent in arid and semi-arid in the presence of swelling clay. This soil has the characteristic of changing state under the effect of water solicitation (wetting and drying). A set of geotechnical parameters is necessary for the characterization of this soil type, such as state parameters, physical and chemical parameters and mechanical parameters. Some of these tests are very long and some are very expensive, hence the use or methods of predictions. The complexity of this phenomenon and the difficulty of its characterization have prompted researchers to use several identification parameters in the prediction of swelling potential. This document is an analytical and statistical study of geotechnical parameters affecting the potential of swelling clays. This work is performing on a database obtained from investigations swelling Algerian soil. The obtained observations have helped us to understand the soil swelling structure and its behavior.Keywords: analysis, estimated model, parameter identification, swelling of clay
Procedia PDF Downloads 41710533 A Data-Mining Model for Protection of FACTS-Based Transmission Line
Authors: Ashok Kalagura
Abstract:
This paper presents a data-mining model for fault-zone identification of flexible AC transmission systems (FACTS)-based transmission line including a thyristor-controlled series compensator (TCSC) and unified power-flow controller (UPFC), using ensemble decision trees. Given the randomness in the ensemble of decision trees stacked inside the random forests model, it provides an effective decision on the fault-zone identification. Half-cycle post-fault current and voltage samples from the fault inception are used as an input vector against target output ‘1’ for the fault after TCSC/UPFC and ‘1’ for the fault before TCSC/UPFC for fault-zone identification. The algorithm is tested on simulated fault data with wide variations in operating parameters of the power system network, including noisy environment providing a reliability measure of 99% with faster response time (3/4th cycle from fault inception). The results of the presented approach using the RF model indicate the reliable identification of the fault zone in FACTS-based transmission lines.Keywords: distance relaying, fault-zone identification, random forests, RFs, support vector machine, SVM, thyristor-controlled series compensator, TCSC, unified power-flow controller, UPFC
Procedia PDF Downloads 42410532 A Comparative Study on Sampling Techniques of Polynomial Regression Model Based Stochastic Free Vibration of Composite Plates
Authors: S. Dey, T. Mukhopadhyay, S. Adhikari
Abstract:
This paper presents an exhaustive comparative investigation on sampling techniques of polynomial regression model based stochastic natural frequency of composite plates. Both individual and combined variations of input parameters are considered to map the computational time and accuracy of each modelling techniques. The finite element formulation of composites is capable to deal with both correlated and uncorrelated random input variables such as fibre parameters and material properties. The results obtained by Polynomial regression (PR) using different sampling techniques are compared. Depending on the suitability of sampling techniques such as 2k Factorial designs, Central composite design, A-Optimal design, I-Optimal, D-Optimal, Taguchi’s orthogonal array design, Box-Behnken design, Latin hypercube sampling, sobol sequence are illustrated. Statistical analysis of the first three natural frequencies is presented to compare the results and its performance.Keywords: composite plate, natural frequency, polynomial regression model, sampling technique, uncertainty quantification
Procedia PDF Downloads 51410531 Gaussian Probability Density for Forest Fire Detection Using Satellite Imagery
Authors: S. Benkraouda, Z. Djelloul-Khedda, B. Yagoubi
Abstract:
we present a method for early detection of forest fires from a thermal infrared satellite image, using the image matrix of the probability of belonging. The principle of the method is to compare a theoretical mathematical model to an experimental model. We considered that each line of the image matrix, as an embodiment of a non-stationary random process. Since the distribution of pixels in the satellite image is statistically dependent, we divided these lines into small stationary and ergodic intervals to characterize the image by an adequate mathematical model. A standard deviation was chosen to generate random variables, so each interval behaves naturally like white Gaussian noise. The latter has been selected as the mathematical model that represents a set of very majority pixels, which we can be considered as the image background. Before modeling the image, we made a few pretreatments, then the parameters of the theoretical Gaussian model were extracted from the modeled image, these settings will be used to calculate the probability of each interval of the modeled image to belong to the theoretical Gaussian model. The high intensities pixels are regarded as foreign elements to it, so they will have a low probability, and the pixels that belong to the background image will have a high probability. Finally, we did present the reverse of the matrix of probabilities of these intervals for a better fire detection.Keywords: forest fire, forest fire detection, satellite image, normal distribution, theoretical gaussian model, thermal infrared matrix image
Procedia PDF Downloads 14310530 Parameters Estimation of Multidimensional Possibility Distributions
Authors: Sergey Sorokin, Irina Sorokina, Alexander Yazenin
Abstract:
We present a solution to the Maxmin u/E parameters estimation problem of possibility distributions in m-dimensional case. Our method is based on geometrical approach, where minimal area enclosing ellipsoid is constructed around the sample. Also we demonstrate that one can improve results of well-known algorithms in fuzzy model identification task using Maxmin u/E parameters estimation.Keywords: possibility distribution, parameters estimation, Maxmin u\E estimator, fuzzy model identification
Procedia PDF Downloads 47010529 Study of Quantum Lasers of Random Trimer Barrier AlxGa1-xAs Superlattices
Authors: Bentata Samir, Bendahma Fatima
Abstract:
We have numerically studied the random trimer barrier AlxGa1-xAs superlattices (RTBSL). Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that the barriers of one kind appear in triply. An explicit formula is given for evaluating the transmission coefficient of superlattices (SL's) in intentional correlated disorder. We have specially investigated the effect of aluminum concentration on the laser wavelength. We discuss the impact of the aluminum concentration associated with the structure profile on the laser wavelengths.Keywords: superlattices, transfer matrix method, transmission coefficient, quantum laser
Procedia PDF Downloads 49210528 Anisotropic Total Fractional Order Variation Model in Seismic Data Denoising
Authors: Jianwei Ma, Diriba Gemechu
Abstract:
In seismic data processing, attenuation of random noise is the basic step to improve quality of data for further application of seismic data in exploration and development in different gas and oil industries. The signal-to-noise ratio of the data also highly determines quality of seismic data. This factor affects the reliability as well as the accuracy of seismic signal during interpretation for different purposes in different companies. To use seismic data for further application and interpretation, we need to improve the signal-to-noise ration while attenuating random noise effectively. To improve the signal-to-noise ration and attenuating seismic random noise by preserving important features and information about seismic signals, we introduce the concept of anisotropic total fractional order denoising algorithm. The anisotropic total fractional order variation model defined in fractional order bounded variation is proposed as a regularization in seismic denoising. The split Bregman algorithm is employed to solve the minimization problem of the anisotropic total fractional order variation model and the corresponding denoising algorithm for the proposed method is derived. We test the effectiveness of theproposed method for synthetic and real seismic data sets and the denoised result is compared with F-X deconvolution and non-local means denoising algorithm.Keywords: anisotropic total fractional order variation, fractional order bounded variation, seismic random noise attenuation, split Bregman algorithm
Procedia PDF Downloads 20710527 Multi-Objective Random Drift Particle Swarm Optimization Algorithm Based on RDPSO and Crowding Distance Sorting
Authors: Yiqiong Yuan, Jun Sun, Dongmei Zhou, Jianan Sun
Abstract:
In this paper, we presented a Multi-Objective Random Drift Particle Swarm Optimization algorithm (MORDPSO-CD) based on RDPSO and crowding distance sorting to improve the convergence and distribution with less computation cost. MORDPSO-CD makes the most of RDPSO to approach the true Pareto optimal solutions fast. We adopt the crowding distance sorting technique to update and maintain the archived optimal solutions. Introducing the crowding distance technique into MORDPSO can make the leader particles find the true Pareto solution ultimately. The simulation results reveal that the proposed algorithm has better convergence and distributionKeywords: multi-objective optimization, random drift particle swarm optimization, crowding distance sorting, pareto optimal solution
Procedia PDF Downloads 25510526 Node Optimization in Wireless Sensor Network: An Energy Approach
Authors: Y. B. Kirankumar, J. D. Mallapur
Abstract:
Wireless Sensor Network (WSN) is an emerging technology, which has great invention for various low cost applications both for mass public as well as for defence. The wireless sensor communication technology allows random participation of sensor nodes with particular applications to take part in the network, which results in most of the uncovered simulation area, where fewer nodes are located at far distances. The drawback of such network would be that the additional energy is spent by the nodes located in a pattern of dense location, using more number of nodes for a smaller distance of communication adversely in a region with less number of nodes and additional energy is again spent by the source node in order to transmit a packet to neighbours, thereby transmitting the packet to reach the destination. The proposed work is intended to develop Energy Efficient Node Placement Algorithm (EENPA) in order to place the sensor node efficiently in simulated area, where all the nodes are equally located on a radial path to cover maximum area at equidistance. The total energy consumed by each node compared to random placement of nodes is less by having equal burden on fewer nodes of far location, having distributed the nodes in whole of the simulation area. Calculating the network lifetime also proves to be efficient as compared to random placement of nodes, hence increasing the network lifetime, too. Simulation is been carried out in a qualnet simulator, results are obtained on par with random placement of nodes with EENP algorithm.Keywords: energy, WSN, wireless sensor network, energy approach
Procedia PDF Downloads 31310525 Modeling Of The Random Impingement Erosion Due To The Impact Of The Solid Particles
Authors: Siamack A. Shirazi, Farzin Darihaki
Abstract:
Solid particles could be found in many multiphase flows, including transport pipelines and pipe fittings. Such particles interact with the pipe material and cause erosion which threats the integrity of the system. Therefore, predicting the erosion rate is an important factor in the design and the monitor of such systems. Mechanistic models can provide reliable predictions for many conditions while demanding only relatively low computational cost. Mechanistic models utilize a representative particle trajectory to predict the impact characteristics of the majority of the particle impacts that cause maximum erosion rate in the domain. The erosion caused by particle impacts is not only due to the direct impacts but also random impingements. In the present study, an alternative model has been introduced to describe the erosion due to random impingement of particles. The present model provides a realistic trend for erosion with changes in the particle size and particle Stokes number. The present model is examined against the experimental data and CFD simulation results and indicates better agreement with the data incomparison to the available models in the literature.Keywords: erosion, mechanistic modeling, particles, multiphase flow, gas-liquid-solid
Procedia PDF Downloads 16910524 Change Point Detection Using Random Matrix Theory with Application to Frailty in Elderly Individuals
Authors: Malika Kharouf, Aly Chkeir, Khac Tuan Huynh
Abstract:
Detecting change points in time series data is a challenging problem, especially in scenarios where there is limited prior knowledge regarding the data’s distribution and the nature of the transitions. We present a method designed for detecting changes in the covariance structure of high-dimensional time series data, where the number of variables closely matches the data length. Our objective is to achieve unbiased test statistic estimation under the null hypothesis. We delve into the utilization of Random Matrix Theory to analyze the behavior of our test statistic within a high-dimensional context. Specifically, we illustrate that our test statistic converges pointwise to a normal distribution under the null hypothesis. To assess the effectiveness of our proposed approach, we conduct evaluations on a simulated dataset. Furthermore, we employ our method to examine changes aimed at detecting frailty in the elderly.Keywords: change point detection, hypothesis tests, random matrix theory, frailty in elderly
Procedia PDF Downloads 5610523 Mechanical-Reliability Coupling for a Bearing Capacity Assessment of Shallow Foundations
Authors: Amal Hentati, Mbarka Selmi, Tarek Kormi, Julien Baroth, Barthelemy Harthong
Abstract:
The impact of uncertainties on the performance assessment of shallow foundations is often significant. The need of the geotechnical engineers to a more objective and rigorous description of soil variations permitting to quantify these uncertainties and to incorporate them into calculation methods led to the development of reliability approaches. In this context, a mechanical-reliability coupling was developed in this paper, using a program coded in Matlab and the finite element software Abaqus, for the bearing capacity assessment of shallow foundations. The reliability analysis, based on the finite element method, assumed both soil cohesion and friction angle as uncertain parameters characterized by normal or lognormal probability distributions. The inherent spatial variability of both soil properties was, then, taken into account using 1D stationary random fields. The application of the proposed methodology to a shallow foundation subjected to a centered vertical loading permitted to highlight the proposed process interest. Findings proved the insufficiency of the conventional approach to predict the foundation failure and a high sensitivity of the ultimate loads to the soil properties uncertainties, mainly those related to the friction angle, was noted. Moreover, an asymmetry of both displacement and velocity fields was obtained.Keywords: mechanical-reliability coupling, finite element method, shallow foundation, random fields, spatial variability
Procedia PDF Downloads 66110522 Designing Stochastic Non-Invasively Applied DC Pulses to Suppress Tremors in Multiple Sclerosis by Computational Modeling
Authors: Aamna Lawrence, Ashutosh Mishra
Abstract:
Tremors occur in 60% of the patients who have Multiple Sclerosis (MS), the most common demyelinating disease that affects the central and peripheral nervous system, and are the primary cause of disability in young adults. While pharmacological agents provide minimal benefits, surgical interventions like Deep Brain Stimulation and Thalamotomy are riddled with dangerous complications which make non-invasive electrical stimulation an appealing treatment of choice for dealing with tremors. Hence, we hypothesized that if the non-invasive electrical stimulation parameters (mainly frequency) can be computed by mathematically modeling the nerve fibre to take into consideration the minutest details of the axon morphologies, tremors due to demyelination can be optimally alleviated. In this computational study, we have modeled the random demyelination pattern in a nerve fibre that typically manifests in MS using the High-Density Hodgkin-Huxley model with suitable modifications to account for the myelin. The internode of the nerve fibre in our model could have up to ten demyelinated regions each having random length and myelin thickness. The arrival time of action potentials traveling the demyelinated and the normally myelinated nerve fibre between two fixed points in space was noted, and its relationship with the nerve fibre radius ranging from 5µm to 12µm was analyzed. It was interesting to note that there were no overlaps between the arrival time for action potentials traversing the demyelinated and normally myelinated nerve fibres even when a single internode of the nerve fibre was demyelinated. The study gave us an opportunity to design DC pulses whose frequency of application would be a function of the random demyelination pattern to block only the delayed tremor-causing action potentials. The DC pulses could be delivered to the peripheral nervous system non-invasively by an electrode bracelet that would suppress any shakiness beyond it thus paving the way for wearable neuro-rehabilitative technologies.Keywords: demyelination, Hodgkin-Huxley model, non-invasive electrical stimulation, tremor
Procedia PDF Downloads 13010521 Rural Development through Women Participation in Livestock Care and Management in District Faisalabad
Authors: Arfan Riasat, M. Iqbal Zafar, Gulfam Riasat
Abstract:
Pakistani women actively participate in livestock management activities, along with their normal domestic chores. The study was designed to measure the position and contribution of rural women, their constraints in livestock management activities and mainly how the rural women contribute for development in the district Faisalabad. It was envisioned that women participation in livestock activities have rarely been investigated. A multistage random sampling technique was used to collect the data from Tehsil Summandry of the district selected at random. Two union councils were taken by using simple random sampling technique. Four Chak (village) from each union council were selected at random and fifteen woman were further selected randomly from each selected chak. The results show that a vast majority of women were illiterate, having annual family income of one to two lac. They are living in joint family system. Their main occupation is agriculture and they spend long hours in whole livestock related activities to support their families. A large proportion of the respondents reported that they had to face problems and constraints in livestock activities in the context of decision making, medication, awareness, training along with social and economic issues. Analysis indicated that education level of women, income of household, age were significantly associated with level of participation. Women participation in livestock activities increased production and they were involved in income generating activities for better economic conditions of their families.Keywords: women, participation, livestock, management, rural development
Procedia PDF Downloads 40510520 Designing Inventory System with Constrained by Reducing Ordering Cost, Lead Time and Lost Sale Rate and Considering Random Disturbance in Ordering Quantity
Authors: Arezoo Heidary, Abolfazl Mirzazadeh, Aref Gholami-Qadikolaei
Abstract:
In the business environment it is very common that a lot received may not be equal to quantity ordered. in this work, a random disturbance in a received quantity is considered. It is assumed a maximum allowable limit for storage space and inventory investment.The impact of lead time and ordering cost reductions once they act dependently is also investigated. Further, considering a mixture of back order and lost sales for allowable shortage system, the effect of investment on reducing lost sale rate is analyzed. For the proposed control system, a Lagrangian method is applied in order to solve the problem and an algorithmic procedure is utilized to achieve optimal solution with the global minimum expected cost. Finally, proves on concavity and convexity of the model in the decision variables are shown.Keywords: stochastic inventory system, lead time, ordering cost, lost sale rate, inventory constraints, random disturbance
Procedia PDF Downloads 41910519 Relevant LMA Features for Human Motion Recognition
Authors: Insaf Ajili, Malik Mallem, Jean-Yves Didier
Abstract:
Motion recognition from videos is actually a very complex task due to the high variability of motions. This paper describes the challenges of human motion recognition, especially motion representation step with relevant features. Our descriptor vector is inspired from Laban Movement Analysis method. We propose discriminative features using the Random Forest algorithm in order to remove redundant features and make learning algorithms operate faster and more effectively. We validate our method on MSRC-12 and UTKinect datasets.Keywords: discriminative LMA features, features reduction, human motion recognition, random forest
Procedia PDF Downloads 19710518 The Use of Random Set Method in Reliability Analysis of Deep Excavations
Authors: Arefeh Arabaninezhad, Ali Fakher
Abstract:
Since the deterministic analysis methods fail to take system uncertainties into account, probabilistic and non-probabilistic methods are suggested. Geotechnical analyses are used to determine the stress and deformation caused by construction; accordingly, many input variables which depend on ground behavior are required for geotechnical analyses. The Random Set approach is an applicable reliability analysis method when comprehensive sources of information are not available. Using Random Set method, with relatively small number of simulations compared to fully probabilistic methods, smooth extremes on system responses are obtained. Therefore random set approach has been proposed for reliability analysis in geotechnical problems. In the present study, the application of random set method in reliability analysis of deep excavations is investigated through three deep excavation projects which were monitored during the excavating process. A finite element code is utilized for numerical modeling. Two expected ranges, from different sources of information, are established for each input variable, and a specific probability assignment is defined for each range. To determine the most influential input variables and subsequently reducing the number of required finite element calculations, sensitivity analysis is carried out. Input data for finite element model are obtained by combining the upper and lower bounds of the input variables. The relevant probability share of each finite element calculation is determined considering the probability assigned to input variables present in these combinations. Horizontal displacement of the top point of excavation is considered as the main response of the system. The result of reliability analysis for each intended deep excavation is presented by constructing the Belief and Plausibility distribution function (i.e. lower and upper bounds) of system response obtained from deterministic finite element calculations. To evaluate the quality of input variables as well as applied reliability analysis method, the range of displacements extracted from models has been compared to the in situ measurements and good agreement is observed. The comparison also showed that Random Set Finite Element Method applies to estimate the horizontal displacement of the top point of deep excavation. Finally, the probability of failure or unsatisfactory performance of the system is evaluated by comparing the threshold displacement with reliability analysis results.Keywords: deep excavation, random set finite element method, reliability analysis, uncertainty
Procedia PDF Downloads 26810517 A Comprehensive Analysis of the Phylogenetic Signal in Ramp Sequences in 211 Vertebrates
Authors: Lauren M. McKinnon, Justin B. Miller, Michael F. Whiting, John S. K. Kauwe, Perry G. Ridge
Abstract:
Background: Ramp sequences increase translational speed and accuracy when rare, slowly-translated codons are found at the beginnings of genes. Here, the results of the first analysis of ramp sequences in a phylogenetic construct are presented. Methods: Ramp sequences were compared from 211 vertebrates (110 Mammalian and 101 non-mammalian). The presence and absence of ramp sequences were analyzed as a binary character in a parsimony and maximum likelihood framework. Additionally, ramp sequences were mapped to the Open Tree of Life taxonomy to determine the number of parallelisms and reversals that occurred, and these results were compared to what would be expected due to random chance. Lastly, aligned nucleotides in ramp sequences were compared to the rest of the sequence in order to examine possible differences in phylogenetic signal between these regions of the gene. Results: Parsimony and maximum likelihood analyses of the presence/absence of ramp sequences recovered phylogenies that are highly congruent with established phylogenies. Additionally, the retention index of ramp sequences is significantly higher than would be expected due to random chance (p-value = 0). A chi-square analysis of completely orthologous ramp sequences resulted in a p-value of approximately zero as compared to random chance. Discussion: Ramp sequences recover comparable phylogenies as other phylogenomic methods. Although not all ramp sequences appear to have a phylogenetic signal, more ramp sequences track speciation than expected by random chance. Therefore, ramp sequences may be used in conjunction with other phylogenomic approaches.Keywords: codon usage bias, phylogenetics, phylogenomics, ramp sequence
Procedia PDF Downloads 16310516 Geo-Additive Modeling of Family Size in Nigeria
Authors: Oluwayemisi O. Alaba, John O. Olaomi
Abstract:
The 2013 Nigerian Demographic Health Survey (NDHS) data was used to investigate the determinants of family size in Nigeria using the geo-additive model. The fixed effect of categorical covariates were modelled using the diffuse prior, P-spline with second-order random walk for the nonlinear effect of continuous variable, spatial effects followed Markov random field priors while the exchangeable normal priors were used for the random effects of the community and household. The Negative Binomial distribution was used to handle overdispersion of the dependent variable. Inference was fully Bayesian approach. Results showed a declining effect of secondary and higher education of mother, Yoruba tribe, Christianity, family planning, mother giving birth by caesarean section and having a partner who has secondary education on family size. Big family size is positively associated with age at first birth, number of daughters in a household, being gainfully employed, married and living with partner, community and household effects.Keywords: Bayesian analysis, family size, geo-additive model, negative binomial
Procedia PDF Downloads 54410515 Predicting Options Prices Using Machine Learning
Authors: Krishang Surapaneni
Abstract:
The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%Keywords: finance, linear regression model, machine learning model, neural network, stock price
Procedia PDF Downloads 7710514 Morphological, Mechanical, and Tribological Properties Investigations of CMTed Parts of Al-5356 Alloy
Authors: Antar Bouhank, Youcef Beellal, Samir Adjel, Abdelmadjid Ababsa
Abstract:
This paper investigates the impact of 3D printing parameters using the cold metal transfer (CMT) technique on the morphological, mechanical, and tribological properties of walls and massive parts made from aluminum alloy. The parameters studied include current intensity, torch movement speed, printing increment, and the flow rate of shielding gas. The manufactured parts, using the technique mentioned above, are walls and massive parts with different filling strategies, using grid and zigzag patterns and at different current intensities. The main goal of the article is to find out the welding parameters suitable for having parts with low defects and improved properties from the previously mentioned properties point of view. It has been observed from the results thus obtained that the high current intensity causes rapid solidification, resulting in high porosity and low hardness values. However, the high current intensity can cause very rapid solidification, which increases the melting point, and the part remains in the most stable shape. Furthermore, the results show that there is an evident relationship between hardness, coefficient of friction and wear test where the high intensity is, the low hardness is. The same note is for the coefficient of friction. The micrography of the walls shows a random granular structure with fine grain boundaries with a different grain size. Some interesting results are presented in this paper.Keywords: aluminum alloy, porosity, microstructures, hardness
Procedia PDF Downloads 4910513 Test-Retest Agreement, Random Measurement Error and Practice Effect of the Continuous Performance Test-Identical Pairs for Patients with Schizophrenia
Authors: Kuan-Wei Chen, Chien-Wei Chen, Tai-Ling Chang, Nan-Cheng Chen, Ching-Lin Hsieh, Gong-Hong Lin
Abstract:
Background and Purposes: Deficits in sustained attention are common in patients with schizophrenia. Such impairment can limit patients to effectively execute daily activities and affect the efficacy of rehabilitation. The aims of this study were to examine the test-retest agreement, random measurement error, and practice effect of the Continuous Performance Test-Identical Pairs (CPT-IP) (a commonly used sustained attention test) in patients with schizophrenia. The results can provide empirical evidence for clinicians and researchers to apply a sustained attention test with sound psychometric properties in schizophrenia patients. Methods: We recruited patients with chronic schizophrenia to be assessed twice with 1 week interval using CPT-IP. The intra-class correlation coefficient (ICC) was used to examine the test-retest agreement. The percentage of minimal detectable change (MDC%) was used to examine the random measurement error. Moreover, the standardized response mean (SRM) was used to examine the practice effect. Results: A total of 56 patients participated in this study. Our results showed that the ICC was 0.82, MDC% was 47.4%, and SRMs were 0.36 for the CPT-IP. Conclusion: Our results indicate that CPT-IP has acceptable test-retests agreement, substantial random measurement error, and small practice effect in patients with schizophrenia. Therefore, to avoid overestimating patients’ changes in sustained attention, we suggest that clinicians interpret the change scores of CPT-IP conservatively in their routine repeated assessments.Keywords: schizophrenia, sustained attention, CPT-IP, reliability
Procedia PDF Downloads 30510512 Analysis of Exponential Nonuniform Transmission Line Parameters
Authors: Mounir Belattar
Abstract:
In this paper the Analysis of voltage waves that propagate along a lossless exponential nonuniform line is presented. For this analysis the parameters of this line are assumed to be varying function of the distance x along the line from the source end. The approach is based on the tow-port networks cascading presentation to derive the ABDC parameters of transmission using Picard-Carson Method which is a powerful method in getting a power series solution for distributed network because it is easy to calculate poles and zeros and solves differential equations such as telegrapher equations by an iterative sequence. So the impedance, admittance voltage and current along the line are expanded as a Taylor series in x/l where l is the total length of the line to obtain at the end, the main transmission line parameters such as voltage response and transmission and reflexion coefficients represented by scattering parameters in frequency domain.Keywords: ABCD parameters, characteristic impedance exponential nonuniform transmission line, Picard-Carson's method, S parameters, Taylor's series
Procedia PDF Downloads 444